Black mystery in the Amazon River
Black carbon produced by the burning of fuels and biomass is the most stable carbon compound in nature, yet its path from land to the deep ocean remains mysterious. An international research team under the lead of the Department of Geography characterized the black carbon exported by the Amazon River.
-
- Sampling on the Amazon River (Picture: Gabriela Santili)
Climate change and the global carbon cycle are deeply entangled. Black carbon and its origin, dynamics and fate play a crucial role in developing models to predict their interactions.
Biomass burning and fossil fuel combustion lead to a considerable retention of carbon in the form of black carbon. This is a very large and refractory component of the global carbon cycle that acts as a biospheric carbon sink. Rivers are the primary link by which black carbon is transferred from terrestrial pools to the oceans. Among these, the Amazon River accounts for one fifth of global freshwater discharge to the ocean, and is the largest single source of terrestrial organic matter to the ocean.
-
- Map of the central Amazon River and its major tributaries (Coppola, Seidel et al., 2019)
Marked spatially variability
An international team led by researchers of the Department of Geography characterized and quantified dissolved black carbon in four tributaries (Negro, Madeira, Trombetas, and Tapajós Rivers) and the Amazon River mainstem. The proportion of black carbon decreases downstream, but the marked spatially variability imply diverse dynamic sources and cycling.
Aging along the land-river-ocean transport?
The results show that the Amazon exports predominately young black carbon to the ocean. This contrasts the old age of black carbon in the ocean, suggesting that aging may occur along the land-river-ocean transport continuum. Alternatively, more reactive components could be selectively removed during storage and transport.
"There is still a lot of work to be done", says Alysha Coppola, first author of the study, "until we understand the underlying causes of this de-coupling and of the seasonal as well as interannual variability in black carbon contributions in the Amazon."
Literature:
Alysha I. Coppola, Michael Seidel, Nicholas D. Ward, Daniel Viviroli, Gabriela S. Nascimento, Negar Haghipour, Brandi N. Revels, Samuel Abiven, Matthew W. Jones, Jeffrey E. Richey, Timothy I. Eglinton, Thorsten Dittmar & Michael W. I. Schmidt: Marked isotopic variability within and between the Amazon River and marine dissolved black carbon pools. Nature Communication (2019)10:4018
More news
- Grassland ecosystems become more resilient with age
- Which glaciers are the largest in the world?
- Unlocking Environmental Narratives
- Relationships to nature go both ways – care and attention for nature bring satisfaction and joy for Swiss Alpine farmers
- «Ober mal wett hürate?» oder die Geographie der Schweizerdeutschen Grammatik
- Diverse forests outyield monocultures
- Drought-exposure history improves recovery of grassland communities from subsequent drought
- Satellite monitoring of biodiversity moves within reach
- Gone with the wind? How small birds move to the wintering grounds
- Choose your own route!
- Improving soil health in tropical regions
- Climate and soil determine distribution of plant traits
- Getting the big picture of biodiversity
- Capturing mood and affective states via Twitter
- What If Our History Was Written In Our Grammar?
- Can large volcanic eruptions make glaciers great again?
- New model simulates the tsunamis caused by iceberg calving
- Deep forest soils produce greenhouse gases as temperatures climb
- Global glacier retreat has accelerated
- 1918 Pandemic Second Wave Had Fatal Consequences
- Earlier than expected
- Locked-in and living delta pathways in the Anthropocene
- Staying home for nightlife
- Directed Species Loss from Species-Rich Forests Strongly Decreases Productivity
- Daily Mobility for Healthy Aging
- Water Towers of the world ranked on vulnerability
- Himalayan lakes are exacerbating glacial melt
- Gaming for better data
- Poor communication torpedoes a second national park
- Find your way back with intelligent navigation systems
- The emotional entanglements of smartphones in the field
- From fires to oceans
- Ice on a stick in soil research
- Melting glaciers causing sea levels to rise at ever greater rates
- Do financial incentives motivate farmers to conserve land?
- How landscapes contribute to our well-being
- Ice-sheet growing from the base
- Charcoal: Major Missing Piece in the Global Carbon Cycle
- Extracting mobility patterns from Call Detail Records
- Mapping functional diversity of forests with remote sensing
- Unaccompanied minor asylum seekers - feelings of belonging in educational experiences
- The effect of anxiety and spatial abilities in route learning from maps
- Making Concessions at the Mining Frontier in Burkina Faso
- New method for analyzing tracking data enables better understanding of behavioral patterns of animals
- Who is responsible for negative effects of anthropogenic climate change?
- Glaciers in the Karakoram Mountains are in balance since the 1970s
- The mega-event syndrome
- Historically unprecedented global glacier decline in the early 21st century
- Variability and evolution of global land surface phenology
- A literature-based estimation of fire-derived organic matter in soils
- Neoliberal austerity and the marketisation of elderly care
- Institutional shopping for natural resource management in a protected area and indigenous territory in the Bolivian Amazon