Mapping functional diversity of forests with remote sensing

Productivity and stability of forest ecosystems strongly depend on the functional diversity of plant communities. Using airborne remote sensing the authors have developed a new method to measure and map functional diversity of forests at different scales – from individual trees to whole communities.
Plant functional diversity can directly be measured by mapping selected morphological and physiological traits of a forest from above. In the past, functional traits of plants had to be measured by very labor-intensive fieldwork on the ground. The authors have now developed a new remote-sensing method to map functional diversity of forests from small to large scales, independent of any predefined vegetation units or species information and without the need for ground-based calibration. The Laegern mountain, a temperate mixed forest ecosystem located near Zurich, Switzerland, served as a case study.
With airborne laser scanning, the authors measured morphological characteristics of the forest canopy such as canopy height, foliage and branch densities, while biochemical properties of the forest were estimated using airborne imaging spectroscopy.
The authors validated their method by comparing the results with leaf-level field measurements, species-level plot inventory data and databases providing functional trait values. Using computer modelling, they were able to assess diversity patterns of morphological and physiological traits at a whole range of scales, from local diversity between individual trees to large-scale patterns of plant communities following environmental gradients. A strong relationship was found between the observed functional diversity patterns and environmental factors such as soil and topography, with lower diversity on the mountain ridge under harsher environmental conditions, where the trees adapted to the dry, steep, shallow and rocky soils.
Since the methodology is only limited by the availability of advanced technological sensors, this work paves the way for future airborne and satellite missions aiming at monitoring global plant functional diversity from space.
More news
- Grassland ecosystems become more resilient with age
- Which glaciers are the largest in the world?
- Unlocking Environmental Narratives
- Relationships to nature go both ways – care and attention for nature bring satisfaction and joy for Swiss Alpine farmers
- «Ober mal wett hürate?» oder die Geographie der Schweizerdeutschen Grammatik
- Diverse forests outyield monocultures
- Drought-exposure history improves recovery of grassland communities from subsequent drought
- Satellite monitoring of biodiversity moves within reach
- Gone with the wind? How small birds move to the wintering grounds
- Choose your own route!
- Improving soil health in tropical regions
- Climate and soil determine distribution of plant traits
- Getting the big picture of biodiversity
- Capturing mood and affective states via Twitter
- What If Our History Was Written In Our Grammar?
- Can large volcanic eruptions make glaciers great again?
- New model simulates the tsunamis caused by iceberg calving
- Deep forest soils produce greenhouse gases as temperatures climb
- Global glacier retreat has accelerated
- 1918 Pandemic Second Wave Had Fatal Consequences
- Earlier than expected
- Locked-in and living delta pathways in the Anthropocene
- Staying home for nightlife
- Directed Species Loss from Species-Rich Forests Strongly Decreases Productivity
- Daily Mobility for Healthy Aging
- Water Towers of the world ranked on vulnerability
- Himalayan lakes are exacerbating glacial melt
- Gaming for better data
- Poor communication torpedoes a second national park
- Black mystery in the Amazon River
- Find your way back with intelligent navigation systems
- The emotional entanglements of smartphones in the field
- From fires to oceans
- Ice on a stick in soil research
- Melting glaciers causing sea levels to rise at ever greater rates
- Do financial incentives motivate farmers to conserve land?
- How landscapes contribute to our well-being
- Ice-sheet growing from the base
- Charcoal: Major Missing Piece in the Global Carbon Cycle
- Extracting mobility patterns from Call Detail Records
- Unaccompanied minor asylum seekers - feelings of belonging in educational experiences
- The effect of anxiety and spatial abilities in route learning from maps
- Making Concessions at the Mining Frontier in Burkina Faso
- New method for analyzing tracking data enables better understanding of behavioral patterns of animals
- Who is responsible for negative effects of anthropogenic climate change?
- Glaciers in the Karakoram Mountains are in balance since the 1970s
- The mega-event syndrome
- Historically unprecedented global glacier decline in the early 21st century
- Variability and evolution of global land surface phenology
- A literature-based estimation of fire-derived organic matter in soils
- Neoliberal austerity and the marketisation of elderly care
- Institutional shopping for natural resource management in a protected area and indigenous territory in the Bolivian Amazon