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Abstract

Vegetation structure is an important parameter in fire risk assessment and fire behavior modeling. We present a new approach deriving the

structure of the upper canopy by segmenting single trees from small footprint LIDAR data and deducing their geometric properties. The

accuracy of the LIDAR data is evaluated using six geometric reference targets, with the standard deviation of the LIDAR returns on the

targets being as low as 0.06 m. The segmentation is carried out by using cluster analysis on the LIDAR raw data in all three coordinate

dimensions. From the segmented clusters, tree position, tree height, and crown diameter are derived and compared with field measurements.

A robust linear regression of 917 tree height measurements yields a slope of 0.96 with an offset of 1 m and the adjusted R2 resulting at 0.92.

However, crown diameter is not well matched by the field measurements, with R2 being as low as 0.2, which is most certainly due to random

errors in the field measurements. Finally, a geometric reconstruction of the forest scene using a paraboloid model is carried out using values

of tree position, tree height, crown diameter, and crown base height.

D 2004 Elsevier Inc. All rights reserved.
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1. Introduction and problem statement

Forest Fires are biogeophysical processes controlled by

physical properties such as weather, fuel, and topography

(Countryman, 1972; Pyne et al., 1996). Deriving robust

estimates of these parameters has always been an important

task in wildland fire risk assessment. As the weather can

be described by a combination of forecast models and

station measurements and as the topography is not time-

dependent, the fuel complex is probably the most difficult

to estimate due to its higher temporal and spatial variabil-

ity. The physical fuel properties include quantity, size,

compactness, and arrangement, and can be estimated for

each of the fuel components as ground, surface, and crown

fuel (Pyne et al., 1996). The role of remote sensing in

estimating these properties has been increasing in recent
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years (Chuvieco, 2003), with special emphasis on new

high resolution active and passive optical sensors. Airborne

laser scanning offers a great potential for deriving physical

fuel properties, and algorithms deriving structural forest

parameters (such as tree height, tree position, crown

diameter, crown base height) in a spatial context have

been successfully implemented by a number of researchers

(Drake et al., 2002a,b; Means et al., 2000; Naesset &

Oekland, 2002). As this structural information relates to

arrangement, quantity, and size, it is relevant for wildland

fires and can be used as input for existing fire behavior

models such as FARSITE and BEHAVE (Finney, 1998).

New thermodynamic fire models have been developed that

are not based on empirical equations (such as for FARSITE

or BEHAVE), but on a closed set of physical laws and

equations describing most of the relevant chemical and

physical processes in wildland fire behavior (Margerit &

Séro-Guillaume, 2002; Séro-Guillaume & Margerit, 2002).

These models need input data on higher spatial scales

(since they for instance explicitly model combustion at the
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sub-tree scale) and can use structural information based on

single tree metrics.

Two different types of laser scanners are most commonly

used: small- and large-footprint laser scanners (Lefsky et al.,

2002). Most of the large footprint laser scanners are able to

record the full continuous waveform of the return signal, as

for instance LVIS (Drake et al., 2002a,b), whereas the small

footprint laser scanners record only discrete returns; in the

case of the TopoSys system used in this study, these are the

first and the last pulse of the signal. The input for fire

behavior models that can be derived from large-footprint

LIDAR data are: elevation, slope, aspect, canopy height,

canopy cover, and canopy bulk density, with a spatial scale

order of 15 to 25 m (Peterson et al., submitted for publica-

tion). All the parameters that can be derived from large

footprint systems can be derived from small footprint

systems as well, if the single returns are used to model a

waveform as done by Riano et al. (2003). However, the

small footprint data contains valuable structural information

on smaller scales (about 1 m) that is not used when

modeling the waveform on scales of about 10 to 15 m. As

small footprint LIDAR systems with high point density (>10

points/m2) are now available (Baltsavias, 1999), the deriva-

tion of these geometric properties on a single tree basis has

been subject to recent research, but mainly applied to

standard forestry applications (Naesset & Bjerknes, 2001).

Previous approaches mostly focused on segmentation of the

Digital Surface Model (DSM) for the detection of single

trees (Hyyppae et al., 2001; Persson et al., 2002; St-Onge &

Achaichia, 2001). Since the processing step from the LI-

DAR point cloud to a DSM always includes loss of

information, working with the LIDAR raw data has been

increasing (Brandtberg et al., 2003; Pyysalo & Hyyppae,

2002), even though the sheer amount of data makes it hard

to handle on larger scales. Andersen et al. (2002) for

instance have proposed fitting ellipsoid crown models in a

Bayesian framework to the raw LIDAR data, including a

probabilistic modeling of the crown-laser pulse interaction.

Clustering in raw data has been used for terrain, vegetation

and building detection (Roggero, 2001), but to our knowl-

edge not for segmenting single trees. We will present a

practical two stage procedure for segmenting single trees

from the LIDAR raw data itself. Our objective is to derive

geometric properties from segmented clusters of laser points

belonging to a specific tree, without altering the original

data. Finally, a geometric reconstruction of the forest scene

should become possible that can be used in physically based

fire behavior models.
2. Data and test site

2.1. Test site and field data

The study area for the acquisition of the field data is

located in the eastern Ofenpass valley, which is part of the
Swiss National Park (SNP). The same area has been used

as test site in the study of Koetz et al. (submitted for

publication). The Ofenpass represents a dry inner-alpine

valley with rather little precipitation (900–1100 mm/a).

Surrounded by 3000-m peaks, the Ofenpass valley starts at

about 1500 m a.s.l. in the west and quickly reaches an

average altitude of about 1900 m a.s.l towards the east.

Embedded in this environment are boreal type forests

where few, but very impacting (standreplacing) fires be-

sides frequent fire scares were observed. The ecology of

these stands and their long-term fire history were subject of

ongoing studies in the same area (Allgöwer et al., 2003).

The south-facing Ofenpass forests, the location of the field

measurement, are largely dominated by mountain pine

(Pinus montana ssp. arborea) and some stone pine (Pinus

cembra) as a second tree species, being of interest for

natural succession (Lauber & Wagner, 1996; Zoller, 1992).

These forest stands can be classified as woodland associ-

ations of Erico-Pinetum mugo (Zoller, 1995). The under-

story is characterized by low and dense vegetation

composed mainly of Vaccinium, Ericaceae, and Seslaria

species. The study area has also been subject to previous

fuel modeling studies where three main fuel models could

be identified through extensive field studies (Allgöwer et

al., 1998). Therein model A ‘mixed conifers’ equals the

association Rhodendro ferruginei-Laricetum, Model B

‘mountain pine’ the Erico-Pinetum mugo and model C

‘dwarfed mountain pine’ the Erico-Pinetum mugo prostra-

tae. In the present study, the field measurements were taken

within forest stands corresponding to the model B since this

is the dominant fuel type of the area. On a small subset of

the test region, the Swiss Federal Institute for Forest, Snow

and Landscape Research (WSL) maintains a long-term

forest monitoring site (Thimonier et al., 2001). This site

contains about 2000 trees with diameter at breast height

(DBH) larger than 0.12 m, which have been geolocated and

whose geometric properties including tree height, crown

diameter, and stem diameter have been measured using

standard forestry tools. Crown diameter was estimated

using a compass and by calculating the crown diameter

from the included angle. In Fig. 1, an overview of the test

site is given. More than 20% of the stand are upright

standing dead trees, with the minimum tree age being 90

years, the mean and maximum being 150 and 200 years,

respectively. The whole stand has regenerated after a period

of clear cutting in the 18th and 19th century, and has been

without any management since the foundation of the Swiss

National Park in 1914. The main cause for dying of the

trees is the root rot fungi, as described by Dobbertin et al.

(2001).

2.2. Laser scanning data

In October 2002, a helicopter-based LIDAR flight was

carried out over the test area, covering a total area of about

14 km2. The LIDAR system used was the Falcon II Sensor



Fig. 1. The Digital Surface Model (DSM) of the Ofenpass area in the Swiss National Park. The area containing the long-term monitoring site of the WSL is

enlarged. The photograph was taken on the day of the LIDAR flight.
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developed and maintained by the German company

TopoSys. The system is a push-broom laser altimeter

recording both first and last reflection from the laser signal

on the ground (first/last pulse). The flight was conducted

with a nominal height over ground of 850 m, leading to an

average point density of more than 10 points per square

meter (p/m2). A smaller subset of the area (0.6 km2) was

overflown with a height of 500 m above ground, resulting

in a point density of more than 20 p/m2, thus, combining

the two datasets yields to a point density of more than 30

p/m2 for both first and last pulse. This density has been

used in this study. The footprint sizes were about 30 cm in

diameter for 850 m flight altitude and about 20 cm in

diameter for 500 m altitude. The raw data delivered by the

sensor (x,y,z-triples) was processed into gridded elevation
Fig. 2. Side view of one of the six geometric reference targets with the LIDAR

beneath the target are in front and behind the target in three-dimensional space.
models by TopoSys using the company’s own processing

software. The DSM was processed using the first pulse

reflections, the Digital Terrain Model (DTM) was con-

structed using the last returns and filtering algorithms. The

grid spacing was 1 m for the large area and 0.5 m for the

smaller one, with a height resolution of 0.1 m in both

cases.

2.3. Quality assessment

The quality of the LIDAR data was assessed using six

geometric reference targets being 3� 3 m in size. The

targets were leveled to less than 0.5j, using a digital angle

meter. The positions of the four corners of each target (see

Fig. 2) were determined using a GPS and theodolite
raw data points superimposed. The color denotes height. The points being



Table 1

Using the reference target data, we calculated the mean height difference of

all points (D height) on the laser target with the mean target height, the

standard deviation of the points on the laser target (r height), and the

differences of the positions of the centers of gravity (D x and D y)

ID Points D height r height D x D y

1000 215 3 6.8 9 7

2000 266 � 2 5.9 24 � 11

3000 151 � 2 6.6 6 6

4000 381 1 5.6 15 � 3

5000 302 � 2 5.8 4 15

6000 276 2 5.2 25 � 18

The second column gives the number of points on a reference target , with

first and last pulse being counted. The values in the last four columns are

given in centimeter.
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measurements resulting in an internal accuracy of less than 2

cm. Regarding the models (DSM/DTM), the absolute posi-

tional accuracy was determined by Toposys (using the target

positions) to be similar to or less than the resolution of the

models, with horizontal positional accuracy being below 0.5

m and vertical accuracy better than 0.15 m.

Furthermore, we used the reference targets to infer the

noise of the sensor on a plain, homogeneously reflecting

surface, which is the best case reflecting scenario. To

estimate the sensors noise, we calculated the standard

deviation of all points reflected from the target, as can be

seen in Fig. 2. A positional offset was calculated using the

center of gravity (COG) derived from the laser points being
Fig. 3. The LIDAR raw data (x,y,z-triples) as seen from the side, combined from

violet colors are low values.
on the targets with the COG of the targets themselves. The

center of gravity is derived according to Eq. (1).

COG ¼ ½x̄; ȳ� ð1Þ

These offsets only account for the internal accuracy of

the adjusted laser-strips, since a previously found transla-

tional offset of 3.5 m in easting and 1 m in northing had

been applied by Toposys to all of the data. The values for

offsets and noise are listed in Table 1.
3. Segmentation through k-means clustering

As we did not want to lose any of the information

contained in the three-dimensional point cloud, we decided

to do a cluster analysis of the raw x,y,z-triples in all three

coordinate dimensions, opposed to working on the gridded

DSM. Cluster analysis is a well-known statistical tool for

dividing feature spaces into areas containing values similar

to each other, with this similarity being determined by a

specific metric. In our case, the feature space is spanned

by the coordinate axes x, y, and z and we use a simple

Euclidean distance metric. The k-means clustering algo-

rithm itself tries to minimize the overall sum of distances

of the points in feature space to their so-called cluster

centroids or buoys. This happens in a iterative manner,

where, as a first step, the initial centroids are most often

randomly chosen with the convergence of the clustering to
the two overflights. Yellow and red represent high z-values, while blue and
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a global minimum being heavily dependent on these

starting locations. So the success of using cluster analysis

boils down to a clever or exhaustive determination of these

starting positions. Since pine tree crowns are of a general

ellipsoidal shape, with the treetops being horizontally

centered, we propose the use of local maxima derived

from the DSM as starting positions (seed points). This can

be achieved using a simple filter on the depth image, and

is thus much easier to implement than a determination of

the seed points in the raw data itself. Hence, the first stage

of the segmentation process will be the seed point extrac-

tion from the DSM, the second the cluster analysis starting

off these locations.

For the detection of local maxima in a DSM, Hyyppae et

al. (2001) proposed applying a smoothing filter on the DSM

for smoothing out the tree tops (the ‘hat’ formed by the

upper part of the tree crown), followed by a morphological

operation for finding pixels having all eight neighbors

smaller than the center pixel. The kernel size and weights

of the smoothing filter are important parameters since they

have to be tuned for each DSM resolution and expected

crown diameters. For our data, having a grid resolution of

0.5 m and mean crown diameters of 1.7 m, we have chosen

a 3� 3 kernel filter with the following weights: [1 2 1;2 4

2;1 2 1]/16.
Fig. 4. The segmented LIDAR points projected in the x, y-plane, the different colo

for better visibility of cluster boundaries.
Since clustering with an Euclidean metric favors ball-

shaped clusters in a three-dimensional feature space, we

introduce a scaling argument for the z-coordinate. This is

done to accommodate for the aspect ratio of pine tree

crowns, which in our case ranges from 3 to 6, hence, the

height of the tree crown is three to six times larger than the

crown diameter. Based on the field data, we have chosen a

value of three as a starting point and have found good

results using this scaling number for the z-axis. For cluster-

ing, both, first and last pulse data is being used without

differentiation of the two. The k-means clustering algorithm

used is the one implemented in the Statistics Toolbox in

MATLAB, using the information from Spath (1985). The

algorithm clusters the data in an iterational process divided

into two steps. The first step uses so-called batch updates,

where each iteration consists of reassigning points to their

nearest cluster centroid all at once, which is followed by a

recalculation of the cluster centroids. During the second step

of online updates, points are individually reassigned if that

reduces the sum of distances and the cluster centroids are

recomputed after each assignment. As we did not want to

cluster ground returns as well, a cutoff distance of 1 m

above ground was applied, derived from the DTM. A

sample of the raw data used is depicted in Fig. 3. We

combined the data from the two overflights, resulting in an
rs represent the cluster assignment and are randomly chosen for each cluster



F. Morsdorf et al. / Remote Sensing of Environment 92 (2004) 353–362358
extremely high point density (>30 p/m2). However, tests

have shown that the segmentation works as well using only

the data from the higher over flight, with only the feature

extraction suffering due to the lower point density.

Features such as tree height and crown volume are biased

towards lower values with reduced sampling density due to

under-sampling. It should be noted that the pine tree crowns

in the test area are rather small in diameter (1.5 to 3 m), so

that the high point density would compare to a normal point

density in areas with larger tree crowns.

As small footprint LIDAR raw data can sum up to about

400 MB per km2 this results in a large amount of time

consuming processing. But none of the steps described in

this processing scheme does need human interaction: the

processing can be done automatically. As clustering a larger

area all at once is not feasible, we used 50� 50 m windows

with an overlap of 50%. The clustered data was joined

automatically afterwards, eliminating double clusters in the

overlapping parts and partial clusters at the edges. For the

smaller subset of about 0.6 km2, the clustering took about 2

days on a state-of-the-art PC, with still some redundancy

due to the 50% overlapping clustering window, resulting in

clustering the whole area twice.

The outcome of the clustering is depicted in Fig. 4. The

raw data points have been projected in the x, y-plane for

better visibility of the horizontal boundaries. The numbers

(as well as the colors) represent cluster identifiers assigned

during the segmentation process.
Fig. 5. The matching of the field measured tree positions (dots) and the

LIDAR determined (circles) positions is done automatically. The lines

connect the matched tree locations. A LIDAR tree can be matched with more

than one field data tree to overcome the effect of tree clumping. The area

contained in the rectangle in the upper right is enlarged in the lower left.
4. Results

4.1. Derivation of geometric properties

After clustering, a single cluster will presumably consist

only of LIDAR returns from a single tree crown. Hence, all

information relating to crown geometry will be contained in

these returns. The most important geometric properties (tree

height, position) can be derived directly from these returns

by finding the maximum value of z or by computing the

center of gravity as described in Eq. (1). However, other

properties such as crown diameter or crown base height

need a more sophisticated treatment of the point cloud.

Crown diameter d was estimated from the segmented point

cloud by dividing the number of returns contained in a

cluster by the mean point density, thus yielding an area

covered by the crown. From this area, a diameter A was

derived using the relation for a circle d ¼ 2 �
ffiffiffi
A
p

q
. Using the

convex hull for estimating the area of the crowns was not

feasible, since crowns are not necessarily of convex shape.

Whether a more sophisticated algorithm determines the

outline of the crown superiorly is subject of recent work.

Crown base height is computed using 95% percentile of the

z-values contained in a cluster. Using this value, crown

height can be computed as tree height minus the height of

the base of the crown. These values can then be used with a
simple geometric tree model to reconstruct the forest stand

as seen in Fig. 9.

4.2. Matching the field data with the tree clusters

Since we had to deal with about 2000 trees residing in

the database of WSL, we had to come up with an automatic

matching of field tree data with cluster data. The total

number of segmented clusters was considerably less than

the number of field inventory trees (about 1200 compared to

1984). This was due to the fact that in the field inventory

groups of trees standing very close ( < 1 m) to each other, are

identified as several single trees, whereas the LIDAR-

derived clusters of returns were composed of all of these

trees.

Having several stems very close to each other is a

typical feature of the pine vegetation in the Swiss National

Park. We solved this problem by assigning each field tree

with the closest LIDAR-derived cluster, using distance and

tree height as matching criteria. This way, a cluster could

be assigned to more than one field measurement, com-

pensating for areas with several trees in a very small

radius (typically less than 1 m). The outcome of this

matching can be seen in Fig. 5. Furthermore, it is visible

from Fig. 5 that the matching is quite good for the middle

and top-left region, while being considerably inferior for

the top-right and bottom-left region of the image. At these

locations, the WSL intensified their field work and added



Fig. 7. A robust regression of the field measured crown diameters against

LIDAR-derived crown diameters is carried out. Only the values with the

weight being larger than zero (Fig. 6) have been used.

Fig. 6. A robust regression of the field measured tree heights against

LIDAR-derived tree heights is carried out, which uses weights on outliers

from the linear model to reduce their influence on the fit. Errors for the

linear’s model coefficients are derived and included as dashed lines in the

graph.
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understory trees into their monitoring scheme and trees

with a DBH (diameter at breast height) of less than 0.12

m. Hence, we do have more field data trees being

assigned to one LIDAR-derived tree height in these

regions. If more than one field measurement was assigned

to a cluster, only the tallest tree was chosen for the robust

regression in Fig. 6, since the highest point in the LIDAR

cluster would belong to that tree. It should be noted that

the automatic matching may introduce mismatch, and thus,

some tree height estimations are way off, as can be seen

in Fig. 6.

4.3. Validation with field data

Having matched the clustered data with the field data, we

can carry out a robust regression of LIDAR-derived tree

heights and field data tree heights. The tree height is derived

as the maximum height of the LIDAR points belonging to a

specific cluster. In Fig. 6, we chose to use a robust

regression (Huber, 1981) over a normal linear regression,

because of outliers introduced through the automated

matching process; these are due to mismatch. This can be

done since far the most of the data points reveal the linear

relationship (as inferred from the histogram of the weights

used on the data values), and furthermore, we have more

than 900 data points allowing such a statistical approach.

This robust regression calculates iteratively bisquare

weights on those data points that do not fit the linear model

to reduce their influence on the fit. The calculated errors for

the linear model’s coefficients are included in the graph. The

linear fit reveals a slope close to 1 (0.96) and an offset of

0.98; this manifests a systematic underestimation of tree

heights by the LIDAR data, which is consistent with

previous work (Naesset, 2002; Hyyppae et al., 2001) and
due to the fact that the treetop is not necessarily sampled by

the laser scanner. This underestimation will get smaller with

higher point density. Gaveau and Hill (2003) have quanti-

fied this effect for small footprint LIDAR data and have as

well found another source of underestimation. The vegeta-

tion needs a critical density to trigger a first pulse reflection

and thus, even if the tree top is sampled, the LIDAR pulse

penetrates the vegetation to a certain distance. This distance

depends on vegetation density and footprint size.

A problem validating the values of crown diameter with

the field data arises again from the tree clumping. Solving

this problem by taking only the value of the dominant tree,

as we did with the height measurements, does not work for

the crown diameter. In the case of tree clumping, the LIDAR

values will reflect the diameter of all of the trees standing in

a group, and not only that one of the dominant tree. Hence,

if there was more than one field tree assigned to a LIDAR

cluster in the matching process, we derived an artificial

diameter from the field measurements by computing the

convex hull of the tree group. From this convex hull, a

diameter was estimated in the same way as for the LIDAR

clusters in Section 4.1. Then, these values were used for the

regression shown in Fig. 7. Unfortunately, there is only a

weak linear relationship visible. There seems to be some

connection between field measurements and LIDAR-de-

rived crown diameters since the values are in the same

range in both cases, but inside this range, the distribution of

values seems to be more or less random, as expressed by the

low value of adjusted R2 of 0.2 and the coefficient deter-

mining the slope of the regression being only 0.2. Thus,

there seem to be quite large random errors associated with

either the LIDAR-derived crown diameters or with the field

measurements of crown diameters. A systematic under- or

overestimation is not visible in our dataset.



ld data (bottom). A robust regression has been carried out as in Figs. 6 and 7.
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4.4. Allometric relationship

Another way of assessing the feasibility of clustering

results is the derivation of allometric relationships from the

segmented tree clusters. Here we can use a large number of

trees, which would be very time (and cost) consuming with

Fig. 8. Relation of tree height to crown diameter for LIDAR (top) and fie
Fig. 9. Reconstruction of the forest scene using a simple geometric model. The L

different heights. The tree models are transparent to allow better visibility of lase
traditional field work. We utilize the LIDAR-derived values

of tree height and crown diameter, as well as the matched

field measurements. In Fig. 8 (top), we show a regression of

LIDAR-derived crown diameter and tree height revealing a

slope of 0.8 and an offset of 10.9 m, with the adjusted R2

being at 0.35. The slope is a little less then in Fig. 8 (bottom).
IDAR raw data is superimposed as colored dots, different colors represent

r points.
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There, the same regression is shown for the field data, with a

positive slope of 1.1 and a slightly larger R2 of 0.43. The

offset is as large as for the LIDAR data, being at 10.9 m. This

is the kind of relation one would expect with larger trees

having larger crowns. The two images in Fig. 8 reveal that

the relation of tree height and crown diameter is quite similar

for the LIDAR-derived values and the field measurements. It

might be that the problems that the crown diameter regres-

sion suffers from in Fig. 7 are not so predominant in these

allometric relationships. However, the low R2 are probably

due to the fact that the stands are not healthy and heteroge-

neous regarding their age distribution.

4.5. Geometric reconstruction

Using the derived values of tree height, tree position,

crown diameter, and crown base height, it becomes now

possible to reconstruct the forest scene using a simple

geometric model. We used a rotational paraboloid for the

tree crown and a cylinder for the trunk, with the height of

these two parts being determined trough crown base height.

In Fig. 9, we show the same area as in Figs. 3 and 4. The

LIDAR raw data is superimposed on the reconstructed scene

and might be obscured by the tree models in some cases.
5. Discussion and conclusion

We have shown that it is feasible to segment single

trees in LIDAR raw data using cluster analysis, choosing

local maxima as starting positions (seed points). Opposed

to previous stand wise approaches, we now can derive

geometric properties on a single tree basis, which will be

necessary for future fire behavior modeling. If a stand-wise

approach is desired for a specific application (as for the

empirical fire models), these values can be aggregated to a

larger scale. The original raw data is not altered in any

way and no information is lost. Tree heights derived from

the segmented clusters are in good agreement with the

field data, whereas the diameter of the trees does not

match as well, which might be due to random errors in the

field measurements and the way the crown diameter is

derived from the LIDAR data; the field crown diameter is

only measured from one side, which might generate errors

for asymmetric crowns. A systematic error measuring

crown diameter cannot be inferred from our dataset.

However, a larger number of field inventory trees have

not been detected by the automated segmentation. This is

due to the special vegetation in the Swiss National Park

bearing a lot of ’’tree clusters’’, with several stems inside a

radius of about 1 m. This fact will definitely cause trouble

for correct biomass estimations, as some stems are not

detected, which should however not be severe to our

approach as we currently only aim to estimate vegetation

structure. The group of trees will act in most physical

processes almost as a single tree, as for instance in
radiative transfer modeling. It should be noted that the

technique will very probably not work as well with

deciduous trees, since the seed point extraction relies on

the fact that the trees have only one well-defined local

maximum, which might not always be the case for

deciduous trees. The age of the stands with a lot of trees

at the end of their lifetime bearing only partial crowns is a

problem for the derivation of allometric relationships.

Future work will include developing a seed point algo-

rithm working on the raw data and the derivation of further

geometric crown properties as for instance crown density.

As the segmented crown clusters contain an average of

about 350 returns (both first and last pulse), one could try

to look a the vertical distribution of points inside the

cluster to infer a measure of crown density. Especially

helpful for this would be a small footprint being capable of

recording several returns in between first and last pulse or

even the full waveform. Then the estimation of crown

density at the tree level would become easier. We will

further need to determine the source of the discrepancy in

the crown diameter measurements, probably through addi-

tional field work; a survey of the study site with a

terrestrial laser scanner is already planned. Interfacing the

derived structural information with the thermodynamic fire

behavior models (Margerit & Séro-Guillaume, 2002; Séro-

Guillaume & Margerit, 2002) is already subject of ongoing

work.
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Allgöwer, B., Bur, M., Stähli, M., Koutsias, N., Tinner, W., Conedera, M.,

Stadler, M., & Kaltenbrunner, A. (2003). Can long-term wildland fire

history help to design future fire and landscape management? An ap-

proach from the swiss alps. 3rd International Wildland Fire Conference

and Exhibition, Sydney, Australia (p. 11).
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