Überwachung der Artenvielfalt per Satellit rückt in Reichweite
Um Massnahmen zum Schutz der globalen Artenvielfalt evidenzbasiert zu steuern, braucht es Daten, wie sich die Biodiversität von Pflanzen verändert. Forschende des GIUZ und der Universität Montréal zeigen, dass Pflanzengemeinschaften mit Hilfe der Bildspektroskopie zuverlässig überwacht werden können – in Zukunft auch per Satellit. Das ebnet den Weg für ein globales Monitoring der biologischen Vielfalt in beinahe Echtzeit.
-
- Pflanzliche Artenvielfalt in vier unterschiedlichen Ökosystemen dargestellt als spektrale Variation.
- Pflanzliche Artenvielfalt in vier unterschiedlichen Ökosystemen dargestellt als spektrale Variation. (Bild: Anna Schweiger, Etienne Laliberté)
Um bedrohte Ökosysteme zu schützen, zerstörte Lebensräume wiederherzustellen und den globalen Verlust der Artenvielfalt zu stoppen, braucht es international vergleichbare Daten zur biologischen Vielfalt. Doch das Biodiversitätsmonitoring ist arbeitsintensiv und kostspielig. Zudem gibt es weltweit viele nur schwer zugängliche Gebiete, was die Bestandesaufnahme der Artenvielfalt schwierig macht.
Biodiversitäts-Monitoring per Satellit aus dem All ist möglich
Anna Schweiger vom Labor für Fernerkundung am Geografischen Institut der Universität Zürich (UZH) und Etienne Laliberté von der Universität Montréal zeigen nun, dass die Pflanzen-Biodiversität in unterschiedlichen Ökosystemen mit Hilfe der bildgebenden Spektrometrie zuverlässig bestimmt werden kann. Die untersuchten Ökosysteme reichen von der arktischen Tundra bis in tropische Wälder. «Wir hoffen, mit unserer Studie einen Beitrag zu leisten, um Veränderungen in der Artenzusammensetzung der Ökosysteme unserer Erde zukünftig auch aus dem All zu erkennen. Ziel ist, politische Massnahmen zum Artenschutz bzw. zur Milderung negativer Konsequenzen des Biodiversitätsverlusts auf Basis wissenschaftlicher Evidenz zu steuern», sagt Erstautorin Anna Schweiger.
Bildspektrometer messen die Reflektion von Licht vom sichtbaren bis zum kurzwelligen Infrarot-Bereich des elektromagnetischen Spektrums. Wieviel Licht die Pflanzen reflektieren, wird von ihren chemischen, anatomischen und morphologischen Merkmalen bestimmt, die für die Interaktionen zwischen Pflanzen sowie mit ihrer Umgebung ausschlaggebend sind. «Deshalb besitzen Pflanzen mit ähnlichen Merkmalen sowie nahe verwandte Arten tendenziell auch ähnliche Reflektionsspektren», so Schweiger.
Mit reflektiertem Licht Einzelpflanzen und Pflanzengemeinschaften bestimmen
Zuerst entwickelten die Forschenden einen sogenannten spektralen Diversitätsindex. Dieser berechnet, wie stark sich einzelne Pflanzen innerhalb von Pflanzengemeinschaften sowie einzelne Pflanzengemeinschaften untereinander in einem bestimmten Gebiet unterscheiden. Bei der Vielfalt innerhalb von Pflanzengemeinschaften spricht man von Alpha-Diversität, während die Vielfalt zwischen Pflanzengemeinschaften als Beta-Diversität bezeichnet wird.
Für die Studie verwendeten sie Daten des National Ecological Observatory Networks (NEON). Das Netzwerk sammelt mit standardisierten Methoden Biodiversitäts- und Erdbeobachtungsdaten in Gebieten, die über die gesamten Vereinigten Staaten verteilt sind, und stellt diese der Wissenschaft öffentlich zur Verfügung. Die NEON-Bildspektrometer-Daten, die anhand von Forschungsflügen gesammelt werden, haben eine Pixelgrösse von 1x1 Meter.
Die Berechnungen der spektralen Vielfalt ergaben, dass die Erfassung der Alpha-Diversität von der Grösse der Pflanzen abhängt. Im Vergleich zum offenen Grasland, wo kleine, krautige Pflanzen und Grässer vorherrschen, stimmte in Wald-Ökosystemen mit geschlossenem Kronendach die anhand der Reflexionsspektren berechnete Diversität besser mit der effektiv am Boden ermittelten Pflanzenvielfalt überein. Aggregierten die Forschenden jedoch die NEON-Bildspektrometer-Daten zu einer Pixelgrösse von 20x20 Meter, so fanden sie in allen untersuchten Ökosystemen Übereinstimmungen zwischen spektraler und pflanzlicher Beta-Diversität. Diese Pixelgrösse entspricht der Grösse der Probeflächen, auf denen vor Ort Vegetationsaufnahmen gemacht werden.
Weltweite biologische Vielfalt fast in Echtzeit überwachen
Sowohl die Europäische Raumfahrtbehörde ESA wie auch ihr nordamerikanisches Pendant NASA entwickeln derzeit satellitengestützte Bildspektrometer. Diese sollen rund alle 16 Tage den gesamten Erdball mit einer Pixelgrösse von rund 30x30 Meter abbilden und es ermöglichen, Veränderungen in Ökosystemen zu detektieren, währenddem sie stattfinden. «Unsere Studie hilft, in absehbarer Zukunft Veränderungen in der Biodiversität von Pflanzengemeinschaften effektiv und zuverlässig per Satellit zu ermitteln. Mit gezielten Feldarbeiten könnten dann Ursachen und Folgen analysiert und so hoffentlich negativen Folgen rechtzeitig entgegengewirkt werden», sagt Anna Schweiger. Dies ebne, so Schweiger, den Weg für eine globale Überwachung der biologischen Vielfalt – nahezu in Echtzeit.
Literatur:
Anna K. Schweiger, Etienne Laliberté. Plant beta-diversity across biomes captured by imaging spectroscopy. Nature Communications. 19 Mai 2022. DOI: 10.1038/s41467-022-30369-6
Weitere News
- «Ober mal wett hürate?» oder die Geographie der Schweizerdeutschen Grammatik
- Mischwälder schlagen Monokulturen
- Graslandgemeinschaften sind nach langer Trockenheit resistenter für spätere Dürren
- Vom Winde verweht? Wie kleine Vögel ins Winterquartier ziehen
- Wähle selbst deinen Weg!
- Den Boden in tropischen Regionen aufwerten
- Klima und Boden entscheiden über die Ausprägung von Pflanzenmerkmalen
- Getting the big picture of biodiversity
- Stimmungen und Gefühle über Twitter erfassen
- Ist unsere Geschichte in die Grammatik geschrieben?
- Können grosse Vulkanausbrüche die Gletscher retten?
- New model simulates the tsunamis caused by iceberg calving
- Deep forest soils produce greenhouse gases as temperatures climb
- Global glacier retreat has accelerated
- Die zweite Welle endete 1918 fatal
- Doch früher als gedacht
- Locked-in and living delta pathways in the Anthropocene
- Daheim ins Nachtleben stürzen
- Produktivität von Wäldern kann trotz grosser Artenvielfalt sinken
- Alltägliche Mobilität und gesundes Altern
- Wo die Wasserreserven der Gebirge am stärksten bedroht sind
- Himalaya-Seen verstärken die Gletscherschmelze
- Spielerisch zu besseren Daten
- Warum Parc Adula gescheitert ist
- Schwarzes Rätsel im Amazonasfluss
- Mit intelligenten Navis auch den Weg zurück finden
- Die emotionalen Verflechtungen von Smartphones in Feldstudien
- Von Feuern und Ozeanen
- Eis am Stiel in der Bodenforschung
- Gletscherschmelze lässt die Ozeane immer stärker ansteigen
- Sind finanzielle Anreize für die Bauernschaft eine Motivation, Land zu schützen?
- Was Landschaften für unser Wohlbefinden leisten
- Eisschild wächst von unten
- Schwarzer Kohlenstoff altert in Böden und Flüssen vor dem Transport ins Meer
- Erfassung von Mobilitätsmustern mittels Telefonverbindungsdaten
- Pflanzenvielfalt von Wäldern aus der Luft abbilden
- Unbegleitete minderjährige Asylsuchende in der Schweiz - Erfahrungen aus Bildungseinrichtungen
- Ängstlichkeit und räumliches Vorstellungsvermögen beim Kartenlesen
- Regulativer Pluralismus an der Goldminenfront in Burkina Faso
- Neue Analysemethode erlaubt besseres Verständnis von Bewegungsmustern von Tieren aus Tracking-Daten
- Wer ist verantwortlich für die negativen Auswirkungen des anthropogenen Klimawandels?
- Kein Gletschermassenverlust im Karakoram-Gebirge seit den 1970er Jahren
- Das Mega-Event Syndrom
- Gletscher verlieren mehr Eis als je zuvor
- Veränderungen der globalen Landoberflächenvegetation
- Eine literaturbasierte Schätzung organischen Feuerrückständen (Kohle) in Böden weltweit
- Neoliberale Sparpolitik und Seniorenbetreuung als käufliches Gut
- Der Umgang mit natürlichen Ressourcen im Schutzgebiet und indigenem Territorium des Bolivischen Amazonas