
Terrain Modelling with Triangle Based
Free-Form Surfaces

Dissertation
zur

Erlangung der naturwissenschaftlichen Doktorwürde
(Dr. sc. nat.)
vorgelegt der

Mathematisch-naturwissenschaftlichen Fakultät
der

Universität Zürich
von

Marco Hugentobler
von Mönchaltorf

Promotionskomitee
Prof. Dr. Robert Weibel (Vorsitz)

Dr. Ross Purves
Dr. Bernhard Schneider
Dr. Marc van Kreveld

Zürich 2004

Abstract

The shape of the terrain surface is important for many GIS applications. Currently, digital terrain
modelling is usually done by interpolation of the input data to a regular grid and applying an algorithm
to obtain the required terrain derivatives. As several algorithms may use different implicit surfaces,
this approach may introduce inconsistency. Furthermore, interpolation is performed twice and because
each interpolation step introduces uncertainty, this may not be optimal. An alternative approach is to
specify a continuous surface explicitly and to derive all terrain information from this surface.

Reconstruction of continuous surfaces from discrete input data is underdefined. Therefore it is
important to use all available information to reduce shape uncertainty. This includes the removal of
artifacts because an interpolation artifact can be seen as a surface behaviour which is, based about
knowledge about terrain, implausible.

Because of their intuitive shape control and their local nature, methods from Computer Aided
Geometric Design (CAGD) seem to be well suited to continuous terrain modelling. This thesis ex-
amines the suitability of triangle-based Coons patches and Clough-Tocher Bézier splines for terrain
modelling. The basic idea of Coons patches is to specify a network of boundary curves and to find
a surface which passes through these curves. Clough-Tocher Bézier splines, in contrast, use control
points to describe the shape of the surface. Specifically, the possibilities to include linear information
and the occurence and removal of artifacts with these methods are examined.

In terrain modelling it is often important that linear elements are on the surface. Examples of such
elements are contours, lake boundaries or valleys. Linear elements can be considered in triangle-based
surface by using constrained Delaunay triangulations. However, across some linear elements, for
instance sharp ridges, lake boundaries or road edges, it is desirable that the digital surface changes its
gradient aprupt. Therefore, extensions to include breaklines in otherwise continuously differentiable
surfaces, are developed for Coons patches and Clough-Tocher splines. In both kinds of surfaces,
different kinds of artifacts frequently occur. The usage of linear interpolated cross-derivatives, for
instance, creates well visible artifacts. To soften these artifacts, a method to make the transitions
between Clough-Tocher triangles smoother is introduced. Cubic surfaces may undulate in long and
thin triangles. In this thesis, the Ruppert algorithm has been applied to alter the triangular mesh such
that small angles in long thin triangles disappear.

The methods developed in the thesis are evaluated by means of artificial surfaces and field data.
On the artificial surfaces as well as in the test area, the cubic free-form surfaces show a consider-
ably improved prediction of elevations in comparison to linear interpolation because the cubic inter-
polators model the curvature of the terrain. The consideration of breaklines also improves the the
predictions. The differences between the cubic interpolators are small in all experiments because of
two reasons. First, although based on different mathematical formulations, Clough-Tocher Bézier
splines and Coons patches don’t show large differences if they have the same degree and the same
cross-boundary derivative function. Second, the smoothing of the Clough-Tocher splines has an im-
pact on the visual appearance of a surface, but the numerical effect of this extension is small in the
experiments.

Zusammenfassung

Die Form der Geländeoberfläche spielt für viele GIS-Anwendungen eine wichtige Rolle. Meistens
wird in der Geländemodellierung aus den Inputdaten ein regelmässiges Gitter interpoliert. Dann wird
auf das Gitter ein Algorithmus angewendet, welcher die gewünschte Geländeinformation extrahiert.
Da solche Algorithmen verschiedene implizite Oberflächen verwenden kann so ein Vorgehen Inkon-
sistenzen zur Folge haben, falls für eine räumliche Modellierung mehrere Arten von Geländeinfor-
mation verwendet werden. Ausserdem wird so zweimal interpoliert, was auch nicht wünschenswert
ist, da jeder Interpolationsschritt mit Unsicherheiten behaftet ist. Ein alternatives Vorgehen ist daher,
eine kontinuierliche Oberfläche explizit zu spezifizieren und alle Geländeinformation direkt daraus
abzuleiten.

Die Rekonstruktion einer kontinuierlichen Oberfläche aus Punkt- und Liniendaten ist unterdefiniert.
Es ist daher bei der Rekonstruktion wichtig, alle zur Verfügung stehende Information zu nutzen, damit
die durch die Interpolation verursachten Unsicherheiten möglichst klein sind. Da man ein Interpola-
tionsartefakt als ein Verhalten der Oberfläche anschauen kann, welches aufgrund des Vorwissens über
Geomorphologie sehr unwahrscheinlich ist, schliesst dies das Vermeiden von Artefakten mit ein.

Methoden aus dem Computer Aided Geometric Design (CAGD) scheinen für das Spezifizieren
von kontinuierlichen Oberflächen sehr geeignet zu sein, da sie eine intuitive Beeinflussung der Ober-
flächenform erlauben. Diese Dissertion beschäftigt sich mit der Frage, inwiefern sich kubische Coons
patches und Clough-Tocher Béziersplines für die digitale Geländemodellierung eignen. Das Grund-
prinzip von Coons patches besteht darin, aus einem Netzwerk von Randkurven eine geeignete Ober-
fläche zu finden, welche diese Kurven interpoliert. Clough-Tocher Béziersplines dagegen verwenden
Kontrollpunkte, welche die Oberfläche anziehen und so deren Form beeinflussen. Im speziellen wird
untersucht, wie lineare Information in diesen Oberflächen berücksichtigt werden kann sowie welche
Artefakte auftreten und wie sie vermieden werden können.

In der Geländemodellierung ist es oftmals wichtig, dass lineare Elemente auf der Oberfläche sind.
Beispiele dafür sind Höhenlinien, Seekonturen oder Tallinien. Linien können in dreiecksbasierten
Oberflächen berücksichtigt werden, indem gezwungene Delaunaytriangulationen verwendet werden.
Bei einigen Linienelementen, z. B. scharfen Graten, Seeufern oder Strassenrändern, kann es aber
wünschenswert sein, dass die Oberfläche die Richtung aprupt ändert. Daher werden sowohl für die
Coons patches als auch für die Clough-Tocher Bézier splines Erweiterungen entwickelt, welche die
Berücksichtigung von Bruchkanten in den ansonsten kontinuierlich differenzierbaren Oberflächen
ermöglichen. In beiden Arten von Oberflächen gibt es eine Reihe von Artefakten, welche immer
wieder auftreten. Die Verwendung von linear interpolierten Ableitungen senkrecht zu den Randkur-
ven führt zu gut sichtbaren Artefakten. Um diese abzuschwächen wird eine Methode verwendet, um
die Übergänge zwischen zwei Bézierdreiecken möglichst glatt zu machen. Kubische Oberflächen
können in langen und spitzen Dreiecken ausschwingen. Daher wird der Algorithmus von Ruppert
verwendet, welcher durch Einfügen zusätzlicher Punkte kleine Winkel in der Triangulation verhin-
dert.

Die im Rahmen dieser Dissertation entwickelten Methoden werden mit Hilfe von künstlichen
Oberflächen und mit Daten aus dem Feld evaluiert. Sowohl auf den künstlichen Oberflächen wie auch
im Testgelände schneiden die kubischen Oberflächen verglichen mit der linearen Interpolation erhe-
blich besser ab, weil sie auch die Krümmung des Geländes berücksichtigen. Auch die Berücksichti-
gung von Bruchkanten führt zu einer Verbesserung des Interpolationsergebnisses. Die Unterschiede
zwischen den verschiedenen kubischen Interpolatoren sind bei allen Versuchen sehr klein. Zum einen

sind die Unterschiede zwischen Coons patches und Clough-Tocher Bézier splines sehr klein, falls
beide kubisch sind und dieselben Ableitungsfunktionen senkrecht zu den Randkurven haben. Zum
anderen hat die Glättung der Clough-Tocher splines wohl einen Einfluss auf die visuelle Erscheinung
der Oberflächen, die numerischen Effekte sind aber in allen Experimenten klein.

iii

Danksagung

• Prof. Dr. Robert Weibel für die Möglichkeit, eine Arbeit in seiner Abteilung zu schreiben.
Trotz randvollem Terminkalender fand er immer wieder Zeit für eine Diskussion oder um die
Kapitel dieser Diss durchzugehen.

• Dr. Ross Purves für die engagierte Betreuung, die vielen Ideen, welche in diese Arbeit ein-
flossen, sowie seinen unerschütterlichen Optimismus, dass diese Arbeit zu einem guten Ende
kommt.

• Dr. Bernhard Schneider, welcher es immer wieder verstand, mich mit seinem Enthusiasmus für
Oberflächen- und Geländemodellierung anzustecken und mir jederzeit mit Rat und Tat zur Seite
stand.

• Alistair Edwards für die Hilfe beim Vermessen des Testgeländes.

• Den Mitglieder der DTM-Gruppe, Felix Hebeler, Syed Awase Khirni, Daria Martinoni, Dani
Wirz und Bisheng Yang für das gute Arbeitsklima im L94.

• Meiner Frau Nathalie und meiner Tochter Nora, welche es mit viel Geduld ertrugen, wenn ich
mal wieder zusätzlich an einem Wochenende an dieser Diss arbeitete.

• Meinen Eltern sowie allen Grosseltern von Nora. Oftmals schauten sie zu meiner Tochter, wenn
ich mal wieder an einem Abend oder an einem Wochenende an die Uni ging.

• Dem Schweizerischen Nationalfonds, welcher diese Dissertation als Teil des Projektes ’Man-
agement of Metainformation and Uncertainties in Digital Terrain Modelling’ (Projekt nr. 2000-
059578.99) finanzierte.

• Der GIS-Fachstelle des Kantons Zug, welches das digitale Terrainmodell des Kantons Zug
sowie Fixpunktkoordinaten zur Verfügung stellte.

• Dem Bundesamt fuer Landestopographie für die Erlaubnis, Höhendaten aus dem Zuestollgebiet
manuell herauszuschreiben und für den Demodatensatz Albis.

iv

Contents

1 Introduction 1
1.1 Digital modelling of continuous terrain surfaces . 1

1.1.1 Digital terrain modelling . 1
1.1.2 Shortcomings of existing approaches . 2
1.1.3 Proposed approach . 3
1.1.4 Choice of methods . 5

1.2 Research questions . 6
1.3 Thesis outline . 6

2 Literature review 7
2.1 Introduction . 7
2.2 Definition of key terms . 7
2.3 Inverse distance weighting . 10

2.3.1 Method . 10
2.3.2 Discussion . 11
2.3.3 Inverse distance weighted gradients . 14

2.4 Kriging . 15
2.4.1 Semivariogram . 16
2.4.2 Ordinary Kriging . 19
2.4.3 Block Kriging . 21
2.4.4 Universal kriging . 21
2.4.5 Stratified kriging . 22
2.4.6 Discussion . 22

2.5 Minimum curvature spline . 23
2.5.1 Discussion . 23

2.6 Finite Elements . 24
2.6.1 Discussion . 24

2.7 Triangle based methods . 25
2.7.1 Advantages and disadvantages of triangle based methods 26
2.7.2 Linearly interpolated TIN . 26
2.7.3 Bivariate quintic interpolation . 27
2.7.4 Clough-Tocher Bézier splines . 29

2.8 Summary . 30

v

3 Interpolation of continuous surfaces for terrain modeling with Coons Patches 33
3.1 Coons patches and terrain modeling . 33
3.2 Method . 33

3.2.1 Basic principle of Coons Patches . 33
3.2.2 Estimating normals at data points . 34
3.2.3 Specifying the curve network . 35
3.2.4 The standard triangle . 35
3.2.5 Ruled surfaces . 37

3.3 G1-Continuity . 38

4 Breaklines in Coons surfaces over triangles for terrain modeling 41
4.1 Inserting breaklines . 41

4.1.1 The problem . 41
4.1.2 Abandoning G1-continuity . 41
4.1.3 Ensuring G0-continuity along patch boundaries 42
4.1.4 Cross-boundary derivatives and introduction of artifacts 42
4.1.5 Breakline endpoints . 44
4.1.6 Breakline bifurcations . 45
4.1.7 Example . 45

4.2 Discussion . 46

5 Triangular Clough-Tocher Bézier splines 50
5.1 Introduction . 50
5.2 The Bernstein form of a Bézier curve . 50
5.3 Triangular Bézier surfaces . 51

5.3.1 Barycentric coordinates . 51
5.3.2 Bivariate Bernstein polynomials . 52
5.3.3 Cubic Bézier triangles . 53
5.3.4 Continuity between cubic Bézier triangles 54

5.4 The Clough-Tocher subdivision . 55
5.5 Smoothing Clough-Tocher Bézier splines . 57

5.5.1 C2 conditions . 59
5.5.2 Lagrange minimisation . 59

5.6 Considering breaklines in triangular Clough-Tocher Bézier surfaces 60
5.6.1 Unintentional breaklines at the edges of macrotriangles 61
5.6.2 Unintentional breaklines within macrotriangles 62
5.6.3 Comparison of the two approaches . 62

6 Mesh refinement with the Ruppert algorithm 64
6.1 Introduction . 64
6.2 The Ruppert algorithm . 64
6.3 Issues related to terrain modeling . 66
6.4 Example . 66
6.5 Discussion . 67

vi

7 Implementation 70
7.1 Introduction . 70
7.2 Interpolators . 70

7.2.1 CloughTocherInterpolator . 71
7.2.2 CoonsTriangleInterpolator . 71

7.3 Tessellation . 71

8 Evaluation 75
8.1 Introduction . 75
8.2 Previous approaches in DEM/ DTM evaluation . 75

8.2.1 Visual inspection . 75
8.2.2 Comparison with artificial surfaces . 76
8.2.3 Comparison with field data of higher precision and accuracy 76

8.3 Methodology . 77
8.3.1 Creation of the triangular tessellations . 77
8.3.2 Interpolation methods . 79
8.3.3 Comparison techniques . 80

8.4 Results . 84
8.4.1 Visual inspection . 84
8.4.2 First artificial surface . 84
8.4.3 Second artificial surface . 85
8.4.4 Comparison with field data of higher precision and accuracy 87

8.5 Discussion . 94
8.6 Conclusions . 95

9 Discussion 96
9.1 Assessment of the proposed methods . 96
9.2 Removal of artifacts . 97
9.3 Inclusion of linear information in Coons patches and Clough-Tocher Bézier splines . 98
9.4 Comparison between Coons patches and Clough-Tocher Bézier splines 100

10 Conclusions 102
10.1 Achievements . 102
10.2 Insights . 103
10.3 Outlook . 104

10.3.1 Applying continuous surface models . 104
10.3.2 Direct derivation of complex nonlocal information 104
10.3.3 Tessellation with arbitrary curves . 105
10.3.4 Further Comparisons of interpolation methods with field data 105

Bibliography 106

A Installation of the software protorype ’Tritemo‘ 112

vii

B Code documentation 113
B.1 Triangulation Class Reference . 113

B.1.1 Description . 113
B.1.2 Member Enumeration Documentation . 113
B.1.3 Member Function Documentation . 113

B.2 TriDecorator Class Reference . 116
B.2.1 Description . 116
B.2.2 Member Function Documentation . 116

B.3 DualEdgeTriangulation Class Reference . 119
B.3.1 Description . 119
B.3.2 Member Function Documentation . 119
B.3.3 Member Data Documentation . 123

B.4 HalfEdge Class Reference . 125
B.4.1 Description . 125
B.4.2 Member Function Documentation . 126
B.4.3 Member Data Documentation . 126

B.5 Line3D Class Reference . 127
B.5.1 Description . 127
B.5.2 Member Function Documentation . 127

B.6 Node Class Reference . 128
B.6.1 Description . 128
B.6.2 Member Function Documentation . 128
B.6.3 Member Data Documentation . 128

B.7 TriangleInterpolator Class Reference . 128
B.7.1 Description . 128
B.7.2 Member Function Documentation . 128

B.8 LinTriangleInterpolator Class Reference . 129
B.8.1 Description . 129
B.8.2 Member Function Documentation . 129

B.9 CoonsTriangleInterpolator Class Reference . 129
B.9.1 Detailed Description . 129
B.9.2 Member Function Documentation . 130
B.9.3 Member Data Documentation . 132

B.10 CloughTocherInterpolator Class Reference . 135
B.10.1 Description . 135
B.10.2 Member Function Documentation . 135
B.10.3 Member Data Documentation . 136

B.11 SCloughTocherInterpolator Class Reference . 137
B.11.1 Description . 137
B.11.2 Member Function Documentation . 137
B.11.3 Member Data Documentation . 137

viii

Chapter 1

Introduction

1.1 Digital modelling of continuous terrain surfaces

1.1.1 Digital terrain modelling

The terrain surface is important for a large number of applications in science and engineering. To
mention only a few, terrain is crucial in hydrological modelling, placement of anntenas, production of
orthophotos, ice sheet modelling and forest fire prediction (Weibel and Heller, 1990).

Digital modelling of the terrain surface allows for the calculation of many derived products besides
elevation. Elevation, slope, aspect, curvature, the visible area from a point and fill or cut volumes are
only a few examples of the large number of derivatives which can be generated from a digital terrain
surface. Table 1.1 provides a list of derivatives useful in hydrological modelling.

Several data sources are popular for digital terrain models:

• contours digitised from topographic maps are a relatively cheap data source. Most national
mapping agencies sell digitised contour data and/ or an interpolated grid model derived from it;

• analytical photogrammetry is carried out interactively and allows the measurement of selected
points and linear features from a pair of aerial images. In wooded areas, photogrammetry can
not be applied due to obstructed visibility of the terrain surface. Normally, in such areas, another
data source is used (e. g. digitised contours).

• digital photogrammetry provides automated selection of data points which are usually arranged
in a regular grid

• laser scanning is a relatively new technique which allows for the collection of very dense terrain
datasets. In contrast to photogrammetry, laser scanning (or LIDAR) can also be used in wooded
areas. Nevertheless, the distinction between surface and terrain is often difficult (Pfeifer et al.,
2001).

• SAR interferometry is another source of terrain data which allows for the creation of regular
grids. A famous example covering the whole world is the dataset obtained from the Shuttle
Radar Topography Mission Pac (2000). As raw SAR digital elevation models (DEMs) have
occasional large errors and random elevation errors, careful filtering and interpolation of such
data is required (Hutchinson and Gallant, 2000).

1

Table 1.1: Primary topographic attributes in hydrological modelling [Beven and Moore 1991].
Attribute Definition

altitude elevation
upslope height mean height of upslope area
aspect slope azimuth
slope gradient
upslope slope mean slope of upslope area
dispersal slope mean slope of dispersal area
catchment slope average slope over the catchment
upslope area catchment area above a short length of contour
dispersal area area downslope from a short length of contour
catchment area area draining to catchment outlet
specific catchment area upslope area per unit width of contour
flow path length maximum distance of water flow to a point in the catchment
upslope length mean length of flow paths to a point in the catchment
dispersal length distance from a point in the catchment to the outlet
catchment length distance from highest point to outlet
profile curvature slope profile curvature
plan curvature contour curvature

Terrain modelling is usually carried out the following way: First, the continuous terrain surface
is discretised using one of the measurement techniques above. The terrain data is then interpolated
to a regular grid. To derive topographic information from this set of discrete data points, standard
GIS software provides a large number of algorithms. As derivatives are not defined for discrete data
points, however, these algorithms usually specify continuous surfaces implicitly (Schneider, 2001b;
Wood, 1998). An example for this is the calculation of curvature in an elevation grid by the method of
Zevenbergen and Thorne (1987). This algorithm implicitly specifies a local quadratic surface, centred
at the point for which curvature has to be calculated. In some cases, there is no specification of a
continuous surface at all, e. g. when using the single flow direction method (O’Callaghan and Mark,
1984; Gallant and Wilson, 2000) to derive flowlines in a regular grid.

1.1.2 Shortcomings of existing approaches

The specification of surfaces by the algorithms to derive terrain information causes various problems
in terrain modelling.

If different types of terrain derivatives are used within one modelling task, the derivatives may
be based on different surfaces and thus introduce inconsistencies (Martinoni, 2002). If, for instance,
slope and curvature are used for a spatial model and their values are calculated using the ARC/INFO
functions SLOPE and CURVATURE, the two values are based on different implicit surfaces. While
the calculation of slope is based on finite differences, curvature is calculated using piecewise quadratic
surfaces (ESRI, 2002; Horn, 1981; Zevenbergen and Thorne, 1987). Another example for such an
inconsistency is the usage of flow lines, calculated using the D8-Algorithm (O’Callaghan and Mark,
1984), and aspect, calculated with finite differences (ESRI, 2002). In this case, the inconsistency
is obvious, because the directions of the flow lines and the aspect values at the data points do not
necessarily match.

2

It is hard for a user of terrain information to figure out the shape of implicitly specified surfaces.
Explicitly specifying surfaces in contrast forces a user to think in terms of surfaces and not in terms
of discrete points.

The algorithms which implicitly specify surfaces are often simple and do not use the available
information about the shape of the terrain well. Figure 1.1 shows an example of a surface consisting
of local biquadratic surfaces. Because this approach does not consider the relations between adjacent
cells, the surface has a lot of gaps.

Figure 1.1: Surface consisting of local biquadratic surfaces.

1.1.3 Proposed approach

This thesis builds on the hypothesis that the problems mentioned above can be avoided by modelling
terrain explicitely as a mathematical function. Because all terrain information derived would be based
on this function, inconsistency would not be a problem anymore. As caves and overhangs are relatively
rare in nature, the restriction of a function to have only one value for a location is considered to be
appropriate for most applications using terrain models (Schneider, 2001b).

Reconstruction of continuous surfaces from a set of points and lines is underdefined (Martinoni,
2002; Wood, 1998). This has two consequences for terrain modelling. First, it is important to use
as much of the information as possible included in the input data to reduce the uncertainty of shape
(Schneider, 2001a). Not only elevation values at data points, but also the semantic information of
peaks, linear features, breaklines, contours, soft breaklines need to be exploited for the surface recon-
struction (Figure 1.3). Knowledge about the phenomenon to be modelled is also implicit information.
Artifacts of the interpolation method used for reconstructing the surface are suboptimal if they are
unplausible, as suggested by the knowledge about the phenomenon. Serious artifacts in the recon-
structed surface therefore mean that the implicit information is not well used. An example of such
artifacts are the horizontal triangles which occur when interpolating contour data with a linear TIN.
According to knowledge about fluvial geomorphology, those horizontal areas are highly unplausible.
Depending on the situation it is more likely that they are peaks, valleys, passes or slopes. In order
to better use implicit information, a number of strategies have been developed to avoid such artifacts
(Brändli, 1991; Heitzinger and Kager, 1998; Thibault and Gold, 2000; Schneider, 1998; Wise, 1997).

Second, application specific requirements and assumptions have to be included into the terrain
modelling process (Martinoni, 2002; Schneider, 2001b). For instance, a terrain model used for hy-
drological modelling in an area where fluvial processes are dominant requires the absence of spurious

3

sinks. Another example would be a terrain model which is used for visualisation and should have a
visually pleasing appearance.

terrain data

raster DEM

implicit surface1

terrain derivative1

implicit surface2

terrain derivative2

traditional approach

interpolation

proposed approach

terrain data

continuous surface

interpolation

terrain derivative1 terrain derivative2

Figure 1.2: Traditional and proposed approach for terrain modelling

Figure 1.3: More information per datum reduces the uncertainty of local shape [Schneider, 2001a].

A large number of methods exist for the interpolation of terrain surfaces. Two broad classes can
be distinguished: point based methods, such as inverse distance weighting, kriging and minimum
curvature splines; and methods based on rectangular or triangular tessellations. Although Chapter 2
also reviews point based methods, the focus of this thesis is on triangle based methods.

The tessellation based methods commonly use piecewise polynomial surfaces, such as linear in-
terpolation or bivariate quintic interpolation. A detailed review of methods already applied to terrain
modelling can be found in Chapter 2.

Various piecewise methods for surface construction have been developed in the discipline of com-
puter aided graphics design (CAGD) (Beach, 1991; Farin, 1997; Farin et al., 2002; Piegl and Tiller,
1997; Rogers and Adams, 1990). They have been successfully applied to design problems in different
domains, e. g. car bodies, aircrafts and ships.

Due to a number of properties, CAGD methods have also been recognised to be highly suitable
for the specification of continuous terrain models (Pfeifer, 2002; Schneider, 1998):

• the shape of the surfaces can be controlled locally, thus additional knowledge and application
specific requirements can be considered;

• as CAGD methods are tessellation based, linear information (e. g. breaklines) can be incorpo-
rated;

4

• because of their frequent use for design purposes, methods with intuitive shape control exist;

• due to their local, piecewise nature, CAGD methods are in general computationally efficient;

Nevertheless, terrain data and applications are different from the standard applications of CAGD.
Therefore, the standard methods will need to be adapted. Breaklines indicating sudden changes in
slope are quite common for terrain data, but there is no reference in the CAGD literature known to
the author covering this topic. Tessellation artifacts are important in CAGD as well as in terrain
modelling. However, in terrain modelling irregular linear input data is more common. Therefore,
tessellation elements are more likely to be of long and thin shape. As non-linear methods tend to
swing out at such elements, artifacts caused by the tessellation tend to have a stronger impact in
terrain modelling.

1.1.4 Choice of methods

There are two broad classes of CAGD methods: methods based on triangles and methods based on
rectangles. Triangle based methods can be applied to any data, whereas quadrilateral ones need to have
regularly spaced input. This thesis concentrates on triangular methods. The relevance of scattered data
interpolation for terrain modelling is high, as most terrain data capture methods produce irregularly
spaced output. Moreover, filtered grids are also an application area for scattered data interpolation.

This thesis aims at evaluating and extending the following two methods:

1. The Triangular Coons patch is a method to create surfaces interpolating to given boundary
curves and boundary derivatives. Therefore, it seems to be an intuitive approach to interpolate
to scattered points and to linear features simultaneously. Furthermore, because the boundary
curves can be of any type, they provide more flexibility compared to other CAGD methods. As
triangular Coons patches have not been used for terrain modelling so far, an evaluation of this
technique would be of value.

2. Triangular Bézier patches have been well examined due to numerous publications in the CAGD
literature. With the Bernstein form, a computationally efficient and numerically stable formu-
lation exists for this class of methods.

1.2 Research questions

The central research question of this thesis is:

• How can Coons patches and triangular Bernstein-Bèzier methods be adapted for continuous
terrain modelling?

From this general question, two specific questions arise:

1. How can linear information be included in these methods?

2. What artifacts occur and how can they be avoided?

The evaluation of the generated surfaces will be an important part of this thesis. First, general issues
about the comparison of interpolated surfaces will be discussed. Then Coons patches and Bézier
splines will be evaluated qualitatively by means of visual inspection and quantitatively using first an
artificial surface and, second, measured values of a real terrain surface. Research questions referring
to the evaluation of the developed methods are therefore

5

3. Does the removal of artifacts provide ’better‘ surfaces?

4. Are the proposed methods ’better‘ than the methods already known in terrain modelling?

Last but not least, a software prototype implementing the methods described in this thesis will be
developed.

1.3 Thesis outline

Chapter 2 gives an overview of current methods used in digital terrain modelling. Chapter 3 explains
the mathematical basics of the triangular Coons patch and Chapter 5 provides an introduction into
triangular Clough-Tocher Bézier splines. Chapter 4 explains the consideration of breaklines in Coons
patches and chapter 5 does the same for Clough-Tocher Bézier splines. In Chapter 6, the Ruppert
algorithm for refinement of triangular meshes is applied to triangular terrain models. A brief descrip-
tion of the prototype software implementing the methods used in this thesis is provided in Chapter 7.
Chapter 8 contains an evaluation of the developed method with a field experiment and an artificial sur-
face. The thesis is closed by a general discussion in Chapter 9, as well as conclusions and an outlook
in Chapter 10.

6

Chapter 2

Literature review

2.1 Introduction

In this chapter key terms of digital terrain modelling are defined. Then, a selection of interpolation
methods applied to terrain modelling is reviewed:

• Inverse distance weighting is perhaps the first approach coming to mind to solve the interpola-
tion problem for scattered point data. Inverse distance weighting, however, is rarely used for
terrain interpolation. The reason why it is introduced in this chapter is because kriging and
minimum curvature splines are extensions of it.

• Kriging was developed in the mining industry but has often been used for the interpolation of
various phenomena in GIS, including terrain.

• Minimum curvature splines are closely related to kriging. Variations are widely used and im-
plemented within GIS.

• Linear interpolation in triangles is the simplest technique for triangle based interpolation.

• Bivariate quintic interpolation was the first triangle based method applied to terrain modelling
which accounted for G1-continuous surfaces.

• Clough-Tocher Bézier splines provide a method for G1-continuous surfaces which is only of
cubic degree.

Not reviewed are methods which are specifically designed for the interpolation of terrain surfaces
from isolines. A review of these can be found in Schneider (1998).

3D views of a test data set (the mountains Zuestoll and Schibenstoll in Switzerland) have been
rendered to illustrate the geometric properties of the reviewed interpolation methods. The dataset
consists of mass points, structure lines and a breakline, all digitised from the 1:25000 map. Figure
2.1 shows the test data set in an orthogonal projection. Figure 2.3 shows a photograph of Schibenstoll
and Zuestoll from the north direction.

2.2 Definition of key terms

Gn-continuity Geometric continuity. Curves and surfaces are Gn-continuous, if the derivatives up
to order n vary continuously. G0-continuity therefore means that the elevation function varies continu-
ously (no gaps). G1-continuity denotes continuity of slope and G2-continuity continuity of curvature.

7

0 500m

Z
S

Figure 2.1: Test data set used for the 3D projections. Data points are indicated by black dots, structure lines
by dashed lines and breaklines by dash-dot lines. The peaks of Zuestoll (Z) and Schibenstoll (S) are circled

Cn-continuity Parametric continuity. The derivatives of parametric curves and surfaces are vectors,
in contrast to normal functions, where the derivatives are scalar. A curve or surface is Cn continuous,
if the derivative vectors up to order n vary continuously. Note that, for a curve or surface, the order of
C-continuity is not necessarily the same as the order of G-continuity. The order of C-continuity and
G-continuity, respectively, will differ if the direction of the derivative vectors varies continuously, but
not the length.

Scattered points Arbitrarily spaced and arranged points. Points arranged in a regular grid would,
as a special case, also fall into this category.

Breaklines Breaklines (often also termed ’hard breaklines‘) represent sharp linear terrain features.
Across these lines, the slope of the terrain surface is supposed to change suddenly (only G0-continuity
is reached). Sharp ridges are an example of a situation where breaklines may be used (Figure 2.2).

Structure lines Linear terrain features (also called ’soft breaklines‘ by some authors). The differ-
ence from breaklines is that the slope is not supposed to change suddenly (G1-continuity). Usually,
geomorphologic features like valleys and obtuse ridges are modelled as structure lines (Figure 2.3).

Mass points In a dataset where scattered data points and linear elements are present, the term mass
point is commonly used to denote a scattered data point, to make a clear distinction to the vertices of
the linear elements.

8

Figure 2.2: Zinalrothorn (Wallis, Switzerland). The sharp ridge in the middle of the picture is a nice example
of a geomorphologic feature where a breakline would typically be inserted.

Figure 2.3: Churfirsten (Switzerland). The obtuse ridges facing towards the viewer are nice examples of
geomorphologic features where structure lines would typically be inserted. The positions of the mountains
Zuestoll and Schibenstoll, which are used as a study area in this thesis, are marked.

Interpolation, extrapolation Interpolation is the procedure of predicting the value of attributes, el-
evation for digital terrain models, at unsampled sites from measurements made at locations within the
same area or region. Prediction of values outside the area covered by existing observations (typically
designated by the convex hull of the data points) is called extrapolation (Burrough and McDonnell,
1998).

9

Interpolation point, data point For the sake of clarity, in this thesis, an unsampled location where
a value needs to be interpolated is called interpolation point. Sample points or vertices of sample lines
are referred to as data points.

Delaunay triangulation Triangulation which has been built using the Delaunay criterion. This cri-
terion maximises the minimum angle and thus accounts for relatively compact triangles. A property
often used by construction algorithms is that the circumcenter of each triangle does not contain any
other data point (Fortune, 1995; Heller, 1990). To include lines which are not supposed to cross
a triangle edge the empty circle property can be relaxed across these lines, resulting in a so-called
constrained Delaunay triangulation (de Floriani and Puppo, 1992). In digital terrain modelling, con-
strained lines are often used to make sure that valleys and ridges are properly represented.

Voronoi polygons, Voronoi diagram In a point dataset, the Voronoi polygon of a point is the area,
which is closer to this point than to any other data point. All Voronoi polygons of a point set together
form the (point) Voronoi diagram. The Delaunay triangulation and the Voronoi diagram are geometric
duals. The Delaunay triangulation of a dataset can be obtained by connecting points, which belong to
adjacent Voronoi polygons (Fortune, 1995).

Proximal interpolation The elevation of an interpolation point is the elevation of the closest data
point. On a surface interpolated with proximal interpolation, all points within a Voronoi polygon have
the same value (Watson, 1992).

Interpolation vs. approximation Interpolation methods provide curves and surfaces which pass
exactly through the data points. Approximation methods, by contrast, yield curves and surfaces which
do not necessarily have to pass through the data points.

2.3 Inverse distance weighting

2.3.1 Method

The basic idea of the inverse distance method is the First Law of Geography: ”Things which are closer
to each other are more related than distant ones“ (Tobler, 1970). Therefore, the unknown elevation of
an interpolation point is calculated by weighting the elevations of the data points according to their
distance and averaging them. Given a set P = P1, . . . ,PN containing N data points, the elevation z of
an interpolation point (x,y) would then be calculated using the following formula:

z =

zi x = xi ∧ y = yi

∑N
i=1 Wi∗zi

∑N
i=1 Wi

(

x
y

)

6∈ P
(2.1)

with Wi (the weight of point i) being a function which decreases with distance. A common choice
for Wi is 1

di
p , where di is the distance between the interpolation point (x/y) and a data point i. p is a

parameter describing how fast the weight of a data point decreases with distance (Watson, 1992).
The choice of p has a considerable influence on the shape of the resulting surface. If p is small,

the weight of a data point decreases rapidly with distance. For p < 1, the surface forms spikes at the
data points and is not differentiable. The surface approaches the mean of all elevations the closer p
approaches 0. If p > 1, the surface is horizontal at the data points. The surface approaches a proximal

10

interpolation the higher p gets. Figures 2.4 - 2.8 show the effect of changing the value of p in the
2-dimensional case. Figures 2.9 - 2.12 show results of a 3-dimensional terrain surface.

Figure 2.4: Inverse distance weighting with p = 0.5

Figure 2.5: Inverse distance weighting with p = 1

2.3.2 Discussion

Inverse distance weighting is intuitive and can be used even if the distribution of the data points is
such that methods based on a tessellation cannot be applied (e. g. data points on a single profile).

11

Figure 2.6: Inverse distance weighting with p = 2

Figure 2.7: Inverse distance weighting with p = 3

However, there are numerous disadvantages (Watson, 1992):

• As figures 2.4 - 2.8 show, the choice of the parameter p is crucial. A suitable value of p
has to be estimated by the user by means of experiment. Different strategies are possible for
this. Surfaces with different values for p can be calculated and a suitable value for p can be
chosen by rendering the surfaces and comparing them visually. Alternatively, a cross-validation
approach can be used. For this, surfaces with different values for p are constructed using only
a subset of the available data. The remaining data points are used for validation and the p with

12

Figure 2.8: Inverse distance weighting with p = 7

Figure 2.9: Inverse distance weighting with p = 1

the lowest sum of deviations between the validation points and the corresponding surface is
selected. However, both approaches are time consuming and highly empirical.

• The values of the surface are between the lowest and the highest value given in the data set.
Thus, unsampled peaks higher than the maximum elevation cannot be reconstructed.

• The surface can be influenced between the two extreme cases mean value (p → 0) and proximal
interpolation (p →∞). Because of this property, unsampled peaks within the maximal value can
also not be reconstructed. Figure 2.13 shows a situation with an unsampled peak. As inverse
distance weighting is not capable of reconstructing this implicitly contained feature, it does not
make use of all available information for the specification of a continuous terrain surface.

13

Figure 2.10: Inverse distance weighting with p = 2

Figure 2.11: Inverse distance weighting with p = 3

• The influence of a data point is the same in all directions. The method produces radially sym-
metric peaks or pits at each data point. Because of this effect, linear features like valleys or
ridges are obscured (Watson, 1992). Lines given as part of the input data cannot be enforced
because of this isotropy.

• As inverse distance weighting is a global method, the computation costs may be high using
large datasets. A common extension, which overcomes this drawback, is to consider only data
points within a certain distance about point (x,y), essentially turning inverse distance weighting
into a local method. With this approach, however, the resulting surface is not G0-continuous
any more.

14

Figure 2.12: Inverse distance weighting with p = 7

Interpolation with reconstruction of
the unsampled peak

Inverse distance interpolation

Figure 2.13: Interpolation of a dataset containing an unsampled peak.

2.3.3 Inverse distance weighted gradients

Inverse distance weighted gradients is a modification to inverse distance weighting which overcomes
some of the deficiencies described in 2.3.2. First, normals at the data points have to be estimated.
Then, inverse distance weighting is applied, but instead of the elevation values at the data points, the
elevations of the tangent planes at the location of the interpolation point are weighted and averaged.
This modification allows the reconstruction of unsampled peaks and pits and avoids the stepped,
terraced appearance of the surface (Watson, 1992).

2.4 Kriging

For inverse distance weighting, the weights given to the data points have to be estimated (by the choice
of the parameter p). Kriging is a method to choose these weights based upon geostatistical analysis.

15

It has been developed by Krige and Matheron for use in the mining industry (Matheron, 1962, 1963).
For the application of kriging, the spatial variation of a variable is divided into three components

(Figure 2.14) (Wackernagel, 1998):

• a global trend. This trend function is usually simple (a constant mean or a function of low
degree)

• a random but spatially correlated variation

• a spatially uncorrelated variation (noise).

spatially uncorrelated variation

spatially correlated variation

global trend

Figure 2.14: Spatial variation of a variable

2.4.1 Semivariogram

While the trend is usually modelled with a constant value or a function of low degree, the second,
spatially correlated component can be modelled with a semivariogram. The semivariance between
several data points (in practice usually two), separated by distance h is defined as

1
2n

n

∑
i=1

(z(xi)− z(xi +h))2. (2.2)

Note that the z-values in this equation are the deviations of the data points from the trend surface and
not the elevation values of the data points. The semivariogram is a plot of the semivariance between
pairs of data points against the distance between them. Figure 2.15 shows an example of such a plot,
together with a fitted function, showing three characteristic parameters of a variogram (Isaaks and
Srivastava, 1989):

• The range is the distance at which the variogram reaches its plateau. Below this distance, the
semivariance increases with growing distance between the points. For the estimation of the

16

random and spatially correlated variation this means that only data points within the range have
to be taken into account.

• The semivariance value at which the variogram levels off is called sill.

• The value of the fitted function for h = 0 is called the nugget.

γ(h)

h

Nugget

Range

Sill

Figure 2.15: Empirical variogram fitted using a spherical model. γ(h) is the semivariance between points and
h the lag (distance between points)

γ(h)

h

Nugget

Range

Sill

Figure 2.16: Empirical variogram fitted using a linear model. γ(h) is the semivariance between points and h
the lag (distance between points)

If estimates for the nugget (c0), the sill (c0 + c1) and the range (a) are available, different types
of functions can be used to fit the points of a variogram. The most common ones are (Isaaks and
Srivastava, 1989):

17

γ(h)

h

Nugget

Range

Sill

Figure 2.17: Empirical variogram fitted using an exponential model. γ(h) is the semivariance between points
and h the lag (distance between points)

γ(h)

h

Nugget

Range

Sill

Figure 2.18: Empirical variogram fitted using a Gaussian model. γ(h) is the semivariance between points and
h the lag (distance between points)

• the spherical model (figure 2.15)

γ(h) =

{

c0 + c1 ·
(

3h
2a −

1
2

(

h
a

)3
)

0 ≤ h ≤ a

c0 + c1 h > a
(2.3)

• the linear model (figure 2.16)
γ(h) = c0 +bh, (2.4)

where b is the slope

• the exponential model (figure 2.17)

γ(h) = c0 + c1 ·

(

1− exp(
−h
a

)

)

(2.5)

18

• the Gaussian model (figure 2.18)

γ(h) = c0 + c1 ·

(

1− exp(
−h
a

)2
)

(2.6)

A variogram which can be fitted by a Gaussian model is typical for smoothly varying data. This
situation often occurs with elevation data (Burrough and McDonnell, 1998).

Fitting variograms is usually done interactively because of the nonlinearity of common variogram
models and the number of parameters to estimate (Chiles and Delfiner, 1999). This can be accom-
plished by selecting a model and by specifying a subset of parameters of this model. The remain-
ing parameters can then be calculated automatically with a fitting method, e. g. a least squares fit
(Pebesma, 2000). Knowledge about the interpolated phenomenon can be included into the specifica-
tion of the variogram. One example is the choice of the behaviour of a variogram function near the
origin. If the data contains no measurement error, a function with no or with a very small nugget
can be chosen. If, in contrast, the phenomenon under study is known to have a very regular spatial
structure (e. g. gravity or magnetism) and it is assumed that there are measurement errors, a function
with a stronger nugget can be chosen, e. g. by using a spherical model. User knowledge is further
needed to consider various special cases in variogram modeling. If, for instance, the nugget is dom-
inant compared to the autocorrelated component, kriging interpolation does not make any sense and
the best estimation for the variable is the trend (Chiles and Delfiner, 1999).

After the variogram fitting, the following steps are carried out using the fitted function (model
semivariogram). The semivariances between the pairs of points (empirical semivariogram) are not
used further.

Four approaches to kriging are now introduced: ordinary kriging, block kriging, universal kriging
and stratified kriging.

2.4.2 Ordinary Kriging

In ordinary kriging the value z of a spatially varying variable at an interpolation point can be calculated
using the weighted sum of the values at the n data points within the range:

z =
n

∑
j=1

w j ∗ z j. (2.7)

The estimated semivariance function can now be used to determine the weights w j.
Ordinary kriging aims to minimise the error variance σ2

R = 1
k ∑k

i=1(ri −mR)2, where ri is the error
of an estimate and mR the mean error of k estimates. As the ri as well as mR are unknown, it is not
possible to minimise the variance of errors. The approach of kriging is to build a model of the data
and to work with the mean error and error variance of this model (Isaaks and Srivastava, 1989). The
minimum error variance of the kriging model is obtained when

γ(x1,x1) · · · γ(x1,xn) 1
...

. . .
...

...
γ(xn,x1) · · · γ(xn,xn) 1

1 · · · 1 0

·

w1
...

wn

φ

=

γ(x1,x0)
...

γ(xn,x0)
1

, (2.8)

or, in matrix notation,
C ·w = D, (2.9)

19

where γ(xi,x j) denotes the semivariance between the data points i and j, which is provided, as a
function of the distance between the two points, by the variogram. γ(xi,x0) denotes the semivariance
between the data point i and the interpolation point. φ represents the Lagrange parameter needed
for minimisation (Chiles and Delfiner, 1999). The vector containing the weights and the Lagrange
parameter therefore can be calculated using matrix inversion:

w = C−1 ·D. (2.10)

Ordinary kriging is an exact interpolator. If x0 is equal to a point of x1, · · · ,xn, the only solution of
the equation system is to set the weight of this data point to one and all the others to zero.

As the kriging variance can be calculated at each interpolation point, it can be used as a measure
for the quality of an interpolated value. Isaaks and Srivastava (1989) provides an excellent explanation
of the details.

Figure 2.19 shows the test dataset interpolated with ordinary kriging. The perspective plot reveals
spikes and pits at the data points and a smooth surface otherwise. These artifacts are similar to the ones
occurring in inverse distance interpolation and show the close relationship between the two methods.

Figure 2.19: Data set Zuestoll interpolated with ordinary kriging. The surface passes through the data points,
but shows spikes and pits at these locations. The variogram has been estimated using the mean as trend function
and a spherical function with range 400m for variogram fitting.

2.4.3 Block Kriging

Kriging can be modified to calculate an average value over blocks. Block kriging provides a way to
calculate such averages by solving only one kriging equation system. This is done by replacing the
vector D in equation 2.9 by a Vector containing the semivariances between each data point and the
block B to be estimated (Burrough and McDonnell, 1998):

γ(x1,x1) · · · γ(x1,xn) 1
...

. . .
...

...
γ(xn,x1) · · · γ(xn,xn) 1

1 · · · 1 0

·

w1
...

wn

φ

=

γ(x1,B)
...

γ(xn,B)
1

. (2.11)

20

The semivariance between a point and a block is calculated by discretising the area of the block
into several points and by averaging the semivariances between the point and the points of the block
(Isaaks and Srivastava, 1989).

Block kriging does not have the spikes and pits which occur in ordinary kriging and universal
kriging, but the surface does no longer pass through the data points. Figure 2.20 shows a perspective
view of the test data set interpolated using block kriging with a block size 40 m*40 m.

Figure 2.20: Block kriging with a block size of 40m * 40m. The variogram has been estimated using the mean
as trend function and a spherical function with range 400 m for variogram fitting.

2.4.4 Universal kriging

Universal kriging incorporates the trend into the kriging functions. For a first order trend function
the parameters b0, b1 and b2 of the function z = b0 + b1x + b2y have to be estimated. Therefore the
following equation system can be used to estimate the coefficients bn and the weights (Watson, 1992):

1 x1 y1 γ(x1,x1) · · · γ(x1,xn)
...

. . .
...

. . .
1 xn yn γ(xn,x1) · · · γ(xn,xn)
0 0 0 1 · · · 1
0 0 0 x1 · · · xn

0 0 0 y1 · · · yn

·

b0

b1

b2

w1
...

wn

=

γ(x1,x0)
...

γ(xn,x0)
1
x
y

(2.12)

2.4.5 Stratified kriging

An extension to kriging classifies the area into subareas and uses semivariograms for each subarea.
The interpolation is then carried out separately for each subarea (Burrough and McDonnell, 1998). A
similar extension is to use polylines or polygons as boundaries and to only use points on the same side
as the requested points for the weighted average (Pebesma, 2000). Unfortunately, in both methods the
surface is not G0-continuous at the boundaries of the subareas.

21

2.4.6 Discussion

A major advantage of kriging is that, in contrast to inverse distance weighting, the range and the
weights for interpolation are derived from a geostatistical analysis. Furthermore, the kriging estima-
tion variance is available and provides a measure for the quality of each interpolated value. Kriging is
often referred to as an ’optimal interpolator‘ (Burrough and McDonnell, 1998). However, it is optimal
only if the assumptions made for the chosen version of kriging as well as the model of autocorrelation
estimated with the variogram are appropriate. The same holds for the estimation variance as a measure
for the quality of interpolation.

Fitting of variograms is an interactive process requiring considerable skills from a user (Burrough
and McDonnell, 1998). Thus, kriging is not an ’easy to use‘ method. Furthermore, some disadvan-
tages of inverse distance weighting remain: the method is point based; linear features (which are far
more important in terrain modeling than in other applications) can only be considered by introducing
discontinuities. The artifacts in ordinary kriging (spikes and pits) can be removed using block kriging.
However, a resulting property of the surface is that it does not pass through the data points and local
shapes may no longer be represented.

Kriging is often used in the geosciences. Erxleben et al. (2002) used kriging to interpolate snow
depth. Jimenez-Espinosa and Chica-Olmo (1999) interpolated gold contents found in soil samples in
Spain. Martinez-Cob (1996) interpolated evapotranspiration and precipitation using kriging. There
are several reasons for the frequent usage of kriging interpolation. Due to historical reasons, kriging
is often used for mining and geochemical applications. It has also been applied for the interpolation
of ice sheet surfaces, where widespread previous use have established its use (Herzfeld, 1999; Fricker
et al., 2000). An important property for many applications is the possibility to include other variables,
on which the interpolated phenomenon is dependent, into the interpolation model (cokriging). Tem-
perature values, for instance, are influenced by elevation and interpolation of temperature thus can be
improved by considering elevation.

Kriging has not often been applied for interpolation of terrain surfaces. An exception is Gao
(1997), unfortunately without any information as to why kriging is chosen as an interpolation method.
For the interpolation of elevation data it is hard to use dependencies between elevation and other
variables (e. g. geology) to improve the interpolation. Therefore cokriging is not useful in interpo-
lating terrain surfaces. Terrain data is also special in that it often contains linear elements (contours,
breaklines, structure lines) besides the point data. Therefore, the limited possibility to include such
lines in the surface in kriging is more important in terrain modeling than in other application domains
which may exclusively use point data for surface reconstruction. Furthermore, the separation between
trend, autocorrelated variation and uncorrelated noise is hard to achieve for terrain surfaces. Terrain
modeling is more a very local and geometric operation than a geostatistical and regional one.

2.5 Minimum curvature spline

A method closely related to universal kriging is the minimum curvature spline (Dubrule, 1984; Wat-
son, 1992). Similar to universal kriging (section 2.4.4), the formula to calculate a value z at an inter-
polation point (x/y) contains a trend function and a weighted sum of the basis functions C(Pn −X)
between each data point and the interpolation point X :

z = b0 +b1x+b2y+a1C(P1 −X)+ · · ·+anC(Pn −X). (2.13)

In the case of minimum curvature splines, the basis function C(P1 −P2) equals d2 logd, where d is
the distance between P1 and P2 Watson (1992). The weights a1, · · · ,an as well as b0, b1 and b2 can be

22

calculated by solving the following system of equations:

1 x1 y1 0 C(P1 −P2 · · · C(P1 −Pn)
...

...
...

...
...

...
...

1 xn yn C(Pn −P1) · · · C(Pn −P2) 0
0 0 0 1 1 · · · 1
0 0 0 x1 x2 · · · xn

0 0 0 y1 y2 · · · yn

·

b0

b1

b2

a1
...

an

=

z1
...

zn

0
0
0

(2.14)

Mitas and Mitasova (1999) describe an extension with a different basis function, called Regular
spline with tension. The properties of this method can be adjusted by two parameters: one tunes the
tension of the surface and the other tunes the property to pass close to the data points. This method is
implemented in Arc/Info (ESRI, 2002) and in Grass (GRASS, 2004).

2.5.1 Discussion

The main difference between minimum curvature splines compared to kriging is that no geostatistical
analysis are necessary prior to interpolation. They are preferable if the resulting surface should be
smooth, while kriging emphasises the examination of the spatial behaviour of a variable. The advan-
tages and disadvantages of minimum curvature splines and regular splines with tension are similar
to those discussed for kriging. An important difference from kriging is that they are global methods.
Therefore, the computational cost of these methods is high, and subdivision approaches have been
developed to handle this problem (Mitas and Mitasova, 1999).

2.6 Finite Elements

The Finite Element method has been applied in engineering for several decades. Ebner and Reiss
(1978) applied this method to calculate grids from scattered points and breaklines. It was, for example,
implemented in the computer program HIFI (Ebner et al., 1980).

The principle of the method is to choose the elevation of the grid points, such that the weighted
sum of the approximated curvatures and the deviations of the surface from the given data points is
minimal. The curvature at a grid point is approximated in x- and y-direction using the following
formulae:

zxx,i, j = zi−1, j −2zi, j + zi+1, j (2.15)

zyy,i, j = zi, j−1 −2zi, j + zi, j+1, (2.16)

where zi, j is the elevation value of pi, j .
Figure 2.21 shows how the indexes of points are arranged in a grid. Using the bilinear method,

the deviation of the surface from a data point k is given by

vk = (1−∆xk)(1−∆yk)zi, j +∆xk(1−∆yk)zi+1, j +(1−∆xk)∆ykzi, j+1 +∆xk∆ykzi+1, j+1 − zk. (2.17)

The weighted sum of the zxx, zyy and vk in a m× n grid and with s data points can then be min-
imised:

s

∑
k=1

v2
k pk +

m−1

∑
i=2

n

∑
j=1

z2
xx,i, j +

m

∑
i=1

n−1

∑
j=2

z2
yy,i, j = min, (2.18)

23

where pk denotes the weights, which can be specified for each data point (Ebner, 1983). Thus, there
is a tradeoff between accuracy (in the sense that the surface passes close to the data points) and
smoothness.

With these bilinear elements, the global surface is G0-continuous. Instead of the bilinear version,
a bicubic version is also implemented in HIFI, which makes the global surface G1-continuous (Ebner,
1983).

Breaklines can be inserted by detecting the intersection points between the breaklines and the grid
cells and changing equations 2.15 and 2.16 for all affected grid points, such that there is no connection
between consecutive grid points anymore. Breakline support was implemented in HIFI only for the
bilinear version, because it would be very complex for the bicubic case (Ebner, 1983).

∆x
∆y

k

pi,j

pi,j+1

pi+1,j

pi+1,j+1

pi-1,j

pi-1,j+1

pi-1,j-1 pi,j-1 pi+1,j-1

Figure 2.21: Numbering of grid points in the finite element method.

2.6.1 Discussion

In contrast to the previously described methods, the finite element approach introduced by Ebner and
Reiss (1978) allows for the integration of breaklines into the surfaces. Therefore, linear structures like
ridges and valleys, which are characteristic for landscapes with dominant fluvial or glacial processes,
can be represented.

There is a tradeoff, however, between the smoothness of a surface and the accuracy of interpola-
tion. The possibility to choose weights for the data points allows the user to select the option which
suits their needs best.

The goal of the described method is clearly the creation of grids. For the specification of con-
tinuous terrain models, the direct way would be to use the original data points for linear or cubic
interpolation instead of calculating grid points first. As each interpolation introduces uncertainties,
auxiliary transformations of the data should be avoided.

There are further disadvantages of this method. Curvature is not really minimised properly, only
an approximation in two directions at the grid points is used. The choice of an appropriate cell size
is crucial and its determination requires expert knowledge and/or tests using several cell sizes. The

24

inclusion of breaklines is complicated in the bicubic case (and no implementation is known to the
author), while the use of structure lines is not possible for the bilinear as well as for the bicubic case.

2.7 Triangle based methods

A triangulated irregular network (TIN) is a subdivision of an area into triangular facets based on a set
of scattered points (Peucker et al., 1978). The principle of triangle based interpolation methods is to
create a TIN from a set of data points and to interpolate the surface in each triangle.

Many possibilities exist to build a TIN from a given set of points. In most applications, such as
in terrain modeling, it is important to have a triangular mesh with triangles that are as equilateral as
possible. To build such a triangulation the Delaunay criterion is often used. Delaunay triangulations
have the property that there are no other data points inside the circumcircle of every triangle. As a
Delaunay triangulation maximises the minimum angle of a triangulation the triangles are relatively
compact. Further details as well as a set of algorithms to build Delaunay triangulations can be found
in Fortune (1995).

To represent linear terrain features, such as ridges or valleys, it is necessary to violate the Delaunay
criterion at certain locations such that no triangle edge crosses a linear feature. This can be done by a
so-called constrained Delaunay triangulation. Definitions and an algorithm for constrained Delaunay
triangulation can be found in de Floriani and Puppo (1992).

2.7.1 Advantages and disadvantages of triangle based methods

Interpolation methods based on triangular tessellations have several advantages:

• Compared with methods based on gridded tessellations, the abilities to use irregularly spaced
data and to vary the sampling density are important differences. Most terrain datasources are
irregularly spaced. Furthermore, these properties are sometimes also an advantage in terms of
modeling. Tucker et al. (2001), for instance, use triangle based surfaces for erosion model-
ing because the horizontal component of erosion processes (e. g. stream meandering) can be
modelled more flexibly if the data points can be irregularly spaced.

• The consideration of linear terrain features, such as ridges and valleys, is straightforward using
a constrained Delaunay triangulation.

• The computational costs are generally small since triangle based interpolation methods are lo-
cal.

The triangle based approach also has disadvantages:

• If a triangle edge crosses linear terrain features, such as ridges and valleys, artifacts may be
introduced to the surface.

• If there are a lot of constrained edges in a TIN (e. g. when interpolating contour data), the
constrained Delaunay triangulation in general has a lot of long and thin triangles (Schneider,
1998), which commonly introduce artifacts.

25

2.7.2 Linearly interpolated TIN

Once a TIN has been created, the elevation of an interpolation point can be calculated by finding
the three vertices of the triangle which contains the interpolation point and interpolating between
them. For linear interpolation, the equation of a plane passing through the three vertices can be
used. Let (x,y,z) be an interpolation point and we want to find out z, the elevation of this point. Let

P1 =

x1

y1

z1

, P2 =

x2

y2

z2

 and P3 =

x3

y3

z3

 be the three vertices of the triangle containing P. z

can then be calculated using the following formula:

z = ax+by+ c, (2.19)

with

a =
z1(y2 − y3)+ z2(y3 − y1)+ z3(y1 − y2)

(x1 − x2)(y2 − y3)− (x2 − x3)(y1 − y2)
, (2.20)

b =
z1(x2 − x3)+ z2(x3 − x1)+ z3(x1 − x2)

(y1 − y2)(x2 − x3)− (y2 − y3)(x1 − x2)
, (2.21)

c = z1 −ax1 −by1. (2.22)

An example of a linear interpolated TIN is shown in figure 2.22.

Figure 2.22: Linearly interpolated TIN

Discussion

Linear interpolation is mathematically simple. Therefore, many methods to directly derive advanced
information from linearly interpolated TINs (also called tetrahedral terrain) have been developed.
Examples are the computation of the visible area (Floriani and Magillo, 1996) or the extraction of
hydrological features (Martinoni, 1997). The property that local extrema do not occur within a triangle
makes linear interpolation the preferred method for hydrological modeling with TINs. Spurious sinks
may still happen because of triangle edges crossing valleys, but these can easily be recognised and the

26

affected triangle edges can be swapped. Swapping a triangle edge implies finding the quadrilateral
formed by the two triangle facets separated by this edge and to swap the edge such that it is connected
with the other two vertices of the quadrilateral. Edge swapping can only be trivially achieved if the
quadrilateral concerned is convex. In the case of concave quadrilaterals, repeated swapping operations
involving neighbouring triangles are required to clean up the situation (Weibel and Brändli, 1995).

Linear interpolation over triangles introduces artifacts: planar facets and a breakline at each tri-
angle edge. Even in terrain types which are very rugged, most breaklines in a linear triangulation are
at the wrong locations. Because of the planar facets, curvature is zero everywhere. At triangle edges,
surface normals are not defined.

2.7.3 Bivariate quintic interpolation

Bivariate quintic interpolation is a method for G1-continuous interpolation over triangles. For each
triangle facet, a quintic polynomial with 21 coefficient is specified (Akima, 1978; Heller, 1990). The
value of an interpolation point can thus be calculated using the following formula:

z =
5

∑
m=0

5−m

∑
n=0

qmnlm
1 ln

2 , (2.23)

where l1 and l2 are two barycentric coordinates of the interpolation point and qmn are the coefficients
(Preusser, 1984).

To set up an equation system to solve for the 21 coefficients, the same number of conditions can be
specified. 3 conditions are the z-values at the three triangle vertices. The two first partial derivatives
with respect to x and y at each vertex are 6 more. 9 conditions are given by the 3 second derivatives
at the vertices. The remaining 3 conditions can be specified by the constraint that the global surface
has continuous surface normals at the triangle edges. Preusser (1984) gives formulae to calculate the
coefficients.

Values for surface derivatives are usually not given as part of the input data and thus need to be
estimated. The properties of a surface depend considerably on these estimations.

Bivariate quintic interpolation has been implemented in ARC/INFO in the TINLATTICE com-
mand (ESRI, 2002). An extension to consider breaklines is also implemented in this software package.
3D plots show that this breakline extension exhibits similar properties and artifacts as the breakline
extension described in chapter 4 for the Coons interpolation and in chapter 5 for the Clough-Tocher
Bézier splines. Unfortunately, no mathematical details of this extension have been published (ESRI,
2002). Furthermore, visual inspection suggests that the surface may not be G0-continuous along the
breaklines. Perspective views of the test data set generated by bivariate quintic interpolation are pro-
vided in Figures 2.23 and 2.24.

Bivariate quintic interpolation has been used in some applications, e. g. prediction of alpine veg-
etation (Dirnböck et al., 2003), morphometric relief classification (Unbenannt, 1999) or photogram-
metry (Song and Haithcoat, 2003). Dirnböck et al. (2003) and Unbenannt (1999) used input data with
breaklines, thus the breakline extension was important. Song and Haithcoat (2003) mentioned the
property of smoothly varying normals and the related removal of artifacts due to the planar facets in
linear interpolation as being crucial. An observation not only valid for bivariate quintic interpolation
is that the implementation within one of the major GIS software packages (ARC/ INFO in the case of
bivariate quintic interpolation) is a necessary prerequisite for an interpolation method to be used by a
large community.

27

Figure 2.23: Bivariate quintic interpolation without consideration of breaklines.

Figure 2.24: Bivariate quintic interpolation with breakline.

Discussion

Bivariate quintic interpolation has many advanced properties:

• It models the curvature of terrain.

• It has continuously varying elevation and surface normals over the whole triangulation.

• Smooth as well as sharp linear features can be modelled.

However, the polynomials are of degree five and may therefore undulate (Schneider, 1998). In the
chapters 3 and 5 methods using polynomials of degree three with similar advantages to those men-
tioned above are introduced. Bivariate quintic interpolation requires the estimation of 5 parameters
for each vertex (the partial derivatives up to order two), which is more than with most other methods.

28

The assessments of bivariate quintic interpolation in the literature are conflicting. Goodchild
(1992) sees its only advantage in creating visually pleasing surfaces and not in accurate depiction
of terrain. Schneider (1998) on the other hand states that G1-continuity of a terrain model, with the
exception of explicitly specified breaklines, is necessary for geomorphological plausibility.

2.7.4 Clough-Tocher Bézier splines

Bézier surfaces are parametric surfaces described by means of control points (Farin, 1997). Cubic
Bézier triangles can be used to interpolate the triangular facets of a TIN. To achieve G1-continuity,
each Bézier triangle must be subdivided into three subtriangles. This method is known as Clough-
Tocher interpolant (Farin, 1997). As this method is important in this thesis, detailed introductions to
Bézier triangles and the Clough-Tocher split are given in Chapter 5. Figure 2.25 shows a perspec-
tive view of a surface interpolated with Clough-Tocher Bézier splines. Schneider (1998) introduced
Clough-Tocher splines for the use in digital terrain modeling.

Discussion

Clough-Tocher splines have many interesting properties for surface interpolation. As with bivariate
quintic interpolation, global G1-continuous interpolation is possible. Because the individual triangle
surfaces are only cubic, Clough-Tocher splines do not undulate as much as bivariate quintic interpo-
lation (Schneider, 1998).

Clough-Tocher splines require the estimation of normals at the vertices of a TIN. Additionally, for
each edge of a TIN, a parameter has to be estimated describing the behaviour of the cross-derivatives
along the edge. The estimation of this parameter is thus a crucial task for interpolation. However, the
number of parameters to be estimated is considerably less than with bivariate quintic interpolation.

Although Clough-Tocher splines seem to be well suited to represent breaklines, no modification
of this scope can be found in the literature.

Figure 2.25: Interpolation with Clough-Tocher Bézier splines (linearly interpolated cross-derivatives).

29

2.8 Summary

In this chapter, interpolation techniques for scattered points used within GIS have been reviewed. They
can be classified into two groups: point based methods (inverse distance weighting, kriging, minimum
curvature splines) and methods based on a tessellation (finite elements, linear interpolation, bivariate
quintic interpolation and Clough-Tocher Bézier splines). Because of the tessellation based approach
and local shape control, triangle based methods seem well suited to consideration of linear terrain
features. Therefore, in this thesis, triangle based methods are used. However, for cubic interpolation
methods, no method for breakline insertion exists. Furthermore, artifacts of the triangulation exist,
especially when many linear features are present. The goals of this thesis are therefore to apply
Coons patches and Clough-Tocher Bézier splines to terrain modeling, to extend these methods with
the possibility of inserting breaklines and to avoid artifacts of the triangular tessellation.

In Table 2.1 properties of the methods reviewed in this chapter are compared. These include the
necessity to create a triangulation, the ability to include breaklines and structure lines, the computa-
tional cost, the ease of use, and the geometric continuity properties.

30

Table 2.1: Properties of the reviewed interpolation methods
method tessellation required breaklines structure lines computational cost ease of use continuity
IDW no no no high one parameter needs ≥ G0

O(n2) to be estimated
range reduces the computational
cost significantly

Kriging no no no high variogram estimation ≥ G0

O(n3) for points required
within the range

MC spline no no no high full automation possible ≥ G2

O(n3), but
subdivision possible

Finite Elements no yes, with no high, size of the elements G0/ G1

bilinear although sophisticated needs to be chosen
inter- algorithms can be
polation used for matrix inversion

Linear Triangles yes yes no triangulation: O(n log n) full automation possible G0

fast computation
afterwards

Bivariate quintic yes yes yes triangulation: O(n log n) full automation possible G1

relatively fast computation
afterwards

Clough-Tocher yes yes yes triangulation: O(n log n) full automation possible G1

relatively fast computation
afterwards

31

Chapter 3

Interpolation of continuous surfaces for
terrain modeling with Coons Patches

3.1 Coons patches and terrain modeling

The Coons patch method was originally developed by S. Coons in the mid 1960s for use in the car
industry (Piegl and Tiller, 1997). While the original Coons patch has a rectangular shape, the method
has since been generalised for the use in triangular patches (Farin, 1997).

We suggest that Coons patches may be useful for many applications using terrain models. They
are very flexible, the shape can be influenced by the curve network, by the blending functions (see
section 3.2) as well as by specification of derivative functions (theoretically up to any desired degree)
orthogonal to the curves. It is straightforward to imagine the effect of these parameters on the shape of
the surface, which is an advantage for the inclusion of additional knowledge in the interpolation. The
inclusion of breaklines into a surface is facilitated because, for example, the cross derivative function
of a boundary curve is a parameter.

3.2 Method

3.2.1 Basic principle of Coons Patches

The basic principle of Coons patches is to interpolate a surface which fits a set of boundary curves and
their cross derivatives. These cross derivatives can then be used, together with the derivative of the
boundary curves, to derive normal vectors to the boundary curves. Since neighbouring patches share
the same boundary curve and cross derivative, the surface itself is G1 continuous as any point on the
surface, including a point which lies on a boundary curve, has a unique value for its normal.

The steps in interpolating a surface using Coons patches are as follows:

• Build a triangular tessellation.

• Estimate normals at the data points.

• Specify a network of curves bounding the tessellation using cubic Bézier curves.

• Then, for every triangle defined by a set of boundary curves we can interpolate the value of any
point within the triangle through the following steps:

32

– Map the vertices and the boundary curves of the triangle to the standard triangle (a right-
angled triangle).

– For the elevation values we calculate three ’ruled surfaces‘, from which we can derive an
elevation value for the Coons patch itself.

Figure 3.1 shows a workflow for this process. In the examples shown here (where we visualise a
surface) a dense raster of elevation values is interpolated in every triangle. Each triangle contains of
the order of hundreds of such points. If we simply wished to know an individual elevation value (or
its normal) within a triangle, this operation would only be carried out once.

Buile triangular tessellation connecting
the irregular spaced base data

Estimate normal vectors at the data points

Specify the curve network

Map the vertices and
the boundary curves to the
standard triangle

Calculate the ruled surfaces

Calculate the Coons patch:

for every
patch:

rs1, rs 2 , rs 12

rs1+ rs2 + rs12+c

Figure 3.1: Workflow for the specification of a surface with triangular Coons patches.

3.2.2 Estimating normals at data points

The simplest way to estimate surface normals at the data points in a triangular tessellation is to aver-
age the surface normals to the x,y,z-planes formed by linearly interpolating between the tessellation
boundaries. Woo et al. (1999) demonstrate how these normals can be weighted using the angles of
each triangle at the data point (whereby triangles with large angles are considered to have greater
weights in deriving the normal).

3.2.3 Specifying the curve network

In this chapter cubic Bézier splines are used (see Chapter 5) to model the segments of the curve
network. Each edge of a triangle is a straight line with respect to the x and y-coordinates, but a

33

curve with respect to x,y,z-coordinates. Since the surface being derived is G1-continuous every point
on these segments must have exactly one surface normal. At the data points the surface normals
are estimated as described above (3.2.2). The corresponding curves must fit these normal values.
Since we are using Bézier splines a further two control points on the curve are required. These are
positioned to divide the the segment in the x,y-plane into three equal lengths. The elevation at these
points (corresponding to their position in the z plane) is calculated as the intersection of the segment
orthogonal to the normal of the adjacent data point and the segment perpendicular to the triangle edge
with respect to the z axis (Figure 3.2).

x

y

z

Figure 3.2: Construction of a segment of the curve network.

3.2.4 The standard triangle

According to Barnhill and Gregory (1975) and Klucewicz (1978), the standard triangle, that is a right
angled triangle with the right angle being at the origin of a local coordinate system, is used in the
calculation of the Coons patch. This triangle is expressed in terms of coordinate axes p and q and
we must transform from the x,y-coordinate plane to the p,q-coordinate system. Our data and control
points are simply mapped from x,y-space to p,q-space. To transform any point within the triangle we
use the following transformation (modified from Klucewicz (1978)):

p =
(x1 − x3)(y3 − y)+(y1 − y3)(x− x3)

(x2 − x3)(y1 − y3)− (x1 − x3)(y2 − y3)
, (3.1)

q =
(y2 − y3)(x3 − x)+(x2 − x3)(y− y3)

(x2 − x3)(y1 − y3)− (x1 − x3)(y2 − y3)
. (3.2)

where p and q are the transformed coordinates of the point (x,y) and (x1,y1), (x2,y2) and (x3,y3) are
the coordinate of the data points of the triangle (Figure 3.3).

We also need to transform the cross-derivatives into the p,q-space. At the data points this is done
by defining a point on the derivative to the data point. We then transform this point into x,y-space
using equations 3.1 and 3.2.

To calculate each ruled surface we need the cross-derivative of the segments which are both per-
pendicular to the triangle edge and intersect the point (p,q) for whom we wish to interpolate elevation.

34

x

y

(x1,y1)

(x2,y2)

(x3,y3)

(x,y)

p

q

edge

V

(p,q)

edge

edge

1(0,1)

V3(0,0) V2(1,0)

3

1

2

Figure 3.3: Left: Triangle in the x,y-space. Right: Standard triangle in the p,q-space.

These cross-derivatives are calculated by interpolating between the transformed cross-derivatives of
the data points in the x,y-plane. Here a linear interpolation is used, but there are other possibilities,
e. g. cubic interpolation (Barnhill and Gregory, 1975). Since we wish to define a plane in our trans-
formed p,q,z-space, we calculate a further derivative at the end point of the segment through (p,q)
on the triangle edge in the direction of the boundary curve. The plane defined by these two deriva-
tives then allows us to calculate the cross-derivative of the boundary curve (Figure 3.4). Note that the
length of the cross-derivative can be chosen and influences the shape of the surface considerably. If
the cross-derivatives are short, the surface is stiffer than it would be with long cross-derivative vectors.

V

d

P

q

(x,y) (p,q)

1

V2
V3

V1

V2V3

11 d12

d11 d12

Figure 3.4: Calculation of the cross derivative vector cd1 in p,q-space.

3.2.5 Ruled surfaces

Three ruled surfaces and a correction term can now be derived. The Coons patch itself can then be
calculated as an arithmetic expression of these surfaces:

coons = rs1 + rs2 − rs12 + c (3.3)

where

35

rs1 is the ruled surface defined by edges 2 and 3 and their cross-derivatives;
rs2 is the ruled surface defined by edges 1 and 3 and their cross-derivatives;
rs12 is the ruled surface defined by edge 3 and the cross-derivative of ruled surface 1 at edge 2; and
c is a correction term.

In this paper, cubic Hermite blending functions are used to calculate rs1, rs2 and rs12. In the cubic
case, a Hermite curve is defined by the two endpoints p0, p1 and the two derivative vectors m0, m1 at
the endpoints (Farin 1997):

p(t) = p0H3
0 (t)+m0H3

1 (t)+m1H3
2 (t)+ p1H3

3 (t). (3.4)

The Hn
j (t) are the cubic Hermite polynomials:

H3
0 (t) = B3

0(t)+B3
1(t), (3.5)

H3
1 (t) =

1
3

B3
1(t),

H3
2 (t) = −

1
3

B3
2(t),

H3
3 (t) = B3

2(t)+B3
3(t).

and the Bn
j(t) are Bernstein polynomials (Section 5.2).

Equation 3.6 shows the adaption of this formula for the calculation of the first ruled surface (rs1);
rs2 is similar.

rs1 = p2H3
0 (

p
1−q

)+ cd2H3
1 (

p
1−q

)+ cd3H3
2 (

p
1−q

)+ p3H3
3 (

p
1−q

). (3.6)

p2 and p3 are the points at edge2 and edge3 with coordinate q, cd2 and cd3 the corresponding cross-
derivatives.

(0,1)

(p,q)

(0,1)

(1-q,q)

(0,0)

(0,q)

(0,q)

(1-q,q)

cd

(p,q)

2

cd3

Figure 3.5: Calculation of the point (p,q) on the ruled surface 1. Left: standard triangle, right: profile of the
line from (0,q) to (1−q,q).

rs12 is defined by the following equation:

rs12 = rs2(0,q)H3
0 (

p
1−q

)+
∂rs2

∂p
(0,q)H3

1 (
p

1−q
)+ cd3H3

2 (
p

1−q
)+ p3H3

3 (
p

1−q
). (3.7)

36

Finally, a correction term c is needed. It is defined as follows (Barnhill and Gregory, 1975).

c =
−p2q(p+q−1)2

p+q
[(

∂
∂q

(
∂z
∂p

))(0,0)− (
∂

∂p
(

∂z
∂q

))(0,0)]. (3.8)

3.3 G1-Continuity

A triangle based, globally G1-continuous surface must be

• G1-continuous at the data points;

• G1-continuous across each triangle edge.

It is possible to use any form of boundary curves with Coons patches. To have a concrete example,
cubic Bézier splines are used in this section. A surface is G1-continuous at a data point Pi if and only
if the Bézier control points adjacent to the data point and the data point itself are coplanar. This is
achieved with the estimation and usage of the normal vector ~ni as described in 3.2.2. Additionally,
surface derivatives at Pi orthogonal to the triangle edges have to be determined which are later used
to specify the shape of the Coons patches along the triangle edges. These cross-boundary derivatives
need to conform to the surface normal ~ni, that is, they must result in tangential planes to the surface
patches at Pi that are identical to the plane defined by ~ni. As explained in section 3.2.4, the endpoints
of the cross-derivative vectors, d11 and d12 for the first boundary curve, d21 and d22 for the second one
and d31 and d32 for the third one, are used.

Figure 3.7 shows a triangle with its Bézier spline boundary curves. Pi, i = 1 . . .3 are the corner
points of the triangle. P3, C32, C21 and P2 are the Bézier control points of the first boundary curve b1,
P1, C12, C31 and P3 are the control points of b2, and P1, C11, C22 and P2 are the control points of b3.
In order to ensure G1-continuity with adjacent triangles, the Bézier control points C31 and C32 have to
lie in the plane orthogonal to ~n3 passing through P3. Analogously, C12 has to be in the plane defined
by ~n1 and P1, C21 in the plane defined by ~n2 and P2. As a result, all surface patches having a triangle
corner point Pn in common, have the same tangential plane at this point Pn.

To ensure G1-continuity across triangle edges the cross-boundary derivatives (which are deter-
mined by the estimated normals at the data points) have to be interpolated along an edge in the same
way in both adjacent triangles. A common way to do this is to use linear interpolation of the cross-
boundary derivatives (Farin, 1997; Klucewicz, 1978). The cross-boundary derivatives are then used
in the Hermite blending of the ruled surfaces. Figure 3.6 shows the test data set Zuestoll interpolated
with G1-continuous cubic Coons patches with linearly interpolated cross-derivatives.

The approach described in this chapter allows for the specification of G1-continuous surfaces.
However, linear features explicitely given as breaklines cannot be considered. As a consequence,
sharp features are artificially ’smoothed‘ not only blurring the topographic features but also distorting
the geometry of the immediate neighbourhood. Chapter 4 therefore introduces a method for consid-
ering breaklines.

37

Figure 3.6: Test data set Zuestoll interpolated with G1-continuous cubic Coons patches using linearly interpo-
lated cross-derivatives.

C
32

C
21

n
1

n
3

P
3

P
2

P
1

C
31

C
12

C
11

C
22

n
2

d
11

d
12

d
31

d
21

d
32

d
22

Figure 3.7: Triangular Coons patch with Bézier spline boundary curves.

38

Chapter 4

Breaklines in Coons surfaces over
triangles for terrain modeling

4.1 Inserting breaklines

4.1.1 The problem

Breaklines are lines across which the slope of the surface changes abruptly, that is, across which the
surface is not G1-continuous. They are, for instance, acquired photogrammetrically or digitised from
topographic maps. Usually, breaklines are stored as polylines, that is, as ordered sequences of vertices
connected by straight lines. For inclusion in surface modeling, such polylines are first inserted into
the triangulation of the given elevation data as so-called hard breaklines. In the resulting triangulation,
no triangle edge intersects the breakline segments, and each breakline segment is represented by one
triangle edge. Commonly, such triangulations are realized as constrained Delaunay triangulations (de
Floriani and Puppo, 1992).

Once the breakline segments are represented in the triangulation, G1-continuity can straightfor-
wardly be abandoned along the breakline edges by specifying different cross-boundary derivatives for
the two sides of the breakline segment. For instance, two different derivatives can be estimated in
the middle of each breakline segment. The derivatives at the endpoints and at the mid-point of the
segment are then quadratically interpolated. However, while introducing breaks along the breakline
boundary curves, this approach preserves G1-continuity at the breakline vertices which obscures the
topographic structures at these locations (Figure 4.1).

The following sections present an improved method for introducing breaklines to G1-continuous
surfaces specified by means of Coons patches.

4.1.2 Abandoning G1-continuity

As explained in section 3.2.2, surface normals are estimated at the data points to achieve global G1-
continuity. We will refer to these normals as ordinary normals ~n. At the breakline vertices, however,
the surface is not G1-continuous, and, thus, tangential planes are not defined. As a result, breakline
vertices must be treated differently than ordinary data points.

Breakline segments separate two (or more) regions that are G1-continuous. Therefore, a partial
surface normal is estimated for each region. (Only regular breakline vertices are considered here.
Endpoints of breaklines and breakline bifurcations are discussed below.) These vectors ~p i,le f t and

39

Figure 4.1: Breaklines modelled along the breakline segments but not at the breakline vertices.

~pi,right (p stands for partial surface normal) can be estimated, for instance, by averaging the surface
normals of all planar triangle faces adjacent to Pi on the corresponding sides of the breakline.

4.1.3 Ensuring G0-continuity along patch boundaries

In the general case, G0-continuity is not realized along the breakline if the boundary curves are speci-
fied with the partial surface normals. Figure 4.2 illustrates this problem. The edge between P1 and P2

is a segment of a breakline. The boundary curve between P1 and P2 is represented by a Bézier spline,
which is in turn specified by the control points C12R and C22R for the right side, and by C12L and C22L

for the left side of the breakline. These control points are defined by the partial vectors for the right
and left side, i.e., by the planes through P1 and P2 orthogonal to ~p1,right , ~p1,le f t , ~p2,right and ~p2,le f t .
Because the partial vectors are different for the right and left side, the normal planes are different.
Therefore, C12R is not equal to C12L, and C22R is not equal to C22L. As a result, the boundary curves
for the right and left side do not coincide, causing a discontinuity along the breakline.

To avoid this problem, the elevation of the control points along the breakline edges are calculated
using the ordinary normals ~n while the elevation of the control points of the remaining boundary
curves are calculated using the partial normals ~pi,right and ~pi,le f t , respectively (figure 4.3). In this way,
G0-continuity along the breakline is guaranteed because the ordinary normals are the same for both
sides of the breakline. The surface still forms a break because the partial normals are used for the
triangle edges on either side of the breakline.

4.1.4 Cross-boundary derivatives and introduction of artifacts

It has been mentioned above that the cross-boundary derivatives at each data point Pi need to conform
to the normal vector ~ni. Figure 4.4 illustrates this requirement and highlights a problem at breakline
vertices. The left triangle of Figure 4.4 shows a generic triangle. In order to ensure G0- and G1-
continuity, Bézier control points adjacent to a data point Pi as well as the cross-boundary derivatives
at this point must be coplanar. Therefore, these elements are determined by means of the following
steps (taking data point P2 in figure 4.4 as an example):

40

C22R

C23

C12R

p1,right

p1,left

n3

n4

P3

P4

P2

P1

C
21
C21

C32

C31

C13

C11

C42

C41

C22L

C12L

p2,right
p2,left

Figure 4.2: Patches left and right of a breakline segment with incompatible partial vector pairs ~p1,right , ~p1,le f t ,
and ~p2,right , ~p2,le f t .

1. Normal vector~n2 is estimated at P2.

2. The Bézier control points C21 and C22 are determined so that they lie in the plane through P2

orthogonal to~n2, that is, in the tangential plane N 2.

3. The cross-boundary derivatives for all edges around P2 are determined so that they lie in N 2.
In Figure 4.4, only the edges b12 and b23 are shown. The according cross-boundary derivatives
are drawn as vectors ~d21 – specifying slope and aspect of the surface at P2 orthogonal to b23 –
and ~d22 – specifying slope and aspect at P2 orthogonal to b12.

This simple and effective sequence is not applicable at breakline vertices. In Figure 4.4 right,
boundary curve b12 is a breakline segment. Consequently, a partial normal vector ~p2,le f t is estimated,
and Bézier control point C21 is determined so that is lies in the corresponding plane P 2,le f t . However,
the Bézier control point C22 of the breakline segment needs to be determined with the help of ~n2 for
the reasons discussed in the previous section. As a result, C22 does not lie in P 2,le f t – and C12 does not
lie in N 2. If the cross-boundary derivatives were determined using either of the two tangential planes,
one of the Bézier control points would violate the required coplanarity. This would result in losing
not only G1- but even G0-continuity. Thus, the cross-boundary derivatives cannot be determined with
the help of one of the tangential planes.

Obviously, coplanarity of the Bézier control points and the cross-boundary derivatives is crucial.
Therefore, we let the Bézier control points and the data point define the corresponding plane. In
Figure 4.4, the cross-boundary derivatives are determined so that they lie in the plane defined by P2

and the Bézier control points and C12 and and C22. This approach ensures G0-continuity. However,
it also means that the cross-boundary derivatives at P2 are different for the left and right side of each
boundary curve. Specifying different cross-boundary derivatives ~d22 for the triangle patch on the left
of b12 than for the triangle on the right side of b12 results in the surface not being G1-continuous along

41

C22

C23

C
12
C12

p
1,right

p
1,left

n3

n2

n1

n4

P3

P4

P2

P1

C21

C31

C13

C11

C42

C41

p
2,rightp

2,left
p
2,left

C32

Figure 4.3: Same situation as in Figure 4.2. The control points of the breakline segment, however, are specified
by means of the ordinary normal vectors ~n1 and ~n2.

this boundary curve. In the case of the breakline segment b12, this loss of G1-continuity is deliberate
(as b12 is supposed to be a breakline).

Likewise, the cross-boundary derivative ~d21 at P2 will be different for the triangle patch to the left
of boundary curve b32 from the derivative to the right of b32. Again, G1-continuity is lost along b32.
This time, however, this loss is unintentional, and the resulting break in the surface along b32 is an
artifact (Figure 4.8). This artifact is considered a compromise resulting from the need to use ~n2 to
specify the Bézier control point C22.

The surface forms breaks along the three edges of all triangles that are bound by at least one break-
line segment. Hence, in figure 4.5 where the boundary curves b12, b23, and b34 represent breakline
segments, the boundary curves b15, b25, b35, b36, and b46 form unintentional breaks. It is worth noting
that not all boundary curves leading to a breakline vertex are breaks in the surface. If neither of the
two adjacent triangles of a boundary curve bik at a breakline vertex is bound by a breakline segment,
the surface is G1-continuous along bik .

4.1.5 Breakline endpoints

Endpoints of breaklines can be handled in different ways. If the surface at the breakline endpoint has
to be G1-continuous, then it is treated as a regular data point. Only the normal vector ~n i is used for
specification of control points and cross-boundary derivatives, partial vectors are not calculated. In
this case, the surface break disappears between the second to last breakline point and the endpoint. If
the surface at the breakline endpoint has to be G0-continuous, the boundary curves leading to it have
to be specified such that their derivatives are distinct at the breakline endpoint.

42

d22d21 d21

n3

P3

P1

P2

b 3
2

C21

C32

p2,left
n2n2

n1
n1

d22

n3

P3

P1

P2 C22

b
12

b 3
2

C21

C32

C11
p1,left

C22

b
12

C11

Figure 4.4: Problems with G0-continuity. Left: Regular triangle where first Bézier control points and cross-
boundary derivatives are in the plane orthogonal to~n2. Right: The planes orthogonal to~n2 and ~p2,le f t cannot be
used for determination of cross-boundary derivatives.

4.1.6 Breakline bifurcations

For breakline bifurcations, more than two partial normal vectors need to be calculated. Around such
a vertex, each sector bounded by two breakline segments is assigned its own partial normal. These
partial normals are used instead of ~p1,right and ~p1,le f t . Otherwise, the described method to calculate
the elevation of the control points and the new partial normals remains the same.

4.1.7 Example

The test dataset Zuestoll consists of 98 scattered points, some of which are located on structure and
breaklines. Both, structure lines and breaklines, have been inserted into the triangulation as con-
strained triangle edges. At the breaklines, G1-continuity is abandoned with the described method
while at the structure lines, G1-continuity has been preserved. The main ridge from west to east has
been inserted as a breakline.

Figure 4.7 shows views from the west to the main ridge without and with modeling the breakline,
respectively. Insertion of the breakline renders the ridge sharper and the surface steeper on both sides.
The bulk at the location of the breakline is removed. Figure 4.8 shows a view to the north side of
the main ridge. The unintentional breaklines at the north side of the breakline are highlighted. The
comparison of the two illustrations in Figure 4.8, however, illustrates that the effect of these undesired
breaklines on the surface is small.

4.2 Discussion

Specifying Coons patches that compose a continuously differentiable surface requires the prior spec-
ification of surface normals at each data point. With the help of these normals, the specification of

43

P
6

P
3

P
2

p 1

l
e
f
t

p 2

l
e
f
t

n 5

n 6

p 3

l
e
f
t

p 4

l
e
f
t

P
1

P
2

P
3

P
4

P
6

P
5

C
11
C
11

C 12C 12

c 32C 21

C 32C 23

c 32C 31

c 32C 34

c 32C 41c
32
C
22

c
32
C
53

c
32
C
54

C
32
C
52

c
32
C
32

C
33
C
33

c
32
C
62

c
32
C
61

c
32
C
63

c
32
C
51

c
32
C
42

b
1
5

b
2
5

b 35

b
56

b
3
6

b 4
6

b
34

b
23

b
12

Figure 4.5: Breakline segments and adjacent triangles.

the boundary curves and cross-boundary derivatives is straightforward. Coplanarity of these elements
ensures G1-continuity at the data points and along the triangle edges. If a data point is part of a
breakline, however, two surface normals need to be estimated, one for each side of the breakline. The
control points of the boundary curves have to specified using both normal vectors which makes it nec-
essary to abandon coplanarity of the named elements. The presented method tackles the problem by
allowing the formation of additional breaklines adjacent to the breakline vertices. These unintentional
breaklines do not disturb the geometry of the surface considerably, and their visual effect is minor.

In the presented approach, the ground plans of breakline segments are straight lines. This forms
a severe limitation for two main reasons. First, the true form of the breakline cannot be represented
in the digital terrain model. Second, the breakline is not continuously differentiable at its vertices
which eventually leads to the introduction of the unintentional breaklines accompanying the actual
breaklines. The usage of true 3D Bézier splines (with curved groundplans) seems to be an obvious
solution to the problem. However, this approach introduces new obstacles because, for instance, it
distorts the parameter space in the triangles adjacent to the breaklines.

This chapter presented a method to model breaklines in a surface specified with the help of Coons
patches. Besides Coons patches, the triangular Clough-Tocher Bézier spline is another method which
allows for the specification of G1-continuous surfaces. Although this provides less flexibility in the
choice of the boundary curves, it is easier to implement than the Coons method. Chapter 5 explains
the basic method and develops a method of inserting breaklines into Clough-Tocher Bézier spline
surfaces, which is similar to the one presented in this chapter.

44

Figure 4.6: Triangulation used for the surfaces visualised in figures 4.7 and 4.8. Breaklines are indicated by a
dotted line, structure lines by dashed lines and normal triangle edges by solid line.

45

Figure 4.7: Perspective view to the test dataset from the west. The triangulation has been constrained to the
ridge. Top: Breakline is not modelled. Bottom: Breakline is modelled.

46

Figure 4.8: Perspective view to the test dataset from the north. The triangulation has been constrained to the
ridge. Top: Breakline is not modelled. Bottom: Breakline is modelled; all edges starting at the data points
indicated with the arrows form (deliberate or unintentional) breaklines.

47

Chapter 5

Triangular Clough-Tocher Bézier splines

5.1 Introduction

Bézier curves and surfaces are specified by means of control points. The geometric meaning of the
control points is that the curves and surfaces are attracted by them, but in general, they only go
through the endpoints (respectively through the vertices for surfaces). The polygon, which is obtained
by connecting the control points with straight line segments is called control polygon. Triangular as
well as quadrilateral Bézier surfaces exist.

In this thesis, triangular cubic Clough-Tocher Bézier splines are used, as they provide a possibility
to generate G1-continuous surfaces by using elements of cubic degree. Furthermore, the so-called
Bernstein form can be used, which proved to be numerically stable as well as computationally effi-
cient (Farin et al., 2002). Because of the Bernstein form and the use of barycentric coordinates, the
programming of Clough-Tocher splines is much easier than that of Coons patches.

Schneider (1998) used triangular Clough-Tocher Bézier splines for the interpolation of terrain
surfaces. This phd thesis contains an excellent introduction to Bézier curves and surfaces. This
chapter starts by explaining the basics of Bézier curves. Then, the generalisation to triangular surface
patches and the Clough-Tocher split are shown. The consideration of breaklines is done in a similar
way as for the Coons patch. At the end of the chapter, the possibilities to use the remaining degrees
of freedom are discussed.

5.2 The Bernstein form of a Bézier curve

The Bernstein polynomials are defined as

Bn
i (t) =

(

n
i

)

t i(1− t)(n−i), (5.1)

where the binomial coefficients are given by
(

n
i

)

=

{

n!
i!(n−i)! 0 ≤ i ≤ n

0 else
. (5.2)

A point on a Bézier curve of degree n can be calculated using a set of n + 1 control points and
Bernstein polynomials:

b(t) =
n

∑
j=0

b jB
n
j(t), (5.3)

48

where the b j are the control points and t is the parameter of the curve. If t is 0, b(t) is equal to the
first control point. If t is 1, b(t) is equal to the last control point. Figure 5.1 illustrates the application
of this formula in the case of a cubic Bézier spline. As the Bernstein polynomials used always sum
to 1, the Bernstein form is a weighted sum of the control points. Bézier curves have some important
properties:

• the first and the last control points are interpolated;

• the curve is always contained in the convex hull of the control points;

• the first derivative at the first control point is the vector from the first control point to the second
control point;

• the first derivative at the last control point is the vector from the second to last control point to
the last control point;

• no plane intersects a curve more times than it intersects the curve’s control polygon. This means
that a Bézier curve follows its control polygon rather closely and does not wiggle more than its
control polygon.

b

t=0.3

t=0.8
1

b2

b1

b2

b3

b0

b0, t=0

b3, t=1

Figure 5.1: Cubic Bézier curves. b0 . . .b3 are the control points. The dashed vectors from b0 to b1 are the
derivatives b0 and the dashed vectors from b2 to b3 are the derivatives at b3. On the upper curves, the points on
the curve for the parameters t = 0, t = 0.3, t = 0.8 and t = 1 are marked. For the lower curve, the position of
the control point b1 has been changed. Note that both curves have still the same derivative at b3.

49

5.3 Triangular Bézier surfaces

The Bernstein form can also be used to describe surface patches by means of control points. In this
section, the principle of triangular Bézier patches is explained and illustrated. The use of barycentric
coordinates and bivariate Bernstein polynomials allows for an elegant formulation (Farin, 1997).

5.3.1 Barycentric coordinates

The position of a point within a triangle can be described using barycentric coordinates. Let a, b and c
be three vertices defining a triangle. The barycentric coordinates u, v and w of the point p with respect
to a, b and c have the property, that

p = ua+ vb+wc (5.4)

and
u+ v+w = 1. (5.5)

The barycentric coordinates of p can be calculated as follows:

u =
area(p,b,c)
area(a,b,c)

, (5.6)

v =
area(a, p,c)
area(a,b,c)

, (5.7)

w =
area(a,b, p)

area(a,b,c)
. (5.8)

Figure 5.2 shows isolines for the barycentric coordinates as well as some points with their barycen-
tric coordinates.

a(1,0,0)

b(0,1,0)

c(0,0,1)

(2/3,1/3,0)

(1/3,2/3,0)
(0,2/3,1/3)

(0,1/3,2/3)

(1/3,0,2/3)
(2/3,0,1/3)

(1/3,1/3,1/3)p

Figure 5.2: The barycentric coordinates of p are the ratios of the subtriangles (indicated by thin lines)
to the macrotriangle. The barycentric coordinates of the locations, where the control points for cubic
Bézier triangles usually are located, are given.

50

5.3.2 Bivariate Bernstein polynomials

The bivariate Bernstein polynomials are defined as:

Bn
i, j,k(u,v,w) =

{ n!
i! j!k! uiv jwk 0 ≤ i, j,k ≤ n
0 otherwise

(5.9)

i, j, k are indexes, equivalent to i in the univariate case (figure 5.3). Note that, even if three coordinates
and indexes are used, the polynomials are bivariate, as the barycentric coordinates sum up to 1 and a
coordinate is determined if the two others are given.

5.3.3 Cubic Bézier triangles

For the application of the Bernstein form in triangular Bézier patches, as it is used in this thesis, the
control points need to be arranged and indexed in a scheme, such that the triangular patch itself is
composed of subtriangles. Figure 5.3 shows a cubic triangle and its control points. Each control point
has three indexes i, j, k, which always sum up to three in the cubic case. Note that the boundary curves
of the triangle do not necessarily have to be straight lines in the orthogonal projection. However,
if they are not, the determination of the barycentric coordinates of a point with given x, y and z-
coordinates is a difficult task, requiring approximation, such as triangular Bézier clipping (Roth et al.,
2000). Therefore, in this thesis, only triangles, which have straight boundary curves in the orthogonal
projection, are used.

If the control points are given, a point on a surface can be calculated using the Bernstein form by
summing up all the control points, weighted with the Bernstein polynomials:

bn = ∑
i+ j+k=n

bi, j,kBn
i, j,k(u,v,w), (5.10)

where u, v and w are the barycentric coordinates and bi, j,k the control points. Similar to the onedimen-
sional case, the Bernsteinpolynomials B involved sum up to 1.

the properties of Bézier triangles are similar those of the curves:

• the plane through a triangle vertex and the two adjacent control points on the boundary curves
are directional derivatives on the surface

• the surface is contained in the 3D convex hull of the control points

• the three boundary curves of the triangle are Bézier curves of degree n. To describe one such
boundary curve, the n+1 control points on the boundary are sufficient.

• Only the control points adjacent to a vertex influence the surface derivatives at this vertex, that
is to say, if a surface normal is estimated at a vertex, the elevation values of the two adjacent
control points have to be in the plane defined by the estimated normal. When using cubic Bézier
triangles, a normal can be estimated at every data point, because applying estimated normals as
described does not affect the surface derivatives at the other data points.

51

a(3,0,0)

b(0,3,0)

c(0,0,3)

(2,1,0)

(1,2,0)(0,2,1)

(0,1,2)

(1,0,2)
(2,0,1)

(1,1,1)

Figure 5.3: Indexes i, j, k of the control points of a cubic Bézier triangle.

5.3.4 Continuity between cubic Bézier triangles

For global surfaces composed of several triangular patches, the geometric continuity between the
individual patches is important. Figure 5.4 shows two adjacent cubic Bézier triangles. The two
patches are C1 continuous if the pairs of shaded triangles are coplanar and an affine transformation
of the two domain triangles (Farin, 1997). This condition is sufficient also for G1 continuity. In this
thesis, the boundary curves of the triangular splines are used such that the control points are evenly
spaced in the orthogonal projection. In this case, it is guaranteed that the shaded pairs of triangles are
affine maps of the domain triangles. If the control points are placed in other locations, it is very likely,
that the affine transformation condition can not be fulfilled. For this case, which is not of interest in
this thesis, Farin (1997) gives conditions for G1-continuity without C1-continuity.

Although two adjacent cubic Bézier triangles can easily be made G1-continuous across the com-
mon boundary curve, it is in general not possible to have a global G1-continuous surface consisting
of a large number of triangles. The reason for this is that the coplanarity of the middle pair in figure
5.4 depends on the elevations of the control points in the middle of the triangles (P4, P9). All three
triangles, which share common edges with the triangle under consideration, need a specific elevation
value for this middle control point in order to fulfill the coplanarity constraint for the middle pair of
triangles. For the whole triangulation, this system of dependencies in general has no solution.

5.4 The Clough-Tocher subdivision

To achieve a global G1 continuous surface consisting of cubic Bézier triangles, the Clough-Tocher
split can be used. The idea of this method is to insert a point at the weighting point of each triangle
and to split the triangle into three subtriangles. Triangular Bézier surfaces are then specified for each
subtriangle. The Bézier control net of a global G1 continuous surface can be built by executing the
following steps for each original triangle (Figure ??):

• split the triangle into three subtriangles at the weighting point.

52

A

B

C

D
P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

Figure 5.4: Two adjacent cubic Bézier triangles are C1 and G1-continuous along the common bound-
ary, if the grey pairs of subtriangles are coplanar and an affine transformation of the domain triangles.

• estimate a tangent plane at the three vertices of the original triangles. This can be done in several
ways. The most common method, which is also used in this thesis, is to sum up the normals
of the planes defined by the (planar) triangles around a vertex (Watson, 1992). The normals
of the surrounding triangles can be weighted. For the prototype software of this thesis, each
normal of a planar triangle is weighted by 1

d2
1 d2

2
, where d1 and d2 are the lengths of the triangle

edges, which are connected with the vertex under consideration. Other methods are the use of
a least-square function with a subset of neighbouring points or to calculate the gradient from
a point based interpolation method, for instance minimum curvature splines (see 2.5) (Watson,
1992).

• set the elevation of the control points P1, P6 and P12 such, that they are on the estimated tangent
plane through A. Do the same for P2, P8 and P3 with respect to the tangent plane at B and for
P4, P10 and P5 with respect to the tangent plane at C.

• Use an assumption to calculate the elevation of the control points P7, P9 and P11. An example
for such an assumption is linear interpolation of the cross-derivatives at the vertices of the
original triangle along a triangle edge. The cross-derivatives at the vertices are given, since
tangent planes have been estimated there. In section 5.5, other possibilities will be shown.
When creating a new assumption, it is important, that the coplanarity conditions necessary for
G1-continuity are fulfilled. This means that P1, P7, P2, P17 have to be coplanar, as well as P3,
P9, P4, P18 and P5, P11, P6, P19. If the elevations of P7, P9 and P11 are calculated using linear
interpolated cross-derivatives, this is guaranteed since the derivatives across an edge are the
same on both sides of the edge. Doing the steps described here in the adjacent triangles thus
automatically provides G1-continuity.

• Calculate the elevation of P15 such that it is coplanar with P12, P7 and P11. Similar, P13 has to

53

be coplanar with P7, P8 and P9 as well as P14 has to be coplanar with P9, P10 and P11.

• The elevation of the control point in the middle, P16 can now be calculated, as it has to be
coplanar with P13, P14 and P15.

The resulting surface then is G1-continuous everywhere and G2-continuous inside a macrotriangle.
Figure 5.6 shows a perspective view of the test dataset ’Zuestoll‘ interpolated with cubic Clough-
Tocher Bézier splines using linearly interpolated cross-derivatives.

A

B

C

P1

P2
P3

P4

P5
P6

P7

P8

P9

P10 P11 P12

P13

P14
P15

P16

P17

P18

P19

Figure 5.5: Control points of a cubic Clough-Tocher Bézier triangle. A, B and C are the vertices of
the original triangle. This triangle is split into three cubic Bézier triangles at the weighting point, P16.
P17, P18 and P19 are the middle control points of the adjacent subtriangles.

Figure 5.6: Test dataset ’Zuestoll‘ interpolated with Clough-Tocher Bézier splines using linear inter-
polated cross-derivatives.

54

5.5 Smoothing Clough-Tocher Bézier splines

In the previous section, the assumption of linearly interpolated cross-derivatives along the triangle
edges has been used. Although this assumption is simple, there is no conclusive reason for it. Further-
more, perspective views of surfaces specified with linear interpolated cross-derivatives show interpo-
lation artifacts at the triangle edges (Figures 5.6 and 5.7). The reason for this is that the derivatives
across the triangle edges are constrained to the linearly interpolated values. As a result, although the
slope of the surface varies continuously, the curvature changes are abrupt across the triangle edges.
Therefore, other methods have been used to calculate the elevation of the control points in the middle
of the subtriangles.

Schneider (1998) specifies a rectangular cubic Bézier patch over two adjacent macrotriangles.
The elevation of the control points of this rectangular patch are calculated using the normal vectors
estimated at the data points. The slope between the two control points (of the rectangular patch, cp1

and cp2 in Figure 5.8), which are beside the boundary between the triangles is then calculated. The
middle control points of the two subtriangles (P4 and P9 in Figure 5.8) are then calculated such, that
the slope between them is equal to the slope between the control points of the rectangular patch.
Together with the constraint that P4 and P9 are coplanar with the two control points on the boundary
curve between the two macrotriangle, the elevations of P4 and P9 are uniquely defined.

Figure 5.7: Upper picture: Clough-Tocher interpolation using linear interpolated cross-derivatives.
The artifacts of the cross-derivatives are marked with arrows. These artifacts, which are visible as
lines of similar color at the triangle edges, occure because the derivatives across the triangle edges are
constrained to the linear interpolated values. Lower picture: smoothed Clough-Tocher spline.

Farin (1985) introduced a method which tries to use the available degrees of freedom, such that the
transitions between the triangles come as close to C2-continuity as possible. First, linearly interpolated
cross-derivatives are used to calculate the elevation of all the control points. Then, the middle control
points of the subtriangles are calculated such that the difference of the control points to the C2 situation

55

A

B

C
D

P P

cp

V1
V2

1 cp2

4 9

Figure 5.8: Method of [Schneider1998] to determine the elevations of the control points P4 and P9.
A rectangular cubic Bézier patch is specified with V1, A, V2, B as vertices. This patch has 16 control
points, including cp1 and cp2. The elevations of these two points are given, since cp1 has to be on
the normal plane through V1. Similarly, cp2 has to be on the normal plane through V2. Finally, the
elevations of the points P4 and P9 are calculated such that the line between these two points has the
same gradient as the line from cp1 to cp2.

is minimised. Kashyap (1996) extended this method by using an iterative approach. However, this
requires the storage of all control points and thus needs much memory, especially in large terrain
datasets. Therefore, in this thesis, the method of Farin (1985), with just one iteration, is used. The
necessary formulas are derived the sections 5.5.1 and 5.5.2 because some typesetting errors seem to
be present in Farin (1985).

5.5.1 C2 conditions

For a C2 transition between two Bézier patches, the following two equations have to be fulfilled
(Kashyap, 1996):

uP1 + vP4 +wP3 −u′P11 − v′P8 −w′P9 = 0 (5.11)

and
uP2 + vP5 +wP4 −u′P12 − v′P9 −w′P10 = 0, (5.12)

where the control points P are those of Figure 5.4. u, v, w are the barycentric coordinates of D with
respect to the triangle A, B, C and u′, v′, w′ are the barycentric coordinates of A with respect to the
triangle D, B, A.

5.5.2 Lagrange minimisation

In general, these conditions cannot be fulfilled, but the deviation from the C2 situation can be min-
imised. The elevations of all the control points can be calculated using linear interpolated cross-
derivatives. Then, the elevations of the middle control points are chosen such as to minimise the
summed deviations from the C2 situation. Because the transition should still be C1-continuous, we
need to have the coplanarity of P4, P6, P7 and P9 as a constraint. Note that we only have to carry out
this minimisation for the z-component. So, the points in the following formulas can effectively be
replaced by their z-coordinates. In terms of equations, we need to minimise

F(P4,P9) = (uP1 + vP4 +wP3−u′P11 − v′P8 −w′P9)
2 (5.13)

+(uP2 + vP5 +wP4 −u′P12 − v′P9 −w′P10)
2

56

considering the coplanarity constraint

uP4 + vP7 +wP6−P9 = 0. (5.14)

Using the Lagrange multiplier λ yields the function to minimise,

F(P4;P9;λ) = (uP1 + vP4 +wP3 −u′P11 − v′P8 −w′P9)
2 (5.15)

+(uP2 + vP5 +wP4−u′P12 − v′P9 −w′P10)
2

+λ(uP4 + vP7 +wP6−P9).

Setting the three partial derivatives to zero and solving the resulting equation system with respect to
P9 provides the result:

P9 = (v′u3P2 +uwu′P12 +w2vP7 −wu2P2 − vu2P1 (5.16)

−uvwP3 +w′u3P1 + v2wP6 −uv′wvP7 −uwvP5

+uvu′P11+uvv′zP8 −u2v′u′P12 + v3P7 −uw′v2P7

−uv′w2P6 +uww′P10 +u2w′wP3 −u2w′u2P11 +w3P6

+u2v′vP5 −uw′vwP6 −u2v′w′P10 −u2w′v′P8)

/(u2w′2 +u2v′2 −2uvw′−2uwv′ + v2 +w2).

After applying this formula three times in a macrotriangle (for every subtriangle together with
the adjacent subtriangle of the neighbour macrotriangle), the elevations of the four inner control
points (P13, P14, P15 and P16 in figure 5.5) have to be recalculated to provide G2-continuity within
the macrotriangle. Figure 5.9 shows a perspective view of the test dataset ’Zuestoll‘ interpolated with
the smoothed version of the Clough-Tocher interpolant.

5.6 Considering breaklines in triangular Clough-Tocher Bézier surfaces

In Chapter 4, it was stated that it is often desirable to abandon G1-continuity at selected locations to
represent sharp linear features, such as ridges, lake boundaries or road borders. Known breaklines
can not only be considered in Coons surfaces but also in triangular Clough-Tocher Bézier surfaces.
However, as in the case of the Coons interpolator, unintentional breaklines are the price for the inser-
tion of the intended breakline. Because of the Clough-Tocher split, two possibilities for considering
breaklines exist. The first one has the unintentional breaklines at the same locations as the triangular
Coons patch with breakline extension. The second one has the unintentional breaklines within the
macrotriangles, which have an edge in common with a breakline. If the Clough-Tocher interpolant
is smoothed using the method described in section 5.5, care should be taken to omit smoothing over
breaklines.

5.6.1 Unintentional breaklines at the edges of macrotriangles

This possibility of inserting breaklines is similar to the one explained in Chapter 4 for the Coons patch.
Unintentional breaklines occur at the same locations and only at the edges of macrotriangles. Figure
5.10 shows three macrotriangles adjacent to a breakline. Three types of normal vectors are used:

• ordinary normals, which are estimated by considering all the triangles surrounding the data
point.

57

Figure 5.9: Test dataset ’Zuestoll‘ interpolated with linear interpolated cross-derivatives (above) and
with smoothed Clough-Tocher Bézier splines (lower picture). Some artifacts (lines with similar color
along triangle edges) occurring when using linear interpolated cross-derivatives are marked with ar-
rows.

• partial normals for a data point are valid only for one side of the breakline. The estimation only
considers the region on this side of the breakline.

• intermediate normals for a data point are valid only for one triangle. It is calculated as the
normal to the plane, which contains the connections between the data point and the two adjacent
control points. In Figure 5.10, the intermediate normal at P1 for triangle P1P2P3 is the vector
orthogonal to P1cp1 and P1cp6.

As a first step, the ordinary normals of the data points belonging to the macrotriangles under
consideration are estimated. The control points on the edges of those macrotriangles are calculated
such that each is on the plane passing through the next data point and orthogonal to the ordinary
normal. Then, for each data point on a breakline, the partial normals have to be estimated. On each
triangle edge connecting a data point on a breakline with one that is not on a breakline, the elevation
of the control point next to the point on the breakline has to be recalculated such that it is on the

58

Figure 5.10: Test dataset ’Zuestoll‘ interpolated with Clough-Tocher Bézier splines and breakline
extension. The unintentional breaklines are within the macrotriangles (Section 5.6.2). Arrows show
some locations of unintentional breaklines

plane orthogonal to the partial normal. Then, for the calculation of the remaining control points
within the macrotriangle, the intermediate normal has to be used at the data point on the breakline.
Using the ordinary normals (for points, which are not on the breakline) and intermediate normals (for
points, which are on the breakline) the calculation of these remaining control points is done exactly
the same way as without breaklines. Figure 5.10 shows, why the unintentional breaklines appear at
the edges of the macrotriangles. The intermediate normal at P1 for triangle P1P2P3 is not the same as
the intermediate normal at P1 for triangle P1P3P4, but the line from P1 to cp6 is in both planes. cp6

is in the plane orthogonal to the partial normal, but cp3 and cp1 are not. Therefore, the surface is
G0-continuous across the boundary curve from P1 to P3, but not G1-continuous.

5.6.2 Unintentional breaklines within macrotriangles

For this method, the control points on the boundary curves are estimated first using the ordinary
normals at the data points. Then, the partial normals are estimated for the data points on the breakline.
For the boundary curves, which connect a breakline point with a non breakline point, the elevation of
the control point next to the breakline point is recalculated using the partial normal of the breakline
point. For the calculation of the remaining control points, the partial normals at the breakline points
and the ordinary normals at the non breakline points are used. Because of this, the unintentional
breaklines are within the macrotriangles. In triangle P1P2P3 in Figure 5.10 e. g., P1, cp3 and cp6 are
in the plane orthogonal to the partial normal at P1. The elevation of cp1 in contrast has been estimated
using the ordinary normal at P1. Therefore, an unintentional breakline is present from P1 to cp10, but
not at the boundary curve from P1 to P3. This situation is different from the one described in 5.6.1,
where P1, cp1, cp3 and cp6 are in the plane defined by P1 and the intermediate normal.

5.6.3 Comparison of the two approaches

Figure 5.12 shows both an intended breakline and the locations where unintentional breaklines ap-
pear, using the two approaches described. The question as to which of these approaches is superior

59

Figure 5.11: Test dataset ’Zuestoll‘ interpolated with Clough-Tocher Bézier splines and breakline
extension. The unintentional breaklines are at the edges of macrotriangles (Section 5.6.1). Arrows
show some locations of unintentional breaklines.

Figure 5.12: Locations where unintentional breaklines occur. Black circles are data points and the
bold line represents an intended breakline. Dashed lines are unintentional breaklines at boundary
curves of the triangulation, which are present when using the approach described in section 5.6.1.
The doted lines are unintentional breaklines within macrotriangles, as they appear when using the
approach of section 5.6.2.

cannot clearly be answered. The number of unintentional breakline segments is smaller using the ap-
proach which places the unintended breaklines at the edges of the macrotriangles. If the unintentional
breakline segments are within the macrotriangles, the summed length of the unintentional segments is
lower compared to the second approach. However, it can be argued that the unintentional breaklines
therefore form sharper edges than when using the first approach.

60

Chapter 6

Mesh refinement with the Ruppert
algorithm

6.1 Introduction

The more irregularly distributed data points are, the more frequent are long and thin triangles, even if
the Delaunay criterion is used for triangulation. In a constrained triangulation, the number of triangles
with small angles is even higher. Such triangles with small angles may cause undulations of cubic
surfaces (Figure 6.1) as a triangular surface patch has to match the cross-derivatives on all edges of
the triangles. If one angle in a triangle is very small, the change of derivatives between two edges
needs to happen within a small groundplan distance. The tendency to undulation depends also on
the smoothing constraints. A surface, which is forced to change its derivatives slowly is more likely
to undulate. Therefore the undulations are more accentuated if the smoothed Clough-Tocher method
is used instead of the one with linearly interpolated cross-derivatives, because the curvature change
across the triangle border is stronger with linearly interpolated cross-derivatives. Using G2-continuous
elements would increase the undulations.

A possible strategy to avoid triangles with small angles is to insert additional points into the
triangulation such that the small angles disappear. Such points are referred to in the literature as
Steiner points (Bern and Eppstein, 1995). Two classes of methods exist for point insertion: quadtree
based methods and variations of the Ruppert algorithm. Because the quadtree based methods usually
insert more Steiner points to remove the small triangles, the Ruppert algorithm is considered in this
chapter.

6.2 The Ruppert algorithm

Given a constrained Delaunay triangulation, the Ruppert algorithm uses a sequence of two low-level
operations to eliminate triangles with small angles. In the first operation, forced segments are split by
inserting a point in the middle of the segments. The second operation inserts points in the circumcen-
ters of triangles with a small angles (Miller et al., 2003).

In this way, the algorithm is able to eliminate all angles below a specified threshold. The threshold
can be chosen to be up to about 20◦. If the value is too high, it is possible that the algorithm never
terminates. If two forced segments join in an angle below the threshold, the algorithm cannot eliminate
this angle.

61

Figure 6.1: Long and thin triangles strongly accentuate undulation of cubic surfaces (indicated by arrows).
The picture shows a surface interpolated with the smoothed Clough-Tocher Bézier method described in section
5.5.

Different versions of when to carry out these two operations exist. The one implemented in the
prototype software for this thesis is nearly the same as the original method described in Ruppert
(1993). The only exception is that the implemented method preserves the convex hull by treating
hull edges as forced edges. Ruppert’s original algorithm in contrast starts with a set of points and
forced segments, adds the four corner points of the bounding box and applies a constrained Delaunay
triangulation.

To use the same terminology as Ruppert (1993), a point is encroached upon a segment if it is
inside the diametral circle through the endpoints of the segment. The first step of the algorithm is to
split all forced edges which are encroached by a point. If a split edge is encroached by a point, it is
split again, until no point encroaches upon a forced edge.

Then, the triangle containing the smallest angle below the threshold is found and the position of
the circumcenter calculated. If the circumcenter does not encroach upon any forced segments, it is
added to the triangulation. Otherwise, the segments upon which the point is encroached are split. This
procedure is repeated until no angle is below the specified threshold or the angles below the threshold
cannot be eliminated (e. g. because they are enclosed between two constrained edges).

Figure 6.2 shows an example of how this algorithm works. Part a shows the initial constrained
Delaunay triangulation. Dashed lines are forced edges and solid lines normal triangle edges. In part b,
point 1 is inserted in the middle of a segment because there was a point encroaching upon it. In part c,
point 2 is inserted at a circumcenter of a triangle containing a small angle. The next circumcenter of a
small angled triangle is marked with an empty circle in part d of the figure, because it would encroach
upon a segment of the convex hull. Therefore, point 3 is inserted instead to split the segment. Point
4 is inserted at a circumcenter of a triangle containing a small angle and point 5 is inserted to split a
segment of the convex hull.

62

a b

c d

e f

1

2

3

4

5

Figure 6.2: Parts a-f show how the Ruppert algorithm inserts points to eliminate small angled triangles.

6.3 Issues related to terrain modeling

In the context of digital terrain modeling the question arises as to how the elevation of the inserted
points should be calculated. The Steiner points clearly do not contain new information about the
shape of the terrain surface. Their only purpose is to remove small angles. Therefore, it is reasonable
to apply the elevation of the digital surface at the position of a Steiner point prior to its insertion. This
approach has been implemented in the software prototype. There is no problem with this approach
when splitting segments. However, if the circumcenter of a triangle with a small edge is itself in a
long and thin triangle, the according surface patch may be inadequate and unsuited for the elevation of
the new point. Possible solutions would be to use linear interpolation in such triangles or to use linear
interpolation in case the difference between original interpolation and linear interpolation exceeds a
threshold value.

6.4 Example

The implementation of the Ruppert algorithm has been applied to the test dataset Albis (near Zurich,
Switzerland). The dataset consists of 17’056 input data points from digitised contours and peaks. A
Delaunay triangulation constrained to the contour segments was built and a subset of this triangulation
is shown in Figure 6.3. Figure 6.5 shows a perspective view of a smoothed Clough-Tocher Bézier
surface built from this triangulation and Figure 6.7 depicts a perspective view of a surface interpolated

63

with Clough-Tocher Bézier splines with linearly interpolated cross-derivatives. Figure 6.5 exhibits
undulations in the plain, which are due to triangles with small angles and due to the smoothed Clough-
Tocher triangles. The surface with linearly interpolated cross-derivatives in Figure 6.7 does not show
this kind of artifacts.

The Ruppert algorithm with a threshold of 17◦has been applied to the constrained Delaunay tri-
angulation, resulting in the insertion of 11’236 new points (Figure 6.4). The threshold of 17◦has
found to be a reasonable compromise between shape and data volume for the test dataset. The eleva-
tions of the additional points have been calculated using smoothed Clough-Tocher Bézier splines. As
there are no triangles remaining with angles under 17◦in this dataset, the undulations of the smoothed
Clough-Tocher Bézier splines have disappeared (Figure 6.6).

Figure 6.3: Subset of the triangulation of the test dataset Albis without using the Ruppert algorithm.
The viewpoint of Figures 6.1, 6.5 and 6.7 is marked with a filled circle. The artifacts visible in Figure
6.1 are marked with transparent dashed circles.

6.5 Discussion

The Ruppert algorithm eliminates triangles with small angles. However, the data volume may grow
considerably. How much it grows depends fundamentally on the initial triangulation and the defined
threshold angle. In terrain modeling, data configurations which require many Steiner points typically
occur if the data points are very irregularly distributed and if many constrained lines are present, for
instance, if data from digitised contours are used.

It is important to note that, even if the Ruppert algorithm increases the data point density it does not
alter the scale of a model, because the inserted points are interpolated from the ones already present in
the data set. Therefore, the additional points do not add any terrain information to the surface model.

The example in Section 6.4 showed, that undulations of the smoothed Clough-Tocher method can
be removed by the Ruppert algorithm. However, such undulation can also be weakened by using
linearly interpolated cross-derivatives. Therefore the Ruppert method seems to be of special interest
for smooth surfaces like the smoothed Clough-Tocher method and even more so for G2-continuous
surfaces.

64

Figure 6.4: Subset of the triangulation of the test dataset Albis with the Ruppert algorithm. The
viewpoint of Figure 6.6 is marked with a filled circle. The threshold for small angles is 17◦.

Figure 6.5: Perspective view to the test dataset Albis, interpolated with smoothed Clough-Tocher
Bézier splines over a constrained Delaunay triangulation.

65

Figure 6.6: Perspective view of the test dataset Albis, interpolated with smoothed Clough-Tocher
Bézier splines over a triangulation refined with the Ruppert algorithm with a threshold of 17◦.

Figure 6.7: Perspective view of the test dataset Albis, interpolated with Clough-Tocher Bézier splines
with linearly interpolated cross-derivatives using a constrained Delaunay triangulation.

66

Chapter 7

Implementation

7.1 Introduction

As a proof of concept, the methods described in this thesis have been implemented in a software
prototype called ’tritemo‘ (triangle based terrain modeller). The program is available under the GPL
license and it is thus possible to read and change the source code. It is written in C++ and requires
OpenGL and the qt library. The software prototype provides the following features:

• Elevation points, structure lines and contour lines can be read from dxf-files and triangulated
using a constrained Delaunay triangulation.

• Zooming and panning have been implemented to explore the triangle mesh.

• Linear interpolation, Coons patches, Clough-Tocher Bézier splines or smoothed Clough-Tocher
Bézier splines can be used to create 3D surface views and elevation ascii-grids.

• The triangulation can be interactively edited by swapping edges and inserting Steiner points.

• Triangle edges can be automatically swapped to prevent horizontal triangles.

• Mesh refinement using the Ruppert algorithm is provided.

7.2 Interpolators

Tritemo has an abstract base class TriangleInterpolator from which all concrete interpolators are
derived (Figure 7.1). TriangleInterpolator provides the method calcPoint() to calculate the eleva-
tion at any location. The method to calculate the surface normals is calcNormal(). By subclassing
TriangleInterpolator, addition of new triangle based interpolators to the program is straightfor-
ward.

At the moment, four concrete interpolation classes are available. LinTriangleInterpolator
provides a linear interpolation. CoonsTriangleInterpolator is a cubic Coons patch with linearly
interpolated cross-derivatives as described in Chapter 3. This interpolator considers breaklines as
described in Chapter 4. CloughTocherInterpolator is a triangular Clough-Tocher Bézier surface
with linearly interpolated cross-derivatives (Chapter 5) and SmoothedCloughTocherInterpolator
an implementation of the smoothed version described in Section 5.5. Both implementations consider
breaklines such that the unintentional breaklines are within the macro triangles (section 5.6.2).

67

All the concrete interpolators have an association to a Triangulation object to query the vertex
elevations and (for the cubic interpolators) the vertex normals of the triangle containing the interpola-
tion point.

7.2.1 CloughTocherInterpolator

When CloughTocherInterpolator is requested to calculate the elevation or the normal at a given
point, the interpolator first calls CloughTocherInterpolator::init(). There, the associated NormVecDecorator
object is queried for the vertex coordinates and the vertex normals of the triangle containing the in-
terpolation point as well as for information as to which vertices are on breaklines and which ones are
not. Then, with this information, the positions and the elevation of the control points are calculated.
To enhance computational performance, the indices of the vertices from the previous run are stored.
If the next interpolation point is in the same triangle, the control points do not have to be recalcu-
lated. With the control points and the Bernstein polynomials the interpolated elevation or normal is
calculated (Chapter 5). SmoothedCloughTocherInterpolator works similarly, but additionally, the
control points of the three neighbouring triangles have to be calculated in the init() method and
Lagrange minimisation is performed (section 5.5).

7.2.2 CoonsTriangleInterpolator

CoonsTriangleInterpolator also has a method CoonsTriangleInterpolator::init() in which the
associated NormVecDecorator object is queried for the triangle points and normals of the triangle
containing the interpolation point. The coordinates of the vertices and the derivative endpoints are then
transformed into the standard triangle. The three boundary curves (in standard triangle coordinates)
are stored as objects of type Bezier3D (CoonsTriangleInterpolator::pl1, CoonsTriangleInterpolator::pl2,
CoonsTriangleInterpolator::pl3). CoonTriangleInterpolator has protected methods to cal-
culate the elevations and derivatives of the ruled surfaces; for instance, CoonsTriangleInterpolator::calcPointRS1
calculates the elevation of the ruled surface 1. CoonsTriangleInterpolator::calcPoint and
CoonsTriangleInterpolator::calcNormal then add and subtract the results of the ruled surface
and apply the correction term appropriately.

7.3 Tessellation

Tritemo uses the interface Triangulation to make the representation of the triangular tessellation
exchangeable. At the moment, DualEdgeTriangulation is the class maintaining the triangulation
and it is used directly by the linear interpolator. NormVecDecorator adds the functionality of estimat-
ing and managing vertex normals and is used by the cubic interpolators. NormVecDecorator objects
have an association to a DualEdgeTriangulation object and delegate tasks to this object whenever
possible. The sequence diagram in Figure 7.3 shows the interaction between NormVecDecorator
and DualEdgeTriangulation when a point is inserted into an instance of NormVecDecorator.
NormVecDecorator can also calculate the partial normal of a breakline vertex for an interpolation
point (method NormVecDecorator::calcNormalForPoint()), which is used by the cubic interpo-
lators for breakline handling. Because of the Triangulation interface and the delegation mecha-
nism, it would be possible to replace the DualEdgeTriangulation by subclasses of Triangulation
using other data structures and algorithms. Because of the common interface, this wouldn’t affect
NormVecDecorator.

68

TriangleInterpolator
calcNormVec(x: double, y: double, result: Vector3D*): bool
calcPoint(x: double, y: double, result: Point3D*): bool

LinTriangleInterpolator
#mTIN: DualEdgeTriangulation*

CloughTocherInterpolator
#mTIN: NormVecDecorator*

CoonsTriangleInterpolator
#mTIN: NormVecDecorator*

SmoothedCloughTocherInterpolator
#mTIN: NormVecDecorator*

Figure 7.1: UML class diagram of the interface TriangleInterpolator and its derived classes

Triangulation
+addLine(line: Line3D*, breakline: bool): void
+addPoint(p: Point3D*): void
+calcNormal(x: double, y: double, result: Vector3D*): bool
+calcPoint(x: double, y: double, result: Point3D*): bool

TriDecorator
#mTriangulation: Triangulation*

NormVecDecorator
+calcNormalForPoint(x: double, y: double, point: int, result: Vector3D*)
+estimateFirstDerivative(): bool
+estimateFirstDerivative(pointno: int): bool

DualEdgeTriangulation

Figure 7.2: Triangulation and its derived classes

69

NormVecDecorator DualEdgeTriangulation

addPoint(p: Point3D*)

addPoint(p: Point3D*)

pointno: int

estimateFirstDerivative(pointno: int)

getSurroundingTriangles(pointno: int)

list: QValuelist<int>*

for all neighbor points of pointno
estimateFirstDerivative(neighbor: int)

Figure 7.3: Collaboration between NormVecDecoration and DualEdgeTriangulation when a new point is
inserted into NormVecDecorator.

As the name indicates, DualEdgeTriangulation uses a dual edge data structure to maintain
the triangulation (Heller, 1990; Schneider, 1998). The half edges are represented as objects of type
HalfEdge and DualEdgeTriangulation stores pointers to its half edges in the vector DualEdgTriangulation::mHalfEdges.
Each HalfEdge stores the indices of its twin edge (that is the edge pointing in the opposite direction)
of the vertex it points to and of the next edge in the same triangle (Figure 7.4). With this information
it is possible to traverse the triangulation and do operations such as searching the triangle containing
an interpolation point or searching the neighbour vertices of a given vertex. HalfEdge further has
two boolean flags which maintain the information whether the HalfEdge represents a forced edge
(HalfEdge::mForced) and whether the HalfEdge belongs to a breakline (HalfEdge::mBreak).

The triangulation is built using an incremental algorithm for constrained Delaunay triangulating
(de Floriani and Puppo, 1992). After each insertion, DualEdgeTriangulation manipulates the trian-
gulation such that it is a constrained Delaunay triangulation. If a new point is inside the convex hull,
this is done as follows using the dual edge data structure. The new point is connected to the vertices
of the triangle which contain the new point. Then, if another vertex is inside the circle through a new
triangle, the outer edge of this new triangle is swapped (unless this edge is a forced edge and therefore
cannot be swapped). After each swap, the triangles connected to the newly inserted point are tested
until no vertex is inside the circle through a triangle connected to the new point. Figure 7.5 illustrates
this process.

70

1

2 3

1

getDual()

getNext()

Figure 7.4: DualEdge data structure. Each half edge has pointers to the indices of the dual edge, of its
endpoint and of the next edge in the same triangle. For instance, mHalfEdge[1]->getDual() returns 3,
mHalfEdge[1]->getNext() returns 2 and mHalfEdge[1]->getPoint() returns 1.

A

B

C

D

E

Figure 7.5: Insertion of the new point E into DualEdgeTriangulation. E is connected to A, B and C.
Because point D is inside the circle through A, D, C, at least one edge swap has to be done do satisfy the
Delaunay criterion.

71

Chapter 8

Evaluation

8.1 Introduction

In this chapter, the methods described in this thesis are evaluated. For this purpose, a set of field data
measured with a geodimeter and two sets of artificial data are used. In Section 8.2, an overview of
the evaluation approaches is given. Section 8.3 explains the details about how the evaluation is done,
Section 8.4 presents the results and Section 8.5 provides a comparative discussion.

8.2 Previous approaches in DEM/ DTM evaluation

There are various approaches for evaluation of DEMs and DTMs, and they can be classified into three
broad groups:

• visual inspection of the interpolated terrain models

• quantitative comparison with artificial surfaces

• quantitative comparison with values of known higher precision

8.2.1 Visual inspection

Evaluation of terrain models by visual inspection is a method often cited in the GIS literature. Wood
and Fisher (1993) listed a range of mapping techniques to perform this task: 2D raster rendering,
pseudo-3D projection, aspatial representations, shaded relief maps, slope and aspect maps and map-
ping of local detectors. Often, isolines are used to visualise the surfaces (e. g. Akima (1978), Ebner
et al. (1980)). In computer aided graphic design (CAGD) reflection lines are used to detect small
irregularities in surfaces. A reflection line is the collection of all points which reflect the (parallel)
rays of an infinitely distant light source to the direction of an (infinitely far) observer (Farin, 1985).
Mitas and Mitasova (1999) and Schneider (1998) detect artifacts in continuous surfaces with the help
of a shaded pseudo-3D projection.

Visual inspection has the advantage that it is straightforward for a human to recognise spatial
patterns. Artifacts can thus be recognised quickly, whereas in global summary statistics this is not
easily possible (Wood and Fisher, 1993).

However, a disadvantage of this approach is that, in the absence of severe artifacts, it is hard to
assess how well the surface model represents the properties of a terrain surface. Two different surfaces

72

may both have a realistic (or plausible) appearance even if they are quite different. A surface may
appear visually pleasing while being unsuitable for other applications beside visualisation (Schneider,
2001b).

8.2.2 Comparison with artificial surfaces

A mathematical function with an analytical solution can be used to quantitatively evaluate interpola-
tors. Carter (1992) used an artificial surface to show the effect of data precision on terrain derivatives
in gridded terrain models. Corripio (2003) used an expression containing several trigonometric func-
tions to produce a surface with a highly variable relief to compare two methods for calculating slope
in grids.

Artificial surfaces provide a means to quickly collect many samples. Knowing the true value
of elevation as well as terrain derivatives at every point makes this an attractive technique to create
error statistics for comparing interpolation techniques. The possibility to analytically obtain surface
derivatives, which cannot be measured clearly in the field, is a major advantage of this approach. It
is straightforward to compare not only elevation but also slope, aspect and curvature. However, it can
be argued that a mathematical function may not necessarily have the same properties as a real terrain
surface.

8.2.3 Comparison with field data of higher precision and accuracy

Analysis on a real terrain can be done by comparing the interpolated values or the terrain derivatives
with values of higher precision and accuracy. Skidmore (1989) and Wise (1997) assess the quality of
terrain derivatives by comparing the values calculated with gridded DEMs with values measured from
topographic maps. Bolstad and Stowe (1994) use fixed points on maps as well as values measured
with GPS to evaluate the quality of DEMs. For slope and aspect, field measurements have been used.
Giles and Franklin (1996) used field measured values of elevation, slope and profile curvature for
quality assessment.

Comparison with values of higher precision and accuracy provide a ground truth for terrain mod-
eling. The field work is often time consuming and needs thorough planning. It is often hard to separate
the effect of the varying parameter (e. g. algorithm, data source, interpolation technique) from other
effects (see below).

Comparing and evaluating interpolation methods with field data needs to cope with two major
problems:

1. Every application uses a terrain model on a certain scale level. This very scale-specific surface,
however, does not exist in reality and can therefore not be measured (Schneider, 2001a).

2. There are also factors other than the interpolation method which influence the result of a DTM:

• the discretisation of the continuous terrain surface into discrete data points;

• the triangular tessellation (different triangulations lead to different results); and

• errors in the elevation data and in the reference data.

To evaluate interpolation methods, the uncertainty introduced through interpolation has to be
assessed as large compared with the uncertainties introduced through discretisation, tessellation
and base data. One of the examples here will show what happens if the errors introduced through
the elevation data have about the same magnitude as the influence of the different interpolators.

73

For this field study this means the following:

• The features not represented in the elevation data have to be small. In practice, no dataset con-
tains all features which are of interest for a particular application. This, however, is a problem
of the input dataset and not of the interpolation method used on this dataset. The idea of an
interpolation method is to specify a continuous surface using all the information contained in
a dataset. Information which is not (implicitly or explicitly) contained in a dataset cannot be
introduced by interpolation. If the features not included in the dataset are too large, comparison
with field values will rather reflect the quality of the data set than the quality of the interpolation
methods.

• The triangular tessellation must portray the terrain well (no edges crossing valleys and ridges,
no triangles which are extremely long and thin).

• The elevation values used to create the triangular terrain models have to be accurate and precise.

8.3 Methodology

8.3.1 Creation of the triangular tessellations

Artificial surfaces

The first artificial surface (Figure 8.1) has been created using the following function:

f (x,y)[m] = 500+(sin(
2π
200

x)+ sin(
2π
200

y))100. (8.1)

This function is evaluated in the range x = [100m,300m] and y = [100m,300m]. 162 data points have
been selected to build a tessellation for the interpolation methods.

The second artificial function (Figure 8.2) includes a breakline and has been generated in the
domain x = [−100m,100m], y = [−100m,100m] using the function

f (x,y)[m] = max(300−0.04x2 −0.04y2,200). (8.2)

The shape of this surface is such that there is a peak at (0/0) and a circular breakline with elevation 200
and radius 100. In order to create a triangular tessellation, 200 points have been selected randomly
and 50 points on the break circle have been used.

Comparison with field data of higher precision and accuracy

The test area is a square of 200m*200m near Menzingen (Zug, Switzerland) in a landscape formed
by glacial deposition. It contains a hill, a small road and a plain (Figure 8.3). To build a triangular
tessellation, initially a dataset captured by analytical photogrammetry has been used (Digitales Ter-
rainmodell Kanton Zug). However, during a first evaluation, we found that the photogrammetrically
captured terrain data was systematically 20-30cm below the values measured with the geodimeter. An
exact comparison is difficult as the data points of the two datasets are not the identical. This example
shows what happens if the uncertainties of the data values are not considerably smaller than those
of the interpolation. The result of this evaluation was that the interpolator which yielded the lowest
elevation value was in most cases the one closest to the field measured value.

74

Figure 8.1: First artificial function.

Figure 8.2: Second artificial function.

To cope with this problem, another 230 data points were measured by geodimeter at about the
same locations as the data points of the photogrammetrically captured data. This includes two break-
lines at the sides of the road (as it was the case in the photogrammetric data set). With this data, a
constrained Delaunay triangulation has been built using the algorithm described in de Floriani and
Puppo (1992).

In order to test whether the results of the study are stable two new datasets have been created for
the triangulation by swapping 40 (respectively 80) data points from the triangulation to the control
data set and 40 (respectively 80) back.

75

Figure 8.3: Test area viewed from the north-east direction.

��

���

�

�����

� � � � � �
�

��

�

�

��

�

�

�

��

� �

�

�
�
�

�

� �

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�
� �

�

�
���������������

��� � � � � � �
���������������

� � � �
�
�

��������
� � � � �

������
� �
����

� �
��

� �������
� � �����

���
�����������

� �
� � � � �
� �
� � � � � � �

��������
�
�
�

����� � � � �
��� � ���

�

�����
� � � � �
�����

� � � � � �

�����

��� � ������� � � ��������� � � � ������� � �

�

����� � ����� �
	�����

�

Figure 8.4: Locations of the sample points and of the profiles. The viewpoint of the photo in figure 8.3 is
indicated by a star.

8.3.2 Interpolation methods

Based on the created triangulations, four different interpolators implemented in this thesis have been
used to calculate elevation values:

• Linear interpolation (Chapter 2)

• Triangular Coons patch (linearly interpolated cross-derivatives) (Chapter 3)

• Clough-Tocher Bézier spline (linearly interpolated cross-derivatives) (Chapter 5)

76

�

��

� �

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

� �

�
� ��
�

�
����
�

���������
�
�
�

�
� � � �

�
�

���

�

�

�

���

� � �

�

�

�

�

�

� �

�
�
����

�
�

�
�

� � � � �

����
�

�

�
�

�

�
�

��

� �

���

�
�

��

� �

�

�����

� � � � � �

�

��

�

�

��

�

�

�

�

���������������
� � � � � � �

�

���������
�����

� � � � �

������
��

� � � �

������

� �

��
��

�

��

�
�
�

��
� ��

�

�

�
�
�

�
� �
� �

���

� �
� �

��

��
�

�����
� � � �

�������� � � � �������
� �

�

� � � �

� � � � �

� 	 ��

� � � � �� 	���� ��
 � � � � ����� 	 � � ��� � ��� �

Figure 8.5: Extent of the subareas hill, plain, hillslope adjacent to the plain and road.

• A smoothed version of the Clough-Tocher spline (Chapter 5)

8.3.3 Comparison techniques

Visual inspection

The interpolators are compared by four shaded 3D projections from the same location. These pic-
tures have been inspected to find irregularities and artifacts of the interpolation and the triangular
tessellation.

First artificial surface

The values of the interpolators have been compared to those calculated from the function at 25922
points which are located on a grid. Then, several analyses have been made. The following outcomes
are presented here:

• The mean (unsigned) deviations of the four interpolation methods to the artificial surface have
been calculated and compared.

• The (signed) deviations of the interpolators have been correlated with the values of total curva-
ture.

• The mean deviations of slope calculated with the interpolation methods and the slope values
calculated with the artificial surface have been compared.

• Two diagrams have been produced showing the relation between the slope values calculated
with the linear and the Coons interpolation and those calculated from the artificial function.

Second artificial surface

A Coons interpolator with breakline extension and one without consideration of breaklines have been
applied to the created tessellation. For quantitative evaluation, 5000 points have been randomly se-
lected. All points have been selected so that they lie within triangles adjacent to breaklines because

77

Table 8.1: Descriptive statistics for the deviations of the interpolated values from the measured elevations over
the whole test area.

linear Coons Clough-Tocher Smoothed Clough-Tocher
count 263 263 263 263
mean 0.42m 0.31m 0.31m 0.31m
minimum 0.0007m 0.0007m 0.0013m 0.0018m
maximum 5.24m 5.50m 5.50m 5.51m
standard deviation 0.47m 0.45m 0.45m 0.45m

Table 8.2: Descriptive statistics for the deviations of the interpolated values from the measured elevations on
the hill.

linear Coons Clough-Tocher Smoothed Clough-Tocher
count 155 155 155 155
mean 0.45m 0.29m 0.29m 0.29m
minimum 0.0074m 0.0007m 0.0013m 0.0028m
maximum 3.80m 3.79m 3.78m 3.79m
standard deviation 0.39m 0.36m 0.36m 0.36m

only these locations are affected by the modeling of breaklines. The interpolated elevations at the
points are compared to the values calculated from equation 8.2.

Comparison with field data of higher precision and accuracy

Global statistics The first set of analyses has been made by evaluating the deviations of the interpo-
lated values from the field measurements. In Figure 8.1, some descriptive statistics of these deviations
have been computed for the whole test area. Additionally, the same statistics have been computed for
the different subareas hill, road, plain and hillslope adjacent to the plain (Figures 8.5 - 8.5). To assess
how stable these results are with respect to the triangular tessellation, two new data sets of point and
evaluation data have been created. The first data set was created by randomly selecting 40 points from
the existing point data set as well as in the existing evaluation data set and by shifting these selected
points from one data set to the other. The second data set was created the same way, but with 80 points
selected per data set. Global descriptive statistics for the deviations of the different interpolators from
these evaluation data sets can be seen in Tables 8.6 and 8.7.

Table 8.3: Descriptive statistics about the deviations of the interpolated values from the measured elevations
on the road.

linear Coons Clough-Tocher Smoothed Clough-Tocher
count 15 15 15 15
mean 0.22m 0.23m 0.23m 0.23m
minimum 0.0242m 0.0451m 0.0576m 0.0576m
maximum 0.70m 0.69m 0.69m
standard deviation 0.21m 0.18m 0.17m 0.17m

78

Table 8.4: Descriptive statistics for the deviations of the interpolated values from the measured elevations on
the plain.

linear Coons Clough-Tocher Smoothed Clough-Tocher
count 67 67 67 67
mean 0.31m 0.29m 0.29m 0.29m
minimum 0.0007m 0.0171m 0.0191m 0.0018m
maximum 1.05m 0.88m 0.88m 0.87m
standard deviation 0.28m 0.22m 0.22m 0.23m

Table 8.5: Descriptive statistics for the deviations of the interpolated values from the measured elevations on
the hillslope adjacent to the plain.

linear Coons Clough-Tocher Smoothed Clough-Tocher
count 26 26 26 26
mean 0.68m 0.53m 0.53m 0.54m
minimum 0.0067m 0.0049m 0.0051m 0.0042m
maximum 5.24m 5.50m 5.50m 5.51m
standard deviation 1.01m 1.05m 1.05m 1.05m

Table 8.6: Descriptive statistics for the deviations of the interpolated values from the measured elevations with
80 points randomly changed between the control data set and the base data set.

linear Coons Clough-Tocher Smoothed Clough-Tocher
count 262 262 262 262
mean 0.46m 0.33m 0.33m 0.33m
minimum 0.0006m 0.0002m 0.0004m 0.0013m
maximum 12.2m 12.36m 12.36m 12.3543m
standard deviation 0.82m 0.81m 0.81m 0.81m

Table 8.7: Descriptive statistics for the deviations of the interpolated values from the measured elevations with
160 points randomly changed between the control data set and the base data set.

linear Coons Clough-Tocher Smoothed Clough-Tocher
count 261 261 261 261
mean 0.64m 0.52m 0.52m 0.53m
minimum 0.0079m 0.0033m 0.0041m 0.0006m
maximum 25.07m 25.27m 25.27m 25.28m
standard deviation 2.30m 2.32m 2.32m 2.32m

79

Spatial patterns The second set of analyses consists of maps to analyse spatial patterns. In Figure
8.6, the (signed) differences between the values of the linear interpolation and the field measured
values are mapped. Figure 8.7 does the same for the values of the Coons interpolator. Figure 8.8
compares the linear interpolator and the Coons interpolator by subtracting the (unsigned) deviation of
the Coons interpolation from that of the linear interpolation. Thus, positive values mean that the Coons
interpolator is closer to the measured value and negative values indicate that the linear interpolation
is closer. The same comparison has been made between the smoothed Clough-Tocher and the Coons
interpolator (Figure 8.9).

-5.6 - -2
- 2 - -0.5
- 0.5 - 0
0 - 0.5
0.5 - 2

Figure 8.6: Linear interpolation below (negative values) and above (positive values) surface (in meters).

Profiles The three measured profiles have been mapped to 2D-plots to reveal which interpolator is
below or above the real surface. Furthermore, the deviation of the interpolators have been magnified
by a factor of 10 to ease interpretation (Figures 8.10 -8.12).

Breaklines For all the analyses, the cubic methods have been run with a breakline extension, en-
suring that both edges of the road are represented as breaklines in all surfaces. To test whether the
breakline extension is useful or not the differences between the Coons method with and without the
breakline extension have been analysed. Points which have a different elevation value due to the
breakline extension have been selected. Descriptive statistics of the deviation of these points from the
measured values have been made (Table 8.12) and a map shows where the breakline extension makes
a difference (Figure 8.13).

80

-5.6 - -2
-2 - -0.5
-0.5 - 0
0 - 0.5
0.5 - 2

Figure 8.7: Coons interpolation below (negative values) and above (positive values) surface (in meters).

8.4 Results

8.4.1 Visual inspection

Looking at the 3D pictures of the test area (Figures 8.15 - 8.18) the linear interpolation shows, not
surprisingly, the most apparent artifacts. The linear facets do not represent the hill well, because most
of the breaklines at the triangle edges have no geomorphological meaning. The triangle Coons patch
and the Clough-Tocher method (both with linearly interpolated cross-derivatives) appear more realistic
because they smooth the surface and model the convexity and concavity of the terrain. Artifacts of
the triangular tessellation are clearly visible and considered as an effect of the linearly interpolated

Table 8.8: Descriptive statistics for the deviations of the Coons patch surface with and without breakline
extension (only points with different elevations are considered).

with breakline without breakline
count 75 75
mean 0.29m 0.36m
minimum 0.0007m 0.0182m
maximum 1.18m 1.20m
standard deviation 0.24m 0.32m

81

-0.6 - -0.25
-0.25 - 0
0 - 0.25
0.25 - 0.5
0.5 - 2

Figure 8.8: Positive value: Coons interpolator is closer to the measured value. Negative value: linear interpo-
lator is closer to the measured value (in meters).

cross-derivatives. The smoothed Clough-Tocher interpolator removes many of these artifacts and thus
has a more realistic appearance than the other interpolators.

8.4.2 First artificial surface

The mean deviation of the linear surface from the artificial surface is much higher than that of the
other interpolators. Within the cubic interpolators, the smoothed Clough-Tocher interpolation has the
lowest mean deviation, but the differences are small (Table 8.9).

Looking at the correlation between curvature and (signed) difference between the interpolators
and the function, the differences belonging to the linear interpolation show a high correlation with
the curvature of the function (Table 8.10). The correlation coefficients belonging to the cubic inter-
polators, on the other hand, are close to zero. This means that the linear interpolation strongly tends
to underestimate the artificial surface in convex areas and overestimate the surface in concave areas,
which is an expected property.

The mean deviations of slope values from the slope values of the function are small for all in-
terpolation methods (Table 8.11). Nevertheless, the deviations of the cubic interpolators are also
considerably lower. The diagrams showing the distribution of these deviations for the linear interpo-
lation and for the Coons interpolation (Figures 8.19 and 8.20) reveal that the deviations of slope are
lower with increasing values of slope on the artificial surface. The low mean deviations of slope seem
therefore to occur due to the fact that the chosen artificial surface is steep in most locations. In Figure

82

-0.14 - -0.043
-0.043 - 0
0 - 0.019

0.019 - 0.082
0.082 - 0.202

Figure 8.9: Positive value: Coons interpolator is closer to the measured value. Negative value: smoothed
Clough-Tocher interpolator is closer to the measured value (in meters).

8.19, points which are on the same triangle facet are well visible since they have the same slope and
form stripes in the figure.

8.4.3 Second artificial surface

Table 8.12 shows that using the breakline extension reduces the average error from 3.91 to 1.88 on
this artificial dataset, that is, by 51.92%.

Table 8.9: Descriptive statistics for the deviations of the interpolated values from the first artificial surface.
linear Coons Clough-Tocher Smoothed Clough-Tocher

count 25921 25921 25921 25921
mean 2.61m 0.87m 0.87m 0.83m
minimum 0.00047m 0.00001m 0.00003m 0.00003m
maximum 10.90m 7.16m 7.17m 7.04m
standard deviation 2.12m 1m 1m 0.99m

83

Figure 8.10: Profile 1. The deviations of the interpolators from the measured value have been multiplied by
10 to visualise where they are above and below the terrain surface, respectively.

Figure 8.11: Profile 2. The deviations of the interpolators from the measured value have been multiplied by
10 to visualise where they are above and below the terrain surface, respectively.

8.4.4 Comparison with field data of higher precision and accuracy

Comparing the interpolators with the field measured data over the whole area, the mean deviations
of the cubic interpolators are considerably lower than that of the linear interpolation (Table 8.1). The

84

Figure 8.12: Profile 3. The deviations of the interpolators from the measured value have been multiplied by
10 to visualise where they are above and below the terrain surface, respectively.

-0.182 - -0.01
0.01 - 0.182

>0.182

Figure 8.13: Positive values: the surface with breakline extension is closer to the field measured value. Nega-
tive values: the surface without breakline extension is closer (in meters).

other statistical measures are similar for all four interpolators. The differences between the three cubic

85

Figure 8.14: Overview of the linearly interpolated test area (view from north-east).

Figure 8.15: Detail of the linearly interpolated test area (view from north-east).

interpolation methods are very small, which can be seen in the tables 8.1 - 8.5as well as in figure 8.9.
It can be seen in Tables 8.6 and 8.7 that these observations remain if the triangulation is changed.
The maximum deviation rises from approx. 5m (original triangulation) to approx. 12m (80 points

86

Figure 8.16: Test area interpolated by the triangular Coons patch (view from north-east).

Figure 8.17: Test area interpolated with the Clough-Tocher method using linear cross-derivatives (view from
north-east).

swapped) and approx. 25m (160 points swapped). This is because the original triangulation consists
of relatively well shaped triangles. The more points are swapped, the worse shaped the triangulation

87

Figure 8.18: Test area interpolated with the smoothed Clough-Tocher method (view from north-east).

Table 8.10: Correlation between the (signed) differences of the interpolators from the first artificial surface
and the total curvature.

linear Coons Clough-Tocher Smoothed Clough-Tocher
correlation 0.64 0.08 0.08 0.07

becomes, resulting in higher maximum deviation between the measured values and the interpolated
ones.

Looking at the results for the different areas, the cubic interpolators have considerably lower mean
deviation on the hill and on the hillslope adjacent to the plain. On the road and in the plain, the mean
deviations are similar for all four interpolators. This observation is confirmed in Figure 8.8. Figure
8.6 shows that the linear interpolation is systematically too low on convex terrain shapes and too high
in concave terrain. Using the Coons interpolator this effect is less pronounced (Figure 8.7).

The three profiles reveal that linear interpolation tends to be above the surface on concave shapes
and below the surface on concave shapes (Figures 8.10 - 8.12). The Coons interpolator, in contrast,

Table 8.11: Descriptive statistics for the deviations of the interpolated slopes from the slope of the first artificial
surface.

linear Coons Clough-Tocher Smoothed Clough-Tocher
count 25921 25921 25921 25921
mean 3.43◦ 2.15◦ 2.17◦ 2.00◦

minimum 0.00004◦ 0.00004◦ 0.00002◦ 0.00002◦

maximum 45.33◦ 44.03◦ 44.03◦ 44.02◦

standard deviation 5.25◦ 3.93◦ 3.94◦ 3.80◦

88

Figure 8.19: Slope of the linear interpolation compared to the slope of the first artificial function.

Figure 8.20: Slope of the Coons interpolation compared to the slope of the first artificial function.

changes more often from below to above the surface and the range of deviation is in general smaller.
Therefore it is closer to the measured values at most profile sample points.

It can be noticed that the curves for linear and Coons interpolation have many peaks and spikes in
common. This reflects that the same triangular tessellation has been used for both methods.

The comparison of the Coons interpolator with breakline extension with the interpolator without

89

Table 8.12: Statistics for the deviations of the Coons surfaces with and without breakline extension from the
second artificial surface (only points with different elevations are considered).

without breakline with breakline
mean 3.91 1.88
standard deviation 6.34 6.20

Table 8.13: Comparison of the mean (unsigned) deviations of linear interpolation, Coons patch and bivariate
quintic interpolation.

linear Coons bivariate quintic
count 261 261 261
mean 36.5cm 28.3cm 28.6cm

extension reveals that the consideration of the breaklines constrains the interpolated surface closer to
the field values. The better estimation of the surface normal not only affects the points on the road,
but also those on either side of it.

Comparison with bivariate quintic surfaces

Bivaritate quintic interpolation has been introduced in Chapter 2. As this method is implemented in
the ARC/INFO software, it is of practical relevance for many GIS users and a comparison with the
methods developed in this thesis is therefore interesting. For this, the triangular tessellation has been
created without considering the road casing as forced edges. This has been done because ARC/INFO
uses another method for constrained lines than the software prototype of this thesis and thus using a
normal Delaunay triangulation is the only method to ensure that the same tessellation is used for all
the compared interpolators. Two interpolation points, both of which are very close to the convex hull
have been removed because the bivariate quintic interpolation returned missing values. A perspective
view of this bivariate quintic surface is shown in Figure 8.21. Table 8.13 shows the average deviations
of linear interpolation, Coons patch and bivariate quintic interpolation.

Figure 8.21: Test area interpolated with bivariate quintic interpolation over an unconstrained Delaunay trian-
gulation (view from north-east).

90

The mean deviations for Coons patch and bivariate quintic interpolation are nearly the same. The
stronger tendency of bivariate quintic interpolation to undulate, which was observed in Schneider
(1998), does not appear in this test dataset. This is because the triangles are relatively well shaped and
because the only sudden changes of slope in the test area are the road casings.

8.5 Discussion

The comparisons of the interpolators with artificial functions and with field measured data show that
linear interpolation strongly tends to be below the surface in convex areas and above the surface in
concave areas. They also reveal that this effect has a quantitatively important impact on the interpola-
tion errors.

On the first artificial surface slopes have also been compared. Figures 8.19 and 8.20 show that the
errors in slope decrease with increasing slope of the function. Since the function has more steep areas
than flat ones, the mean deviations of slope are relatively small. Nevertheless, the errors of the Coons
interpolator are in a smaller range for a given slope than those of the linear function.

All three cubic interpolators perform similarly in the quantitative comparisons, but the differences
between the triangular Coons patch and the Clough-Tocher spline with linear cross-derivatives is
extremely small. The smoothed version of the Clough-Tocher spline performs somewhat better on the
artificial surface. In the field, such an effect could also be observed, but it is so small that it is lower
than the round-off precision. In contrast to this, in the perspective views, the smoothed Clough-Tocher
interpolator appears visually more pleasing than the other cubic methods, smoothing some artefacts
of the linearly interpolated cross-derivatives.

The breakline extension was shown to be useful in this evaluation. It improves the quality of the
surfaces considerably while the additional computation cost is low.

Comparing the results of the visual inspection with those of the comparison with artificial surfaces
and the quantitative comparison with field data, two interesting points can be noticed:

• The cubic interpolators have a more realistic appearance in the 3D pictures than the linear inter-
polation and are in general considerably closer to the artificial function and the field measured
values.

• The smoothed Clough-Tocher interpolation has a more realistic appearance in the 3D pictures
than the Coons patch and the Clough-Tocher interpolation with linear cross-derivatives. How-
ever, in comparison with the artificial surface and the field measured data, there is little differ-
ence between the three cubic interpolators.

8.6 Conclusions

In this case study, the choice of a cubic interpolation method instead of the linear one reduces the
mean deviation by approx. 25%. The main contribution to this difference stems from the sample
points on the hilly landforms. Linear interpolation tends to underestimate the measured values in
convex areas and thus performs worse than the cubic interpolators there. Such an effect would also
occur on large concave landforms (the values of linear interpolation would then be significantly above
the field measured value), but the convex forms are more marked in the test area than the concave
ones. Surprisingly, on the road and on the plain, linear interpolation does not perform significantly
better than the cubic methods (on the plain, it even performs slightly worse). This suggests that cubic

91

interpolators do not necessarily swing out on flat shapes if the surface normals at the triangle vertices
are well estimated.

Comparison with the first artificial surface shows similar patterns, yet even more pronounced. One
reason for this is the shape of the artificial surface which is relatively steep and has no flat areas where
the linear interpolator might be expected to perform similar to the cubic interpolators.

The comparison of slopes on the first artificial surface shows that the cubic interpolators also yield
better slope predictions. Scatter plots reveal that the uncertainties in slope (with all four methods)
decrease with higher slope.

The quantitative analysis showed that there is only a limited difference between the three cubic
interpolators. In practice, this would mean that the Clough-Tocher spline with linear interpolated
cross-derivatives would often be the preferred choice, because it is mathematically easier than the
other two methods and computationally less demanding. The smoothed Clough-Tocher interpolator,
on the other, hand would be well suited where a surface has to be visually pleasing in shaded 3D-
projections.

The breakline extension of the cubic interpolator proved to be useful and led to considerable im-
provement in the results for the second artificial surface. The smoothing of the Clough-Tocher inter-
polator had an influence on the visual appearance of the surface, while the influence on the quantitative
results was small.

92

Chapter 9

Discussion

In this chapter, the research questions formulated in 1.2 are revisited. Section 9.3 addresses the
question how linear features can be included in triangular Coons patches and Clough-Tocher Bézier
splines. Section 9.2 discusses which artifacts occur, how they can be removed and whether this re-
moval provides ’better‘ surfaces or not. Section 9.1 addresses the question whether the methods
developed are ’better‘ then the ones already known in terrain modeling. Section 9.4 compares Coons
patches and Clough-Tocher splines and discusses when which method should be used.

9.1 Assessment of the proposed methods

In Section 1.2, the question was raised whether the triangle based free-form surfaces used in this thesis
are better than the ones already known in the area of digital terrain modeling. The empirical evaluation
in chapter 8 was restricted to the comparison between Coons patches, Clough-Tocher Bézier splines,
linear interpolation and bivariate quintic interpolation. Therefore, most of the text in this section
compares these methods.

In contrast to Clough-Tocher splines, Coons patches allow for G1-continuous integration of TINs
with grids. Coons patches also provide more flexibility in the choice of the boundary curves and
the blending functions. However, during the work on this thesis, no application field for this plus
of flexibility could be identified. In the evaluation, the Coons patch used showed little difference
to the Clough-Tocher Bézier splines. Additionally, it is more complex from a mathematical and an
implementation point of view.

The evaluation in chapter 8 established that cubic G1-continuous surfaces modelled the elevation
of the study area and the artificial surface better than the linear surface because of estimating and
considering the curvature of the terrain. An interesting question is whether the suitability of an in-
terpolation method depends upon the terrain type, for instance whether G1-continuous surfaces are
better suited to model hilly landforms and linear facets are superior for modeling rugged mountainous
terrain. Linear facets may imitate the visual appearance of a surface of the latter type well. However,
even if a mountainous terrain is full of breaklines, the breaklines introduced by normal triangle edges
are very likely to be at wrong locations from a geomophological point of view. Therefore, it is not a
good idea to compensate for not sampled breaklines by using linear triangle facets. Instead, the break-
lines relevant at the modeling scale should be captured. A G1-continuous cubic free-form surface can
be used to model these terrain breaks using the breakline extensions described in the chapters 4 and
5. These extensions are documented and allow for breakline modeling in cubic triangular surfaces
instead of the black-box and closed source approach in quintic surfaces (ESRI, 2002).

93

The smoothing of the Clough-Tocher splines removed artifacts and improved visual appearance.
However, in the evaluation, the influence of this extension on metric accuracy was small.

Compared with bivariate quintic interpolation the cubic interpolators showed approximately the
same mean deviations in the comparison with field data. Bivariate quintic surfaces in general have a
stronger tendency to undulate, as they are of degree five. As there are not many sudden changes in
slope in the study area, this property did not have an influence on the results, however.

The refinement of the triangulation with the Ruppert algorithm has been assessed qualitatively.
The method seems to be well suited to remove artifacts originating from small-angled triangles. As
such artifacts are stronger the smoother an interpolator is constrained to be, the Ruppert algorithm is
an interesting technique for smoothed Clough-Tocher Bézier splines or even more for G2-continuous
surfaces. The drawback of the algorithm is the additional amount of data which depends on the shape
of the initial triangulation as well as on the specified minimum angle.

9.2 Removal of artifacts

Artifacts are landforms that are, based on knowledge about geomorphology, not plausible. If artifacts
occur the available information including the geomorphological knowledge has not been sufficiently
exploited. Research question 2 in section 1.2 deals with artifacts that may occur in triangle based
Coons patches and Clough-Tocher Bézier splines. Research question 3 asks if the proposed artifact
removal is successful. The following artifacts may occur in Coons patches and Clough-Tocher splines:

• Using linearly interpolated cross derivatives may generate prominent artifacts. For the Clough-
Tocher Bézier splines this type of artifact can be reduced by using the smoothed version de-
scribed in section 5.5.

• Long and thin triangles strongly accentuate undulation of cubic surfaces (Figure 6.1). Such tri-
angles are common, even if the Delaunay criterion is used for triangulating. If the triangulation
needs to be constrained (e. g. when triangulating contour data), such triangles are even more
frequent. A possibility to avoid these artifacts is to make the triangle shapes more balanced
by inserting new points, so called ’Steiner points‘ (Ruppert, 1993). The difficulty with this ap-
proach is that the data volume is enlarged. Furthermore, the interpolation of elevation values
for these points may be of low quality if they are located in long and thin triangles themselves.

• The surfaces within the triangles are G3-continuous using Coons patches and G2-continuous
using Clough-Tocher Bézier splines. Across the border between the triangles, the surface is
only G1-continuous in both cases. As a consequence, the curvature change is concentrated at
the triangle edges, resulting in relatively stiff surfaces. In chapter 8, it has been shown that the
elevation values of the cubic surfaces used in this thesis still tend to be below the terrain surface
in convex areas (even if this effect is much weaker than for linearly interpolated surfaces). This
is considered to be an effect of the stiff surfaces. A possibility to avoid such effects would be to
use global G2-continuous surfaces with Coons patches and Clough-Tocher elements of quintic
degree. However, this approach would most probably increase the undulations in the case of
long and thin triangles.

• Sinks in terrain are local minima of the surface. Sinks in digital terrain models are often arti-
facts. Hydrological applications are affected by such artificial sinks and thus plenty of literature
exists describing how to cope with this problem (e. g. O’Callaghan and Mark (1984); Martinoni
(1997)). Artificial sinks may be present due to several reasons:

94

– In flat areas, imprecise measurements may cause spurious sinks

– Artifacts of the data model may introduce artificial sinks. For instance, when using gridded
data, sinks are usually present because the regular sampling scheme is not able to represent
valley lines comprehensively.

– Sinks may occur as artifacts of the interpolation method.

Cubic surfaces may introduce spurious sinks of the latter type (Schneider, 1998), so linearly
interpolated surfaces should be used for hydrologic applications. The removal of these arti-
facts would be quite complex. In the literature about shape modeling, the term ’monotonicity-
preserving surface‘ exists for surface patches that do not have sinks if all the boundary curves
are monotonously increasing or decreasing. However, in terrain modeling, boundary curves
may not show monotonous behaviour, except if they belong to a drainage network. Maslva and
Salkauskas (2000) show a method to create a boundary network from a hydrologic network
and to force the boundary curves representing a drainage line to monotonicity. Unfortunately,
monotonicity-preserving patch interpolation methods currently only exist for patches with four
boundary curves (Costantini and Manni, 1996a,b).

Removal of artifacts does not necessarily mean that the resulting surface is more accurate. In
this context, chapter 8 revealed interesting results. In the comparison with field data as well as in
the comparison with the artificial surface, the G1-continuous surfaces, on average, showed elevation
values considerably closer to the reference surfaces than the linear interpolation. Thus, the removal of
the planar facet artifact made the surface better suited for applications using elevations of a surface. In
contrast, the smoothed Clough-Tocher Bézier splines did not show significant improvement compared
to the methods using linear interpolated cross-derivatives. Even if the perspective views of the surfaces
appeared more visually pleasing, the effect on the deviations was small.

9.3 Inclusion of linear information in Coons patches and Clough-Tocher
Bézier splines

In chapter 1, it has been explained that the reconstruction of continuous surfaces from discrete input
data is underdefined and thus introduces uncertainty. Therefore, it is important to use all available
information to reduce the so-called shape uncertainty (Schneider, 2001a). If line data is available for
terrain modeling, it is thus important to not only include the elevation of the line vertices into the
specification of a continuous surface. The line information and the semantics associated with it are
also information which can be used. Because of this, the research question 1 in Section 1.2 was how
linear information be included in Coons patches and Clough-Tocher Bézier splines.

The most common forms of linear input data for terrain models are structure lines, contours and
breaklines.

Structure lines are used to denote linear features on the surface which do not show an abrupt
change in slope across them. Usually, geomorphological features like valleys and obtuse ridges are
modelled as structure lines. Structure lines can be considered in Coons patches and Clough-Tocher
Bézier splines by using a constrained Delaunay triangulation such that the structure line segments are
not intersected by triangle edges.

Contours can be considered to be a special case of structure lines as they represent lines on the
surface without a sudden change in slope across them. However, because of the implicit information
contained in collections of isolines, special handling of contours is required. Because of this implicit

95

information, it is straightforward for a human to recognise terrain features by looking at a contour
map. But it is very difficult to write computer programs which do the same. Contours have not been
addressed in this thesis, because there exist a large number of publications covering this topic (Brändli,
1991; Heitzinger and Kager, 1998; Schneider, 1998; Thibault and Gold, 2000; Wise, 1997).

Breaklines describe linear features with a sudden change in slope across them. For instance sharp
mountain ridges or borders of roads can be modelled as breaklines. The consideration of breaklines
in otherwise G1-continuous surfaces is less trivial than it initially may seem to be. In chapter 4, it has
been shown that it is possible to abandon G1-continuity for Coons patches only at breakline edges,
without changing the boundary curve network. However, in doing so, the surface is still G1-continuous
at the breakline vertices and thus does not represent ridges well. Thus, the boundary curves on both
sides of the breakline need to be changed to represent the surface break in a geomorphologically plau-
sible way. Doing so, unintentional breaklines appear across these boundary curves, as the shape of the
breakline has to be preserved. For Clough-Tocher Bézier splines, the situation is similar. Because of
the subdivision, it can be chosen if the unintentional breaklines should occur within the macrotriangles
or at the edges of macrotriangles.

How severe are the effects of this compromise for applications of terrain models? The sharpness
of an unintentional breakline depends on the angle of the two breakline segments joining at a breakline
vertex. It the angle is 180◦, there is no unintentional breakline at all. The greater the deviation from
180◦is, the sharper the unintentional breakline is. Note that the sharpness of unintentional breakline
decreases with growing distance from the breakline vertex and finally disappears at the end of the
boundary curve segment. Because of this, the influence of unintentional breaklines on the surface
shape is minor (Figure 4.8).

Many applications benefit from the modeling of convexity and concavity provided by G1-continuous
surfaces. However, most of them can handle some unintentional breaklines. Applications requiring
G1-continuity need, for instance, to derive slope and aspect at every point, including the vertices and
triangle edges. On intended and unintentional breaklines, slope and aspect are not defined. On in-
tended breaklines, the derivation of slope and aspect makes no sense from a geomorphological point
of view, so ambiguity is not a problem. On unintentional breaklines, in contrast, these derivatives
may be of interest for an application. A workaround in this situation is to average the slope or aspect
values of both sides. Because unintentional breaklines usually join in obtuse angles, this workaround
provides a good approximation.

Which methods should be used for a proper solution not producing any unintentional breaklines?
Coons patches or triangular splines with a degree higher than cubic, specified over the same tessel-
lation do not solve the problem. To really solve it, the breakline should have only one tangent at the
breakline vertices, which in general is not possible when using a triangular tessellation with straight
line edges. Instead, a tessellation also capable of inserting cubic curves as edges would be necessary.
Two problems would thus have to be solved:

1. The use of patches with boundary curves which are not necessarily straight lines in the orthogo-
nal projection causes additional difficulties. The calculation of the parameter values for a point
with given x and y coordinates is difficult and would require triangular Bézier clipping (Roth
et al., 2000) for Clough-Tocher Bézier splines and isoparametric transformation to the standard
triangle for Coons patches.

2. The creation of a tessellation ensuring that no straight edge intersects a curved edge is dif-
ficult. Boivin and Ollivier-Gooch (2002) recently presented a method to create tessellations
with curved domain boundaries. To adapt this to the breakline problem, the triangulation do-

96

main would have to be split into several domains to have the breaklines at the boundaries. The
rejoining of these disjoint parts then is a problem which remains to solve.

Thus, the compromise presented here is considered to be suitable for nearly all terrain applications.
The development of a proper method is an interesting and ambitious task, but the benefit for terrain
applications is considered to be small.

9.4 Comparison between Coons patches and Clough-Tocher Bézier splines

While the Coons patch method uses one surface for each triangle, the Clough-Tocher Bézier method
splits triangles into three subtriangles. An important difference between the two methods is the cross-
derivative function along the edges of the original triangles. In case of the cubic Coons patch, this
function may be of any degree, while for the cubic Clough-Tocher Bézier spline, the cross-derivative
function is at most quadratic. This difference is important if a surface consisting of rectangular cubic
patches has to be joined in a G1-continuous way with a surface consisting of cubic triangular patches.
Because rectangular cubic patches, including cubic rectangular Bézier splines, have cubically inter-
polated cross-derivatives, this cannot be achieved with cubic Clough-Tocher Bézier triangles.

The boundary curves of cubic Clough-Tocher splines have to be Bézier curves. Coons patches
provide more flexibility in this respect, as any form of curve can be used. Despite this flexibility, care
has to be taken that the blending functions are compatible with the boundary curves.

Because of the Bernstein form, the triangular Clough-Tocher spline is much easier to implement
than the triangular Coons patch. Once the elevations of the control points are determined, the formulae
given in chapter 5 can be applied. In contrast, an implementation of the triangular Coons patch
requires a lot of work to properly specify all the profiles of the ruled surfaces and especially to derive
the equations for their derivatives.

The computational efficiency of the two methods is difficult to compare. The methods involve
building a triangular tessellation and finding the triangle that the interpolation point is located in.
These operations are the same for both methods. The creation time of a Delaunay triangulation de-
pends to some extend on the algorithm used and can be accomplished in O(n logn) time, where n is
the number of data points (Fortune, 1995). The search for a triangle in which a point is located can
be done in O(logn) time by using the planar point location method (van Kreveld, 1997) or by using
a heuristic. The computing time for the interpolation of the triangle patch itself, which is different
for Coons patches and Clough-Tocher Bézier splines, is not dependent on the number of data points
(O(1)). However, the computing cost of O may be different for the two methods. In the implementa-
tion made for this thesis, the Clough-Tocher method is about four times faster than the Coons patch.
However, this depends enormously on how the implementation is made and is only partly dependent
on the interpolation methods.

The evaluation in this thesis established, that there are only minor difference of surface shape
between Coon patch and Clough-Tocher splines. Therefore, the Clough-Tocher splines are the better
choice for most programmers, as the implementation is easier. The Coons patch in contrast is better
suited if rectangular patches are present in the same surface. It also provides more flexibility, but in
this thesis, no need to make use of this flexibility has been found. However, very special tasks may
benefit from it, for instance the avoidance of spurious sinks.

97

Chapter 10

Conclusions

The central goal of this thesis was to adapt triangular Coons patches and triangular Clough-Tocher
Bézier splines for use in terrain modelling. In turn, this required linear information to be included
by using constrained Delaunay triangulations and by developing methods to consider breaklines in
the surfaces. Several kinds of artifacts have been identified and two methods to soften these artifacts
have been applied to terrain modelling: the smoothed version of the Clough-Tocher Bézier spline to
remove the artifacts arising from linearly interpolated cross-derivatives and the Ruppert algorithm for
mesh refinement to avoid artifacts because of long and thin triangles. This chapter summarises the
main achievements and insights of this work and closes with an outlook to possible further research.

10.1 Achievements

• Triangular and cubic Coons patches have been applied. Each triangle surface patch has been
modelled with three cubic boundary curves and a patch with linearly interpolated cross-derivatives.
The Coons patch technique has not been available for digital terrain modelling until now.

• Breakline extensions have been developed for triangular Coons patches and cubic Clough-
Tocher Bézier splines. These extensions change the boundary curves leading to the inserted
breakline to force a surface break. They maintain the shape of the boundary curves representing
the breakline and ensure that there is no gap in the surface (G0-continuity).

• To soften artifacts arising from linearly interpolated cross-derivatives, the technique of smooth-
ing Clough-Tocher Bézier splines, developed in the discipline of computer aided geometric
design (CAGD), has been implemented and applied to terrain modelling.

• To avoid long and thin triangles in the triangulation, the Ruppert algorithm, which inserts addi-
tional points into the triangulation, has been implemented. Possible problems of this algorithm
for terrain modeling have been discussed and perspective views of digital terrain surfaces have
been used to visualise its effects.

• The triangular interpolators used in this thesis and linear interpolation have been evaluated.
For this, interpolated elevation values have been compared with field measured data and with
artificial surfaces.

• All the methods which have been applied and developed in this thesis have been implemented
in a prototype software using C++.

98

10.2 Insights

Assessment of the developed methods The triangular cubic Coons patches and the cubic Clough-
Tocher Bézier splines used and extended in this thesis have been compared with linear interpolation
and bivariate quintic surfaces on artificial surfaces and on a real terrain. The nonlinear interpolators
predicted the shape considerably better on both the artificial surface and the study area. The differ-
ences between the three cubic interpolators used, Coons patches, Clough-Tocher Bézier splines with
linearly interpolated cross-derivatives and smoothed Clough-Tocher splines were found to be small.
The quintic interpolation shows differences to the cubic interpolators, but in terms of quality, all the
higher order methods performed similarly. The breakline extensions on the cubic interpolators clearly
lead to an improvement of the predicted results.

Artifacts Several kinds of artifacts may appear when using triangle based free form surfaces. Long
and thin triangles strongly accentuate undulations in surfaces. By using the Ruppert algorithm, these
triangles can be removed by inserting additional points into the triangulation. The disadvantage of
this approach, however, is that it increases the data volume. Using Coons patches and Clough-Tocher
Bézier splines with linearly interpolated cross-derivatives generates artifacts at the border of the trian-
gles. These artifacts can be avoided by using smoothed Clough-Tocher splines, although the evalua-
tion suggested that, for the case study used, the visual impact of the smoothing may be more important
than the numerical effects.

Linear information Because of the triangle based approach, the cubic Coons patches and Clough-
Tocher Bézier splines are generally well suited to incorporate linear information. One possible tech-
nique is to use constrained Delaunay triangulations. Sharp surface breaks can also be modelled by
altering the surface normals at the vertices of the triangle patches adjacent to the breaklines. However,
if the surface should not have gaps across the breaklines (G0-continuity), the choice of the normals
needs to be carried out carefully. In this case, the price of the insertion of a breakline may be the
appearance of unintentional breaklines at some triangle edges leading to the intentional breakline.

Coons patches compared to Clough-Tocher Bézier splines Cubic Coons patches and cubic Clough-
Tocher Bézier splines are very similar if the interpolation function of the cross-derivatives is the same
(e. g. linear interpolation). The most important differences between these two methods are that the
cubic Coons patch can have a cross-derivative function of cubic degree whereas this function can be
at most quadratic for cubic Clough-Tocher Bézier splines. Therefore Clough-Tocher splines cannot
be applied if a tessellation consists of triangular and quadrilateral patches and if this surface has to be
G1-continuous. Also, the cubic Coons patch allows for any kind of boundary curves while Clough-
Tocher Bézier splines are restricted to Bézier curves. The advantage of the Clough-Tocher splines is
that they are much easier to handle from a mathematical and from an implementation point of view.

10.3 Outlook

10.3.1 Applying continuous surface models

A considerable amount of research on the methodological aspects of continuous terrain models has
been accomplished to date. However, most digital terrain modelling tasks, besides terrain visualisa-
tion, are performed with discrete terrain models. Rare examples of work using continuous models are

99

Wood (1998) and Tucker et al. (2001). The latter is one of the very few examples using irregularly dis-
tributed data points. So, there is definitely a need for research comparing the properties of continuous
and discrete models from the perspective of specific applications. Such research could reveal under
which circumstances and for which applications it is worthwhile to use continuous models. This could
greatly promote the use of continuous models in areas where such models are found to be suitable.

10.3.2 Direct derivation of complex nonlocal information

As mentioned in Chapter 1, an ideal situation for terrain modeling would be to specify one continuous
surface model and to derive all required terrain information directly from this surface model. For
Coons patches and Clough-Tocher Bézier splines, local terrain information based on elevation or
derivatives can be calculated directly from the surface. Examples for such local terrain information
are elevation, gradient, aspect or curvature. However, there are a lack of methods to derive more
complex terrain derivatives from such surfaces, for instance the visible area (viewshed) of a point
or the catchment draining into an area. Most of these complex terrain derivatives can be calculated
directly from linearly interpolated surfaces. Thus, for the cubic surfaces described in this thesis,
complex nonlocal information has to be derived by approximating the cubic surface, either with many
linearly interpolated triangles or by transforming the cubic surface to a dense grid. Then, the extraction
methods for the linear triangles or for grids can be used. However, with these approaches, memory
requirements and computation time may be high if the resolution is very high. Furthermore, it is hard
to determine an appropriate resolution.

Deriving complex nonlocal information directly from continuously differentiable surfaces is an
interesting task for future research. Although it is quite complex, approaches already exist. The
following two paragraphs mention existing approaches and possible research tasks for viewshed cal-
culations and the derivation of hydrological information, two important examples of complex nonlocal
information.

Viewshed Intervisibility between two points on Clough-Tocher splines can be calculated using tri-
angular Bézier clipping (Roth et al., 2000). This technique uses an approximation approach to find the
intersection point between a ray and a Bézier patch. Even if it is approximate, the amount of deviation
to the accurate point can be specified. However, the task of finding the area visible from a given point
is still unsolved.

Derivation of hydrological information An important terrain derivative for hydrological modeling
is the path of steepest descent, also referred to as a streamline or fall line. On a linearly interpolated
TIN, the path of steepest descent can be calculated directly because it does not change its direction
within a triangle facet. On continuously differentiable surfaces, in contrast, a path of steepest descent
changes its direction continuously. Approximation of the path of steepest descent with many straight
line segments is possible but has disadvantages, for example waste of memory and zig-zag lines in
valleys. Direct derivation of streamlines from vector fields can be calculated by solving a differential
equation. It would be interesting to see whether this technique could also be applied to directly derive
paths of steepest descent from cubic Coons patches and Clough-Tocher splines.

An interesting property of continuously differentiable surfaces is that two paths of steepest descent
never join. The catchment area of a point therefore is a line and its area is 0. Nevertheless, the
calculation of catchment areas for pits or contour line segments would be possible by using surface
networks. A surface network is a graph containing critical points (passes, peaks, pits) and critical lines
(valleys, ridges) of a surface (Pfaltz, 1976). Surface networks can be derived by identifying passes

100

and building the connections to the related peaks and pits (Martinoni, 1997; Wood, 1998). Thus, in
order to derive surface networks from cubic Coons patches and Clough-Tocher Bézier splines, it is
necessary to find passes, peaks, pits in such surfaces and to derive streamlines from them.

10.3.3 Tessellation with arbitrary curves

As already discussed in Section 9.3, a tessellation with the possibility to incorporate curved segments
would give more possibilities in including terrain features. For instance, breaklines could be consid-
ered without unintentional breaklines (Chapter 4). Besides the construction of such a triangulation,
the mapping from real world coordinates to parameter space, which is necessary prior to interpolation,
is an additional problem.

10.3.4 Further Comparisons of interpolation methods with field data

Further comparisons of interpolated values with field data would be interesting. The evaluation in
Chapter 8 could be extended by other experiments in different ways:

• Comparison with field values of other study areas may possibly lead to different results than the
evaluation in Chapter 8. Therefore more such experiments are desirable.

• Other interpolators described in Chapter 2 could be used for comparison, for instance minimum
curvature splines and finite elements. In this thesis, these methods have not been used for
comparison because they are either not implemented in commonly used GIS packages or the
implementations only support interpolation to a raster and not to irregularly spaced interpolation
points.

• Most GIS users are interested in terrain derivatives, for instance slope, curvature or viewshed,
rather than in the elevation values itself. Therefore it would also be interesting to compare such
derivatives in a field study.

101

Bibliography

Akima, H. (1978). A method of bivariate interpolation and smooth surface fitting for irregularly
distributed data points. ACM Transactions on Mathematical Software, 4(2):148–159.

Barnhill, R. E. and Gregory, J. A. (1975). Compatible smooth interpolation in triangles. Journal of
Approximation Theory, 15:214–225.

Beach, R. (1991). Introduction to the Curves and Surfaces of Computer-Aided Design. Van Nostrand
Reinhold Computer Library, New York.

Bern, M. and Eppstein, D. (1995). Mesh Generation And Optimal Triangulation. In Du, D.-Z.
and Hwang, F., editors, Computing in Euclidean Geometry, volume 4 of Lecture Notes Series on
Computing. World Scientific, Singapore.

Boivin, C. and Ollivier-Gooch, C. (2002). Guaranteed-quality triangular mesh generation for domains
with curved boundaries. International Journal for Numerical Methods in Engineering, 55(10):1185
– 1213.

Bolstad, P. and Stowe, T. (1994). An evaluation of DEM accuracy: elevation, slope and aspect.
Photogrametric Engineering and Remote Sensing, 60(11):1327–1332.

Brändli, M. (1991). Oberflächeninterpolation aus Höhenkurvendaten. Master’s thesis, Department of
Geography, University of Zurich.

Burrough, P. A. and McDonnell, R. A. (1998). Principles of Geographic Information Systems. Oxford
University Press, Oxford.

Carter, J. (1992). The effect of data precision on the calculation of slope and aspect using gridded
DEMs. Cartographica, 29(1):22–34.

Chiles, J.-P. and Delfiner, P. (1999). Geostatistics. Wiley, New York.

Corripio, J. (2003). Vectorial algebra algorithms for calculating terrain parameters from DEMs and
solar radiation modelling in mountainous terrain. International Journal of Geographic Information
Science, 17(1):1–23.

Costantini, P. and Manni, C. (1996a). A bicubic shape-preserving blending scheme. Computer Aided
Geometric Design, 13:307–331.

Costantini, P. and Manni, C. (1996b). Monotonicity-preserving interpolation of nongridded data.
Computer Aided Geometric Design, 13:467–495.

102

de Floriani, L. and Puppo, E. (1992). An On-Line Algorithm for Constrained Delaunay Triangulation.
Computer Visions, Graphics and Image Processing: Graphical Models and Image Processing,
54(3):290–300.

Dirnböck, T., Dullinger, S., and Grabherr, G. (2003). A regional impact assessment of climate and
land-use change on alpine vegetation. Journal of Biogeography, 30(3):401–417.

Dubrule, O. (1984). Comparing splines and kriging. Computers&Geosciences, 10:327–338.

Ebner, H. (1983). Berücksichtigung der lokalen Geländeform bei der Höheninterpolation mit finiten
Elementen. Bildmessung und Luftbildwesen, 51(1):3–9.

Ebner, H., Hofmann, B., Reiss, P., and Steidler, F. (1980). HIFI - a minicomputer program package
for height interpolation by finite elements. International Archives of Photogrammetry and Remote
Sensing, 23:202–215.

Ebner, H. and Reiss, P. (1978). Height interpolation by the method of finite elements. In Proceedings
of the Digital Terrain Modelling Symposium, St. Louis, pages 241–254.

Erxleben, J., Elder, K., and Davis, R. (2002). Comparison of spatial interpolation methods for esti-
mating snow distribution in the colorado rocky mountains. Hydrological Processes, 16:3627–3649.

ESRI (2002). Arc/info help.

Farin, G. (1985). A modified Clough-Tocher interpolant. Computer Aided Geometric Design, 2(1-
3):19–27.

Farin, G. (1997). Curves and Surfaces for CAGD. A practical guide. Academic press, San Diego,
London, Boston, New York, Sydney, Tokyo, Toronto, fourth edition edition.

Farin, G., Hoschek, J., and Kim, M. (2002). Handbook of Computer Aided Geometric Design. North-
Holland, Amsterdam.

Floriani, L. D. and Magillo, P. (1996). Representing the visibility structure of a terrain through a
nested horizon map. International Journal of Geographic Information Science, 10(5):541–562.

Fortune, S. (1995). Voronoi diagrams and Delaunay triangulations. In Du, D.-Z. and Hwang, F.,
editors, Computing in Euclidean Geometry, volume 4 of Lecture Notes Series on Computing, pages
225–265. World Scientific, Singapore.

Fricker, H., Hyland, G., Coleman, R., and Young, N. (2000). Digital elevation models for the Lambert
Glacier-Amery Ice Shelf system, East Antarctica, from ERS-1 satellite radar altimetry. Journal of
Glaciology, 46(155):553–560.

Gallant, J. and Wilson, J. (2000). Primary topographic attributes. In Wilson, J. and Gallant, J., editors,
Terrain analysis. John Wiley & sons, London.

Gao, J. (1997). Resolution and accuracy of terrain representation by grid DEMs at a micro-scale.
International Journal of Geographic Information Sciences, 11(2):199–212.

Giles, P. and Franklin, S. (1996). Comparison of derivative topographic surfaces of a DEM generated
from stereoscopic SPOT images with field measurements. Photogrametric Engineering and Remote
Sensing, 62(10):1165–1171.

103

Goodchild, M. F. (1992). Geographical data modeling. Computers & Geosciences, 18(4):401–408.

GRASS (2004). Grass 5.3.x reference manual. http://grass.itc.it/gdp/html_grass5/index.html.

Heitzinger, D. and Kager, H. (1998). High quality DTMs from
contourlines by knowledge-based classification of problem regions.
http://www.ipf.tuwien.ac.at/publications/dh_p_isprs98/sh_p_isprs98.html.

Heller, M. (1990). Triangulation algorithms for adaptive terrain modeling. In Proceedings of the 4th
International Symposium on Spatial Data Handling, volume 1, pages 163–174, Zurich, Switzer-
land.

Herzfeld, U. (1999). Geostatistical interpolation and classification of remote sensing data from ice
surfaces. International Journal of Remote Sensing, 20(2):307–327.

Horn, B. (1981). Hill shading and the reflectance map. Proceedings of the IEEE, 69(1):14–47.

Hugentobler, M. (2000). Fortpflanzung von unsicherheiten in dreiecksbasierten digitalen Gelände-
modellen. Master’s thesis, Department of Geography, University of Zurich.

Hugentobler, M. (2001). Propagation of uncertainties in digital terrain models with interval methods.
In Proceedings of the GIS Research UK 9th Annual Conference, pages 341–44, Glamorgan, Wales.

Hugentobler, M. (2002). Interpolation of continuous surfaces for terrain modeling with Coons patches.
In Proceedings of GISRUK 2002, pages 13–15.

Hugentobler, M., Purves, R., and Schneider, B. (2004). Evaluating methods for interpolating con-
tinuous surfaces from irregular data: a case study. Accepted as conference paper for Spatial Data
Handling 2004.

Hugentobler, M. and Schneider, B. (2004). Breaklines in coons surfaces over triangles for the use in
terrain modelling. Submitted to Computers & Geosciences.

Hutchinson, M. and Gallant, J. (2000). Digital elevation models and representation of terrain shape.
In Wilson, J. and Gallant, J., editors, Terrain analysis. John Wiley & sons, London.

Isaaks, E. and Srivastava, M. (1989). An introduction to applied geostatistics. Oxford University
Press, Oxford.

Jimenez-Espinosa, R. and Chica-Olmo, M. (1999). Application of geostatistics to identify gold-rich
areas in the finisterre-fervenza region, nw Spain. Applied Geochemistry, 14:133–145.

Kashyap, P. (1996). Improving Clough-Tocher interpolants. Computer Aided Geometric Design,
13(7):629–651.

Klucewicz, I. M. (1978). A piecewise c1-interpolant to arbitratily spaced data. Computer Graphics
and Image Processing, 8:92–112.

Martinez-Cob, A. (1996). Multivariate geostatistical analyses of evapotranspiration and precipitation
in mountanious terrain. Journal of Hydrology, 174:19–35.

Martinoni, D. (1997). Extraktion von hydrologischen Strukturen aus triangulierten Geländemodellen.
Master’s thesis, Department of Geography, University of Zurich.

104

Martinoni, D. (2002). Models and experiments for quality handling in digital terrain modelling. PhD
thesis, Department of Geography, University of Zurich.

Maslva, L. and Salkauskas, K. (2000). Enforced drainage terrain models using minimum norm net-
works and smoothing splines. Rocky Mountain Journal of Mathematics, 30(3):1075–1109.

Matheron, G. (1962). Le krigeage I. Number 14 in Mémoires du bureau de recherches géologiques et
minières. Editions Technip, Paris.

Matheron, G. (1963). Le krigeage II. Number 24 in Mémoires du bureau de recherches géologiques
et minières. Editions Technip, Paris.

Miller, G., Pav, S., and Walkington, N. (2003). When and why Ruppert’s algorithm works. In Pro-
ceedings of the 12th International Meshing Roundtable, pages 91–102.

Mitas, L. and Mitasova, H. (1999). Spatial interpolation. In P.Longley, Goodchild, M., Maguire, D.,
and D.W.Rhind, editors, Geographical Information Systems, pages 481–492. Longman, London.

O’Callaghan, J. and Mark, D. (1984). The extraction of drainage networks from digital elevation data.
Computer Vision, Graphics, and Image Processing, 28:323–344.

Pac, R. (2000). X-sar/srtm shuttle radar topography mission.
http://www2.dlr.de/oeffentlichkeit/specials/sonderseiten/srtm/srtm_folder_02.pdf.

Pebesma, E. (2000). gstat user’s manual. http://www.gstat.org/bin/gstat-2.1.0.a4.ps.gz.

Peucker, T., Fowler, R., Little, J., and Mark, D. (1978). The triangulated irregular network. In
Proceedings of the Digital Terrain Model Symposium, pages 516–540, St. Louis, Missouri.

Pfaltz, J. (1976). Surface networks. Geographical Analysis, 8(1):77–93.

Pfeifer, N. (2002). 3D terrain models on the basis of a triangulation. PhD thesis, Technische Univer-
sität Wien.

Pfeifer, N., Stadler, P., and Briese, C. (2001). Derivation of digital terrain models in the SCOP++
environment. In Proceedings of OEEPE Workshop on Airborne Laserscanning and Interferometric
SAR for Detailed Digital Terrain Models, Stockholm.

Piegl, L. and Tiller, W. (1997). The NURBS book. Springer, Berlin.

Preusser, A. (1984). Bivariate Interpolation über Dreieckselementen durch Polynome 5. Ordnung mit
C1-Kontinuität. Zeitschrift fuer Vermessungswesen, 6:292–301.

Rogers, D. and Adams, J. (1990). Mathematical elements for computer graphics. McGraw-Hill,
London.

Roth, M., Diezi, P., and Gross, M. (2000). Triangular Bezier clipping. technical report 347, ETH
Zürich.

Ruppert, J. (1993). A new and simple algorithm for quality 2-dimensional mesh generation. In
Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 83–92.

105

Schneider, B. (1998). Geomorphologisch plausible Rekonstruktion der digitalen Repräsentation von
Geländeoberflächen aus Höhenliniendaten. PhD thesis, Department of Geography, University of
Zurich.

Schneider, B. (2001a). On the uncertainty of local shape of lines and surfaces. Cartography and
Geographic Information Science, 28(4):237–247.

Schneider, B. (2001b). Phenomenon-based specification of the digital representation of terrain sur-
faces. Transactions in GIS, 5(1):39–52.

Skidmore, A. (1989). A comparison of techniques for calculating gradient and aspect from a gridded
digital elevation model. International Journal of Geographical Information Systems, 3(4):323–334.

Song, W. and Haithcoat, T. (2003). Improve the posi-
tional accuracy of digital parcel map through vector migration.
http://www.urisa.org/Journal/Under_Review/song/improve_the_positional_accuracy.htm.

Thibault, D. and Gold, C. (2000). Terrain reconstruction from contours by skeleton construction.
GeoInformatica, pages 349–373.

Tobler, W. (1970). A computer movie simulating urban growth in the Detroit region. Economic
Geography, 46(2):234–240.

Tucker, G., Lancaster, S., Gasparini, N., Bras, R., and Rybarczyk, S. (2001). An object-oriented
framework for distributed hydrologic and geomorphic modeling using triangulated irregular net-
works. Computers & Geosciences, 27(8):959–973.

Unbenannt, M. (1999). Generation and Analysis of High-Resolution Digital Elevation Models for
Morphometric Relief Classification, represented at a Cuesta Scarp Slope on the Colorado Plateau,
USA. In Proceedings of the 3rd German-Dutch Symposium KvAG (Niederlande) / DGPF-AK "In-
terpretation von Fernerkundungsdaten".

van Kreveld, M. (1997). Algorithms for triangulated terrains. In Proceedings of the 24th SOFSEM,
Lecture Notes in Computer Sciences, pages 19–36, Berlin. Springer Verlag.

Wackernagel, H. (1998). Multivariate geostatistics. Springer, New York.

Watson, D. (1992). Contouring. Pergamon Press, Oxford.

Weibel, R. and Brändli, M. (1995). Adaptive methods for the refinement of digital terrain models for
geomorphometric applications. Zeitschrift für Geomorphologie, Supplementband 101:13–30.

Weibel, R. and Heller, M. (1990). Digital terrain modelling. In Maguire, D. J., Goodchild, M. F.,
and Rhind, D. W., editors, Geographical information systems - principles and applications, pages
269–297. Longman, London.

Wise, S. (1997). The effect of gis interpolation errors on the use of digital elevation models in geo-
morphology. In Lane, S., Richards, K., and Chandler, J., editors, Landform monitoring, modelling
and analysis, pages 139–164. John Wiley & Sons Ltd., London.

Woo, M., Neider, J., Davis, T., and Shreiner, D. (1999). OpenGL programming guide. Addison-
Wesley, Reading, Massachusetts.

106

Wood, J. (1998). Modelling the continuity of surface form using digital elevation models. In Pro-
ceedings of the 8th International Symposium on Spatial Data Handling, pages 725–736.

Wood, J. and Fisher, P. (1993). Assessing interpolation accuracy in elevation models. IEEE Computer
Graphics & Applications, pages 48–56.

Zevenbergen, L. and Thorne, C. (1987). Quantitative analysis of land surface topography. Earth
Surface Processes and Landforms, 12:47–56.

107

Appendix A

Installation of the software protorype
’Tritemo‘

The source code of ’Tritemo‘ can be downloaded from http://www.geo.unizh.ch/gis/research/dtm/tritemo.tar.gz.
tar -xzvf unpacks the code. Note that for compilation, the qt library (version3) needs to be installed
(including the header files) as well as the OpenGL or Mesa library and headers. Then, for compilation,
two environment variables need to be set: BREAKDIR=path to tritemo directory and QTDIR=path
to qt directory (usually /usr/lib/qt3). Then change to the tritemo directory and run make. Note that
’Tritemo‘ is a prototype and it may be necessary to make changes in the makefile manually if there
are errors during the compilation. If the compilation was sucessfull, there is an executable ’tritemo‘
in the tritemo directory.

In the user interface of ’Tritemo‘, triangulations can be created by opening dxf-files and triangula-
tions can be stored and read in taf-files. Note: the code for dxf reading was developed with the purpose
of reading the author’s test files. If you have any problems with the files you are using, it may be nec-
essary to derive a new class from the FileReader interface and implementing FileReader::readFile
yourself (or to change DxfReader::readFile). Once a triangulation has been created, it can be ma-
nipulated in the user interface by swapping edges or entering additional points. The z-coordinate of
these additional points are the ones of the actual surface. The shape of the surface can be visualised
by entering the coordinates of the view position and the coordinates of the point the center of the
perspective picture. Appendix B contains descriptions of the classes related to triangulation and inter-
polation (for those related to GUI, file handling, 2D- and 3D-visualisation see the documentations in
the source code generated by Doxygen).

108

Appendix B

Code documentation

B.1 Triangulation Class Reference

B.1.1 Description

Interface for Triangulation classes

B.1.2 Member Enumeration Documentation

enum Triangulation::forcedCrossBehaviour

Enumeration describing the behaviour, if two forced lines cross. SNAP_TO_VERTICE means, that
the second inserted forced line is snapped to the closest vertice of the first inserted forced line.
DELETE_FIRST means, that the status of the first inserted forced line is reset to that of a normal
edge (so that the second inserted forced line remain and the first not

B.1.3 Member Function Documentation

virtual void Triangulation::addLine (Line3D ∗ line, bool breakline) [pure virtual]

Adds a line (e.g. a break-, structure- or an isoline) to the triangulation

virtual int Triangulation::addPoint (Point3D ∗ p) [pure virtual]

Adds a point to the triangulation

virtual bool Triangulation::calcNormal (double x, double y, Vector3D ∗ result) [pure
virtual]

Calculates the normal at a point on the surface and assigns it to ’result’. Returns true in case of success
and flase in case of failure

virtual bool Triangulation::calcPoint (double x, double y, Point3D ∗ result) [pure virtual]

Calculates x-, y and z-value of the point on the surface and assigns it to ’result’. Returns true in case
of success and flase in case of failure

109

virtual void Triangulation::draw (QPainter ∗ p, double xlowleft, double ylowleft, double
xupright, double yupright, double width, double height) const [pure virtual]

draws the points, edges and the forced lines

virtual void Triangulation::eliminateHorizontalTriangles () [pure virtual]

Eliminates the horizontal triangles by swapping

virtual int Triangulation::getNumberOfPoints () [pure virtual]

Returns the number of points

virtual int Triangulation::getOppositePoint (int p1, int p2) [pure virtual]

Returns the number of the point opposite to the triangle points p1, p2 (which have to be on a halfedge)

virtual Point3D∗ Triangulation::getPoint (unsigned int i) const [pure virtual]

Returns a pointer to the point with number i. Any virtual points must have the number -1

virtual QValueList<int>∗ Triangulation::getPointsAroundEdge (double x, double y) [pure
virtual]

Returns a value list with the numbers of the four points, which would be affected by an edge swap.
This function is e.g. needed by NormVecDecorator (p. ??) to know the points, for which the normals
have to be recalculated. The list has to be deleted by the code which calls this method

virtual QValueList<int>∗ Triangulation::getSurroundingTriangles (int pointno) [pure
virtual]

Returns a pointer to a value list with the information of the triangles surrounding (counterclockwise)
a point. Four integer values describe a triangle, the first three are the number of the half edges of the
triangle and the fourth is -10, if the third (and most counterclockwise) edge is a breakline, and -20
otherwise. The value list has to be deleted by the code which called the method. Any virtual point
needs to have the number -1

virtual bool Triangulation::getTriangle (double x, double y, Point3D ∗ p1, Point3D ∗ p2,
Point3D ∗ p3) [pure virtual]

Finds out, in which triangle the point with coordinates x and y is and assigns the points at the vertices
to ’p1’, ’p2’ and ’p3

virtual bool Triangulation::getTriangle (double x, double y, Point3D ∗ p1, int ∗ n1, Point3D ∗

p2, int ∗ n2, Point3D ∗ p3, int ∗ n3) [pure virtual]

Finds out, in which triangle the point with coordinates x and y is and assigns the numbers of the
vertices to ’n1’, ’n2’ and ’n3’ and the vertices to ’p1’, ’p2’ and ’p3’

110

virtual double Triangulation::getXMax () [pure virtual]

Returns the largest x-coordinate value of the bounding box

virtual double Triangulation::getXMin () [pure virtual]

Returns the smallest x-coordinate value of the bounding box

virtual double Triangulation::getYMax () [pure virtual]

Returns the largest y-coordinate value of the bounding box

virtual double Triangulation::getYMin () [pure virtual]

Returns the smallest x-coordinate value of the bounding box

virtual void Triangulation::performConsistencyTest () [pure virtual]

Performs a consistency check, remove this later

virtual bool Triangulation::pointInside (double x, double y) [pure virtual]

Returns true, if the point with coordinates x and y is inside the convex hull and false otherwise

virtual bool Triangulation::readFromTAFF (QString filename) [pure virtual]

Reads the content of a taff-file

virtual void Triangulation::ruppertRefinement () [pure virtual]

Adds points to make the triangles better shaped (algorithm of ruppert)

virtual bool Triangulation::saveToTAFF (QString filename) const [pure virtual]

Saves the content to a taff file

virtual void Triangulation::setBreakEdgeColor (int r, int g, int b) [pure virtual]

Sets the color of the breaklines

virtual void Triangulation::setEdgeColor (int r, int g, int b) [pure virtual]

Sets the color of the normal edges

virtual void Triangulation::setForcedCrossBehaviour (Triangulation::forcedCrossBehaviour b)
[pure virtual]

Sets the behaviour of the triangulation in case of crossing forced lines

111

virtual void Triangulation::setForcedEdgeColor (int r, int g, int b) [pure virtual]

Sets the color of the forced edges

virtual void Triangulation::setTriangleInterpolator (TriangleInterpolator ∗ interpolator)
[pure virtual]

Sets an interpolator object

virtual bool Triangulation::swapEdge (double x, double y) [pure virtual]

Swaps the edge which is closest to the point with x and y coordinates (if this is possible)

B.2 TriDecorator Class Reference

B.2.1 Description

Decorator class for Triangulations (s. Decorator pattern in Gamma et al.)

B.2.2 Member Function Documentation

virtual void TriDecorator::addLine (Line3D ∗ line, bool breakline) [virtual]

Adds a line (e.g. a break-, structure- or an isoline) to the triangulation

virtual int TriDecorator::addPoint (Point3D ∗ p) [virtual]

Adds a point to the triangulation

void TriDecorator::addTriangulation (Triangulation ∗ t) [inline, virtual]

Adds an association to a triangulation

virtual bool TriDecorator::calcNormal (double x, double y, Vector3D ∗ result) [virtual]

Calculates the normal at a point on the surface and assigns it to ’result’. Returns true in case of success
and flase in case of failure

virtual bool TriDecorator::calcPoint (double x, double y, Point3D ∗ result) [virtual]

Calculates x-, y and z-value of the point on the surface and assigns it to ’result’. Returns true in case
of success and flase in case of failure

virtual void TriDecorator::draw (QPainter ∗ p, double xlowleft, double ylowleft, double
xupright, double yupright, double width, double height) const [virtual]

draws the points, edges and the forced lines

112

virtual void TriDecorator::eliminateHorizontalTriangles () [virtual]

Eliminates the horizontal triangles by swapping

virtual int TriDecorator::getNumberOfPoints () [virtual]

Returns the number of points

virtual int TriDecorator::getOppositePoint (int p1, int p2) [virtual]

Returns the number of the point opposite to the triangle points p1, p2 (which have to be on a halfedge)

virtual Point3D∗ TriDecorator::getPoint (unsigned int i) const [virtual]

Returns a pointer to the point with number i. Any virtual points must have the number -1

virtual QValueList<int>∗ TriDecorator::getPointsAroundEdge (double x, double y)
[virtual]

Returns a value list with the numbers of the four points, which would be affected by an edge swap.
This function is e.g. needed by NormVecDecorator (p. ??) to know the points, for which the normals
have to be recalculated. The list has to be deleted by the code which calls this method

virtual QValueList<int>∗ TriDecorator::getSurroundingTriangles (int pointno) [virtual]

Returns a pointer to a value list with the information of the triangles surrounding (counterclockwise)
a point. Four integer values describe a triangle, the first three are the number of the half edges of the
triangle and the fourth is -10, if the third (and most counterclockwise) edge is a breakline, and -20
otherwise. The value list has to be deleted by the code which called the method. Any virtual point
needs to have the number -1

virtual bool TriDecorator::getTriangle (double x, double y, Point3D ∗ p1, Point3D ∗ p2,
Point3D ∗ p3) [virtual]

Finds out, in which triangle the point with coordinates x and y is and assigns the points at the vertices
to ’p1’, ’p2’ and ’p3

virtual bool TriDecorator::getTriangle (double x, double y, Point3D ∗ p1, int ∗ n1, Point3D ∗

p2, int ∗ n2, Point3D ∗ p3, int ∗ n3) [virtual]

Finds out, in which triangle the point with coordinates x and y is and assigns the numbers of the
vertices to ’n1’, ’n2’ and ’n3’ and the vertices to ’p1’, ’p2’ and ’p3’

virtual double TriDecorator::getXMax () [virtual]

Returns the largest x-coordinate value of the bounding box

virtual double TriDecorator::getXMin () [virtual]

Returns the smallest x-coordinate value of the bounding box

113

virtual double TriDecorator::getYMax () [virtual]

Returns the largest y-coordinate value of the bounding box

virtual double TriDecorator::getYMin () [virtual]

Returns the smallest x-coordinate value of the bounding box

virtual void TriDecorator::performConsistencyTest () [virtual]

Performs a consistency check, remove this later

virtual bool TriDecorator::pointInside (double x, double y) [virtual]

Returns true, if the point with coordinates x and y is inside the convex hull and false otherwise

virtual bool TriDecorator::readFromTAFF (QString filename) [virtual]

Reads the content of a taff-file

virtual void TriDecorator::ruppertRefinement () [virtual]

Adds points to make the triangles better shaped (algorithm of ruppert)

virtual bool TriDecorator::saveToTAFF (QString filename) const [virtual]

Saves the content to a taff file

virtual void TriDecorator::setBreakEdgeColor (int r, int g, int b) [virtual]

Sets the color of the breaklines

virtual void TriDecorator::setEdgeColor (int r, int g, int b) [virtual]

Sets the color of the normal edges

virtual void TriDecorator::setForcedCrossBehaviour (Triangulation::forcedCrossBehaviour b)
[virtual]

Sets the behaviour of the triangulation in case of crossing forced lines

virtual void TriDecorator::setForcedEdgeColor (int r, int g, int b) [virtual]

Sets the color of the forced edges

virtual void TriDecorator::setTriangleInterpolator (TriangleInterpolator ∗ interpolator)
[virtual]

Sets an interpolator object

114

virtual bool TriDecorator::swapEdge (double x, double y) [virtual]

Swaps the edge which is closest to the point with x and y coordinates (if this is possible)

B.3 DualEdgeTriangulation Class Reference

B.3.1 Description

DualEdgeTriangulation is an implementation of a triangulation class based on the dual edge data
structure

B.3.2 Member Function Documentation

void DualEdgeTriangulation::addLine (Line3D ∗ line, bool breakline) [virtual]

Adds a line (e.g. a break-, structure- or an isoline) to the triangulation

int DualEdgeTriangulation::addPoint (Point3D ∗ p) [virtual]

Adds a point to the triangulation and returns the number of this point in case of success or -100 in
case of failure

int DualEdgeTriangulation::baseEdgeOfPoint (int point) [protected]

Returns the number of an edge which points to the point with number ’point’ or -1 if there is an error

int DualEdgeTriangulation::baseEdgeOfTriangle (Point3D ∗ point) [protected]

returns the number of a HalfEdge from a triangle in which ’point’ is in. If the number -10 is returned,
this means, that ’point’ is outside the convex hull. If -5 is returned, then numerical problems with the
leftOfTest occured (and the value of the possible edge is stored in the variable ’mUnstableEdge’. -20
means, that the inserted point is exactly on an edge (the number is stored in the variable ’mEdgeWith-
Point’). -25 means, that the point is already in the triangulation (the number of the point is stored in
the member ’mTwiceInsPoint’. If -100 is returned, this means that something else went wrong

virtual bool DualEdgeTriangulation::calcNormal (double x, double y, Vector3D ∗ result)
[virtual]

Calculates the normal at a point on the surface

virtual bool DualEdgeTriangulation::calcPoint (double x, double y, Point3D ∗ result)
[virtual]

Calculates x-, y and z-value of the point on the surface

bool DualEdgeTriangulation::checkSwap (unsigned int edge) [protected]

Checks, if ’edge’ has to be swapped because of the empty circle criterion. If so, doSwap(...) is called.

115

void DualEdgeTriangulation::doOnlySwap (unsigned int edge) [protected]

Swaps ’edge’ and does no recursiv testing

void DualEdgeTriangulation::doSwap (unsigned int edge) [protected]

Swaps ’edge’ and test recursively for other swaps (delaunay criterion)

virtual void DualEdgeTriangulation::draw (QPainter ∗ p, double xlowleft, double ylowleft,
double xupright, double yupright, double width, double height) const [virtual]

draws the points, edges and the forced lines

bool DualEdgeTriangulation::edgeOnConvexHull (int edge) [protected]

Returns true, if a half edge is on the convex hull and false otherwise

void DualEdgeTriangulation::eliminateHorizontalTriangles () [virtual]

Eliminates the horizontal triangles by swapping or by insertion of new points

void DualEdgeTriangulation::evaluateInfluenceRegion (Point3D ∗ point, int edge, std::set< int
> ∗ set) [protected]

Function needed for the ruppert algorithm. Tests, if point is in the circle through both endpoints of
edge and the endpoint of edge->dual->next->point. If so, the function calls itself recursively for
edge->next and edge->next->next. Stops, if it finds a forced edge or a convex hull edge

int DualEdgeTriangulation::getNumberOfPoints () [inline, virtual]

Returns the number of points

int DualEdgeTriangulation::getOppositePoint (int p1, int p2) [virtual]

Returns the number of the point opposite to the triangle points p1, p2 (which have to be on a halfedge)

Point3D ∗ DualEdgeTriangulation::getPoint (unsigned int i) const [inline, virtual]

Returns a pointer to the point with number i

virtual QValueList<int>∗ DualEdgeTriangulation::getPointsAroundEdge (double x, double y)
[virtual]

Returns a value list with the numbers of the four points, which would be affected by an edge swap.
This function is e.g. needed by NormVecDecorator (p. ??) to know the points, for which the normals
have to be recalculated. The returned ValueList has to be deleted by the code which calls the method

116

QValueList<int>∗ DualEdgeTriangulation::getSurroundingTriangles (int pointno)
[virtual]

Returns a pointer to a value list with the information of the triangles surrounding (counterclockwise)
a point. Four integer values describe a triangle, the first three are the number of the half edges of the
triangle and the fourth is -10, if the third (and most counterclockwise) edge is a breakline, and -20
otherwise. The value list has to be deleted by the code which called the method

virtual bool DualEdgeTriangulation::getTriangle (double x, double y, Point3D ∗ p1, Point3D ∗

p2, Point3D ∗ p3) [virtual]

Finds out, in which triangle the point with coordinates x and y is and assigns adresses to the points at
the vertices to ’p1’, ’p2’ and ’p3

virtual bool DualEdgeTriangulation::getTriangle (double x, double y, Point3D ∗ p1, int ∗ n1,
Point3D ∗ p2, int ∗ n2, Point3D ∗ p3, int ∗ n3) [virtual]

Finds out, in which triangle the point with coordinates x and y is and assigns the numbers of the
vertices to ’n1’, ’n2’ and ’n3’ and the vertices to ’p1’, ’p2’ and ’p3’

double DualEdgeTriangulation::getXMax () [inline, virtual]

Returns the largest x-coordinate value of the bounding box

double DualEdgeTriangulation::getXMin () [inline, virtual]

Returns the smallest x-coordinate value of the bounding box

double DualEdgeTriangulation::getYMax () [inline, virtual]

Returns the largest y-coordinate value of the bounding box

double DualEdgeTriangulation::getYMin () [inline, virtual]

Returns the smallest x-coordinate value of the bounding box

bool DualEdgeTriangulation::halfEdgeBBoxTest (int edge, double xlowleft, double ylowleft,
double xupright, double yupright) const [inline, protected]

Tests, if the bounding box of the halfedge with index i intersects the specified bounding box. The
main purpose for this method is the drawing of the triangulation

unsigned int DualEdgeTriangulation::insertEdge (int dual, int next, int point, bool mbreak, bool
forced) [protected]

inserts an edge and makes sure, everything is ok with the storage of the edge. The number of the
HalfEdge is returned

117

int DualEdgeTriangulation::insertForcedSegment (int p1, int p2, bool breakline) [protected]

inserts a forced segment between the points with the numbers p1 and p2 into the triangulation and
returns the number of a HalfEdge belonging to this forced edge or -100 in case of failure

virtual void DualEdgeTriangulation::performConsistencyTest () [virtual]

Performs a consistency check, remove this later

bool DualEdgeTriangulation::pointInside (double x, double y) [virtual]

Returns true, if the point with coordinates x and y is inside the convex hull and false otherwise

bool DualEdgeTriangulation::readFromTAFF (QString filename) [virtual]

Reads the dual edge structure of a taff file

void DualEdgeTriangulation::removeLine (int i)

Removes the line with number i from the triangulation

void DualEdgeTriangulation::removePoint (int i)

Removes the point with the number i from the triangulation

virtual void DualEdgeTriangulation::ruppertRefinement () [virtual]

Adds points to make the triangles better shaped (algorithm of ruppert)

bool DualEdgeTriangulation::saveToTAFF (QString filename) const [virtual]

Saves the dual edge structure to a taff file

virtual void DualEdgeTriangulation::setBreakEdgeColor (int r, int g, int b) [virtual]

Sets the color of the breaklines

virtual void DualEdgeTriangulation::setEdgeColor (int r, int g, int b) [virtual]

Sets the color of the normal edges

virtual void DualEdgeTriangulation::setForcedCrossBehaviour (Triangulation::forcedCross-
Behaviour b) [virtual]

Sets the behaviour of the triangulation in case of crossing forced lines

virtual void DualEdgeTriangulation::setForcedEdgeColor (int r, int g, int b) [virtual]

Sets the color of the forced edges

118

void DualEdgeTriangulation::setTriangleInterpolator (TriangleInterpolator ∗ interpolator)
[virtual]

Sets an interpolator object

int DualEdgeTriangulation::splitHalfEdge (int edge, float position) [protected]

Inserts a new point on the halfedge with number ’edge’. The position can have a value from 0 to 1
(e.g. 0.5 would be in the middle). The return value is the number of the new inserted point. tin is the
triangulation, which should be used to calculate the elevation of the inserted point

virtual bool DualEdgeTriangulation::swapEdge (double x, double y) [virtual]

Swaps the edge which is closest to the point with x and y coordinates (if this is possible)

double DualEdgeTriangulation::swapMinAngle (int edge) const [protected]

Calculates the minimum angle, which would be present, if the specified halfedge would be swapped

bool DualEdgeTriangulation::swapPossible (unsigned int edge) [protected]

Returns true, if it is possible to swap an edge, otherwise false(concave quad or edge on (or outside)
the convex hull)

void DualEdgeTriangulation::triangulatePolygon (QValueList< int > ∗ poly, QValueList< int
> ∗ free, int mainedge) [protected]

divides a polygon in a triangle and two polygons and calls itself recursively for these two polygons.
’poly’ is a pointer to a list with the numbers of the edges of the polygon, ’free’ is a pointer to a list of
free halfedges, and ’mainedge’ is the number of the edge, towards which the new triangle is inserted.
Mainedge has to be the same as poly->begin(), otherwise the recursion does not work

B.3.3 Member Data Documentation

const double DualEdgeTriangulation::leftOfTresh = 0.00001 [static, protected]

Treshold for the leftOfTest to handle numerical instabilities

QColor DualEdgeTriangulation::mBreakEdgeColor [protected]

Color to paint the breaklines

Triangulation∗ DualEdgeTriangulation::mDecorator [protected]

Pointer to the decorator using this triangulation. It it is used directly, mDecorator equals this

const unsigned int DualEdgeTriangulation::mDefaultStorageForHalfEdges = 300006
[static, protected]

Default value for the number of storable HalfEdges at the beginning

119

const unsigned int DualEdgeTriangulation::mDefaultStorageForPoints = 50000 [static,
protected]

Default value for the number of storable points at the beginning

QColor DualEdgeTriangulation::mEdgeColor [protected]

Color to paint the normal edges

unsigned int DualEdgeTriangulation::mEdgeInside [protected]

Number of an edge which does not point to the virtual point. It continuously updated for a fast search

unsigned int DualEdgeTriangulation::mEdgeOutside [protected]

Number of an edge on the outside of the convex hull. It is updated in method ’baseEdgeOfTriangle’
to enable insertion of points outside the convex hull

unsigned int DualEdgeTriangulation::mEdgeWithPoint [protected]

If an inserted point is exactly on an existing edge, ’baseEdgeOfTriangle’ returns -20 and sets the
variable ’mEdgeWithPoint’

Triangulation::forcedCrossBehaviour DualEdgeTriangulation::mForcedCrossBehaviour
[protected]

Member to store the behaviour in case of crossing forced segments

QColor DualEdgeTriangulation::mForcedEdgeColor [protected]

Color to paint the forced edges

QPtrVector<HalfEdge> DualEdgeTriangulation::mHalfEdge [protected]

Stores pointers to the HalfEdges

QPtrVector<Point3D> DualEdgeTriangulation::mPointVector [protected]

Stores pointers to all points in the triangulations (including the points contained in the lines)

TriangleInterpolator∗ DualEdgeTriangulation::mTriangleInterpolator [protected]

Association to an interpolator object

int DualEdgeTriangulation::mTwiceInsPoint [protected]

If a point has been inserted twice, its number is stored in this member

120

unsigned int DualEdgeTriangulation::mUnstableEdge [protected]

If an instability occurs in ’baseEdgeOfTriangle’, mUnstableEdge is set to the value of the current edge

const int DualEdgeTriangulation::nBaseOfRuns = 300000 [static, protected]

Security to prevent endless loops in ’baseEdgeOfTriangle’. It there are more iteration then this num-
ber, the point will not be inserted

double DualEdgeTriangulation::xMax [protected]

X-coordinate of the upper right corner of the bounding box

double DualEdgeTriangulation::xMin [protected]

X-coordinate of the lower left corner of the bounding box

double DualEdgeTriangulation::yMax [protected]

Y-coordinate of the upper right corner of the bounding box

double DualEdgeTriangulation::yMin [protected]

Y-coordinate of the lower left corner of the bounding box

B.4 HalfEdge Class Reference

B.4.1 Description

Represents a half edge for the dual edge data structure

HalfEdge::HalfEdge () [inline]

Default constructor. Values for mDual, mNext, mPoint are set to -10 which means that they are
undefined

B.4.2 Member Function Documentation

bool HalfEdge::getBreak () const [inline]

Returns, whether the HalfEdge belongs to a break line or not

int HalfEdge::getDual () const [inline]

Returns the number of the dual HalfEdge

bool HalfEdge::getForced () const [inline]

Returns, whether the HalfEdge belongs to a constrained edge or not

121

int HalfEdge::getNext () const [inline]

Returns the number of the next HalfEdge

int HalfEdge::getPoint () const [inline]

Returns the number of the point at which this HalfEdge points

void HalfEdge::setBreak (bool b) [inline]

Sets the break flag

void HalfEdge::setDual (int d) [inline]

Sets the number of the dual HalfEdge

void HalfEdge::setForced (bool f) [inline]

Sets the forced flag

void HalfEdge::setNext (int n) [inline]

Sets the number of the next HalfEdge

void HalfEdge::setPoint (int p) [inline]

Sets the number of point at which this HalfEdge points

B.4.3 Member Data Documentation

bool HalfEdge::mBreak [protected]

True, if the HalfEdge belongs to a break line, false otherwise

int HalfEdge::mDual [protected]

Number of the dual HalfEdge

bool HalfEdge::mForced [protected]

True, if the HalfEdge belongs to a constrained edge, false otherwise

int HalfEdge::mNext [protected]

Number of the next HalfEdge

int HalfEdge::mPoint [protected]

Number of the point at which this HalfEdge points

122

B.5 Line3D Class Reference

B.5.1 Description

This class represents a line. It is implemented as a single directed linked list of nodes (Point3D).
Attention: the points inserted in a line are not deleted from Line3D

B.5.2 Member Function Documentation

bool Line3D::empty ()

returns true, if the Line contains no Point3D (p. ??), otherwise false

unsigned int Line3D::getCurrent () [inline]

returns the current position

Point3D ∗ Line3D::getPoint () [inline]

gets the point at the current position

unsigned int Line3D::getSize () [inline]

returns the size of the line (the numbero of inserted Nodes without ’head’ and ’z’

void Line3D::goToBegin ()

sets the current Node

void Line3D::goToNext ()

goes to the next Node
inserts a node behind the current position and sets the current position to this new node

void Line3D::removePoint ()

removes the point behind the current position

B.6 Node Class Reference

B.6.1 Description

Node is a class used by Line3D. It represents a node in the single directed linked list. Associated
Point3D objects are deleted when the node is deleted.

B.6.2 Member Function Documentation

Node ∗ Node::getNext () [inline]

Returns a pointer to the next element in the linked list

123

Point3D ∗ Node::getPoint () [inline]

Returns a pointer to the Point3D object associated with the node

void Node::setNext (Node ∗ n) [inline]

Sets the pointer to the next node

void Node::setPoint (Point3D ∗ p) [inline]

Sets a new pointer to an associated Point3D object

B.6.3 Member Data Documentation

Node∗ Node::mNext [protected]

Pointer to the next Node in the linked list

Point3D∗ Node::mPoint [protected]

Pointer to the Point3D object associated with the node

B.7 TriangleInterpolator Class Reference

B.7.1 Description

This is an interface for interpolator classes for triangulations

B.7.2 Member Function Documentation

virtual bool TriangleInterpolator::calcNormVec (double x, double y, Vector3D ∗ result) [pure
virtual]

Calculates the normal vector and assigns it to vec

virtual bool TriangleInterpolator::calcPoint (double x, double y, Point3D ∗ result) [pure
virtual]

Performs an interpolation and assigns the x-,y- and z-coordinates to result

B.8 LinTriangleInterpolator Class Reference

B.8.1 Description

LinTriangleInterpolator is a class which interpolates linearly on a triangulation

124

B.8.2 Member Function Documentation

virtual bool LinTriangleInterpolator::calcFirstDerX (double x, double y, Vector3D ∗ result)
[protected, virtual]

Calculates the first derivative with respect to x for a linear surface and assigns it to vec

virtual bool LinTriangleInterpolator::calcFirstDerY (double x, double y, Vector3D ∗ result)
[protected, virtual]

Calculates the first derivative with respect to y for a linear surface and assigns it to vec

virtual bool LinTriangleInterpolator::calcNormVec (double x, double y, Vector3D ∗ result)
[virtual]

Calculates the normal vector and assigns it to vec

virtual bool LinTriangleInterpolator::calcPoint (double x, double y, Point3D ∗ result)
[virtual]

Performs a linear interpolation in a triangle and assigns the x-,y- and z-coordinates to point

DualEdgeTriangulation ∗ LinTriangleInterpolator::getTriangulation () const [inline,
virtual]

Returns a pointer to the current Triangulation object

void LinTriangleInterpolator::setTriangulation (DualEdgeTriangulation ∗ tin) [inline,
virtual]

Sets a Triangulation

B.9 CoonsTriangleInterpolator Class Reference

B.9.1 Detailed Description

This class interpolates a Coons-Patch-surface for a triangulation. In the current version, the cross-
derivatives of the boundary curves are assessed using the x- and y-derivatives of the three nodes. They
then are linear interpolated along each side (this can be changed in the methode ’predictCrossDer’).
The ruled surface are blended using cubic Hermite interpolation.

B.9.2 Member Function Documentation

void CoonsTriangleInterpolator::calcFDPFDQRS2 (double p, double q, Vector3D ∗ vec)
[protected]

calculates the mixed first derivative with respect to p and q on the ruled surface 2 in the standard
triangle

125

void CoonsTriangleInterpolator::calcFirstDerPCorrTerm (double p, double q, Vector3D ∗ vec)
[protected]

calculates the first derivative of the correction term with respect to p

void CoonsTriangleInterpolator::calcFirstDerPRS1 (double p, double q, Vector3D ∗ vec)
[protected]

calculates the first derivative with respect to p on the ruled surface 1 in the standard triangle. The
second part is commented out at the moment

void CoonsTriangleInterpolator::calcFirstDerPRS12 (double p, double q, Vector3D ∗ vec)
[protected]

calculates the first derivative with respect to p on the ruled surface 12 in the standard triangle. The
second part is commented out at the moment

void CoonsTriangleInterpolator::calcFirstDerPRS2 (double p, double q, Vector3D ∗ vec)
[protected]

calculates the first derivative with respect to p on the ruled surface 2 in the standard triangle

void CoonsTriangleInterpolator::calcFirstDerQCorrTerm (double p, double q, Vector3D ∗ vec)
[protected]

calculates the first derivative of the correction term with respect to q. the second part is commented
out

void CoonsTriangleInterpolator::calcFirstDerQRS1 (double p, double q, Vector3D ∗ vec)
[protected]

calculates the first derivative with respect to q on the ruled surface 1 in the standard triangle. The
second part is commented out at the moment

void CoonsTriangleInterpolator::calcFirstDerQRS12 (double p, double q, Vector3D ∗ vec)
[protected]

calculates the first derivative with respect to q on the ruled surface 2 in the standard triangle. The
second part is commented out at the moment

void CoonsTriangleInterpolator::calcFirstDerQRS2 (double p, double q, Vector3D ∗ vec)
[protected]

calculates the first derivative with respect to q on the ruled surface 2 in the standard triangle. The
second part is commented out

virtual bool CoonsTriangleInterpolator::calcNormVec (double x, double y, Vector3D ∗ vec)
[virtual]

Calculates the normal vector and assigns it to vec

126

virtual bool CoonsTriangleInterpolator::calcPoint (double x, double y, Point3D ∗ point)
[virtual]

Performs a Coons interpolation in a triangle and assigns the x-,y- and z-coordinates to point

void CoonsTriangleInterpolator::calcPointCorrTerm (double p, double q, Point3D ∗ point)
[protected]

calculates a point on the correction surface

void CoonsTriangleInterpolator::calcPointRS1 (double p, double q, Point3D ∗ point)
[protected]

calculates a point on the ruled surface1 with p- and q-coordinates in the standard triangle. Note that for
the sake of speed only the first part of the ruled surface 1 is computed (the second part is commented
out at the moment). The second part disappears when combining the ruled surfaces because of the
second part of the ruled surface 12

void CoonsTriangleInterpolator::calcPointRS12 (double p, double q, Point3D ∗ point)
[protected]

calculates a point on the ruled surface12, which means that the ruled surface1 operator is applied to
the result of the ruled surface 2 operator. As in the case of RS1, the second part is commented out
because it disappears when combining all ruled surfaces to the Coons patch.

void CoonsTriangleInterpolator::calcPointRS2 (double p, double q, Point3D ∗ point)
[protected]

calculates a point on the ruled surface2 with p- and q-coordinates in the standard triangle

void CoonsTriangleInterpolator::init (double x, double y)

Finds out, in which triangle the point with coordinates is and assigns p, q, z-coordinates for mPoint,
p1, p2, p3, p11, p12, p21, p22, p31, p32

void CoonsTriangleInterpolator::predictCrossDer (Vector3D ∗ begin, int numbegin, Vector3D
∗ end, int numend, float param, Vector3D ∗ result) [protected]

Predicts a cross derivative at an edge according to the derivatives at the vertices and the position on
the edge. ’begin’ is the derivative at the first vertex, ’end’ that of the second vertex. ’numbegin’ is
the number of the first vertex(1,2,or 3), ’numend’ that of the second. The result will be assigned to
’result’.

void CoonsTriangleInterpolator::predictCrossDerDer (Vector3D ∗ begin, int numbegin,
Vector3D ∗ end, int numend, float param, Vector3D ∗ result) [protected]

Calculates the derivative of the CrossDerivative with respect to the parameter ’param’. The arguments
have the same meaning as in ’predictCrossDer’

127

void CoonsTriangleInterpolator::transformPoint (Point3D ∗ thepoint, double x, double y)
[protected]

Transforms x-, y-, z-coordinates of a Point to p, q, z-coordinates. The standard triangle is defined by
p1, p2, p3, so init should be run first to update p1, p2, p3

void CoonsTriangleInterpolator::transformPointBack (Point3D ∗ thepoint, double p, double q)
[protected]

Transforms p-, q-, z-coordinates of a Point to x,y,z-coordinates.

B.9.3 Member Data Documentation

QPtrVector<Point3D>∗ CoonsTriangleInterpolator::cpoly1 [protected]

Control polygon of pl1

QPtrVector<Point3D>∗ CoonsTriangleInterpolator::cpoly2 [protected]

Control polygon of pl2

QPtrVector<Point3D>∗ CoonsTriangleInterpolator::cpoly3 [protected]

Control polygon of pl3

Point3D CoonsTriangleInterpolator::d11 [protected]

Endpoint of the cross-derivative of pl1 at point 3

Point3D CoonsTriangleInterpolator::d12 [protected]

Endpoint of the cross-derivative of pl1 at point 2

Point3D CoonsTriangleInterpolator::d21 [protected]

Endpoint of the cross-derivative of pl2 at point 3

Point3D CoonsTriangleInterpolator::d22 [protected]

Endpoint of the cross-derivative of pl2 at point 1

Point3D CoonsTriangleInterpolator::d31 [protected]

Endpoint of the cross-derivative of pl3 at point 2

Point3D CoonsTriangleInterpolator::d32 [protected]

Endpoint of the cross-derivative of pl3 at point 1

128

Point3D CoonsTriangleInterpolator::fcp1 [protected]

First control point of pl1

Point3D CoonsTriangleInterpolator::fcp2 [protected]

First control point of pl2

Point3D CoonsTriangleInterpolator::fcp3 [protected]

First control point of pl3

Point3D CoonsTriangleInterpolator::focp1 [protected]

Fourth control point of pl1

Point3D CoonsTriangleInterpolator::focp2 [protected]

Fourth control point of pl2

Point3D CoonsTriangleInterpolator::focp3 [protected]

Fourth control point of pl3

Point3D CoonsTriangleInterpolator::lpoint1 [protected]

Caches the last point1 to check, if init has to be run again or not

Point3D CoonsTriangleInterpolator::lpoint2 [protected]

Caches the last point2 to check, if init has to be run again or not

Point3D CoonsTriangleInterpolator::lpoint3 [protected]

Caches the last point3 to check, if init has to be run again or not

Point3D CoonsTriangleInterpolator::mPoint [protected]

point(x,y) in coordinates p, q, z of the standard triangle

NormVecDecorator∗ CoonsTriangleInterpolator::mTIN [protected]

association with a triangulation object

Point3D CoonsTriangleInterpolator::p1 [protected]

first point of the triangle (p= 0, q=1 in the standard triangle)

Point3D CoonsTriangleInterpolator::p2 [protected]

second point of the triangle (p=1, q=0 in the standard triangle)

129

Point3D CoonsTriangleInterpolator::p3 [protected]

third point of the triangle (p=0, q=0 in the standard triangle)

Bezier3D CoonsTriangleInterpolator::pl1 [protected]

Parametric line opposite point 1 in p-, q- space

Bezier3D CoonsTriangleInterpolator::pl2 [protected]

Parametric line opposite point 2 in p-, q- space

Bezier3D CoonsTriangleInterpolator::pl3 [protected]

Parametric line opposite point 3 in p-, q- space

Point3D CoonsTriangleInterpolator::point1 [protected]

first point of the triangle in x-,y-,z-coordinates

Point3D CoonsTriangleInterpolator::point2 [protected]

second point of the triangle in x-,y-,z-coordinates

Point3D CoonsTriangleInterpolator::point3 [protected]

third point of the triangle in x-,y-,z-coordinates

Point3D CoonsTriangleInterpolator::scp1 [protected]

Second control point of pl1

Point3D CoonsTriangleInterpolator::scp2 [protected]

Second control point of pl2

Point3D CoonsTriangleInterpolator::scp3 [protected]

Second control point of pl3

Point3D CoonsTriangleInterpolator::tcp1 [protected]

Third control point of pl1

Point3D CoonsTriangleInterpolator::tcp2 [protected]

Third control point of pl2

Point3D CoonsTriangleInterpolator::tcp3 [protected]

Third control point of pl3

130

B.10 CloughTocherInterpolator Class Reference

B.10.1 Description

This is an implementation of a Clough-Tocher interpolator based on a triangular tessellation. The
derivatives orthogonal to the boundary curves are interpolated linearly along a triangle edge.

B.10.2 Member Function Documentation

double CloughTocherInterpolator::calcBernsteinPoly (int n, int i, int j, int k, double u, double
v, double w) [protected]

Calculates the Bernsteinpolynomials to calculate the Beziertriangle. ’n’ is three in the cubical case,
’i’, ’j’, ’k’ are the indices of the controllpoint and ’u’, ’v’, ’w’ are the barycentric coordinates of the
point

virtual bool CloughTocherInterpolator::calcNormVec (double x, double y, Vector3D ∗ result)
[virtual]

Calculates the normal vector and assigns it to vec (not implemented at the moment)

virtual bool CloughTocherInterpolator::calcPoint (double x, double y, Point3D ∗ result)
[virtual]

Performs a Clough-Tocher interpolation in a triangle and assigns the x-,y- and z-coordinates to result

void CloughTocherInterpolator::init (double x, double y) [protected]

Finds out, in which triangle the point with the coordinates x and y is and sets the elevation of the
controlpoints

B.10.3 Member Data Documentation

double CloughTocherInterpolator::der1X [protected]

derivative in x-direction at point1

double CloughTocherInterpolator::der1Y [protected]

derivative in y-direction at point1

double CloughTocherInterpolator::der2X [protected]

derivative in x-direction at point2

double CloughTocherInterpolator::der2Y [protected]

derivative in y-direction at point2

131

double CloughTocherInterpolator::der3X [protected]

derivative in x-direction at point3

double CloughTocherInterpolator::der3Y [protected]

derivative in y-direction at point3

Point3D CloughTocherInterpolator::lpoint1 [protected]

stores point1 of the last run

Point3D CloughTocherInterpolator::lpoint2 [protected]

stores point2 of the last run

Point3D CloughTocherInterpolator::lpoint3 [protected]

stores point3 of the last run

double CloughTocherInterpolator::mEdgeTolerance [protected]

Tolerance of the barycentric coordinates at the borders of the triangles (to prevent errors because of
very small negativ baricentric coordinates)

NormVecDecorator∗ CloughTocherInterpolator::mTIN [protected]

association with a triangulation object

Point3D CloughTocherInterpolator::point1 [protected]

first point of the triangle in x-,y-,z-coordinates

Point3D CloughTocherInterpolator::point2 [protected]

second point of the triangle in x-,y-,z-coordinates

Point3D CloughTocherInterpolator::point3 [protected]

third point of the triangle in x-,y-,z-coordinates

B.11 SCloughTocherInterpolator Class Reference

B.11.1 Description

This class implements a smoothed Clough-Tocher interpolator. The derivatives across the three sides
are changed to get close to C2-continuity

132

B.11.2 Member Function Documentation

double SCloughTocherInterpolator::calcBernsteinPoly (int n, int i, int j, int k, double u, double
v, double w) [protected]

Calculates the Bernsteinpolynomials to calculate the Beziertriangle. ’n’ is three in the cubical case,
’i’, ’j’, ’k’ are the indices of the controllpoint and ’u’, ’v’, ’w’ are the barycentric coordinates of the
point

virtual bool SCloughTocherInterpolator::calcNormVec (double x, double y, Vector3D ∗ result)
[virtual]

Calculates the normal vector and assigns it to vec (not implemented at the moment)

virtual bool SCloughTocherInterpolator::calcPoint (double x, double y, Point3D ∗ result)
[virtual]

Performs a smoothed Clough-Tocher interpolation in a triangle and assigns the x-,y- and z-coordinates
to result

void SCloughTocherInterpolator::init (double x, double y) [protected]

Finds out, in which triangle the point with the coordinates x and y is and calculates the elevation of
all necessary control points

void SCloughTocherInterpolator::smooth (int i) [protected]

Applies the smoothing algorithmus i times

B.11.3 Member Data Documentation

double SCloughTocherInterpolator::der1X [protected]

derivative in x-direction at point1

double SCloughTocherInterpolator::der1Y [protected]

derivative in y-direction at point1

double SCloughTocherInterpolator::der2X [protected]

derivative in x-direction at point2

double SCloughTocherInterpolator::der2Y [protected]

derivative in y-direction at point2

double SCloughTocherInterpolator::der3X [protected]

derivative in x-direction at point3

133

double SCloughTocherInterpolator::der3Y [protected]

derivative in y-direction at point3

double SCloughTocherInterpolator::der_1X [protected]

derivative in x-direction at point_1

double SCloughTocherInterpolator::der_1Y [protected]

derivative in y-direction at point_1

double SCloughTocherInterpolator::der_2X [protected]

derivative in x-direction at point_2

double SCloughTocherInterpolator::der_2Y [protected]

derivative in y-direction at point_2

double SCloughTocherInterpolator::der_3X [protected]

derivative in x-direction at point_3

double SCloughTocherInterpolator::der_3Y [protected]

derivative in y-direction at point_3

Point3D SCloughTocherInterpolator::lpoint1 [protected]

stores point1 of the last run

Point3D SCloughTocherInterpolator::lpoint2 [protected]

stores point2 of the last run

Point3D SCloughTocherInterpolator::lpoint3 [protected]

stores point3 of the last run

double SCloughTocherInterpolator::mEdgeTolerance [protected]

Tolerance of the barycentric coordinates at the borders of the triangles (to prevent errors because of
very small negativ baricentric coordinates)

NormVecDecorator∗ SCloughTocherInterpolator::mTIN [protected]

association with a triangulation object

134

int SCloughTocherInterpolator::ptn1 [protected]

number of point1

int SCloughTocherInterpolator::ptn2 [protected]

number of point2

int SCloughTocherInterpolator::ptn3 [protected]

number of point3

int SCloughTocherInterpolator::ptn_1 [protected]

number of point_1

int SCloughTocherInterpolator::ptn_2 [protected]

number of point_2

int SCloughTocherInterpolator::ptn_3 [protected]

number of point_3

NormVecDecorator::pointState SCloughTocherInterpolator::state1 [protected]

state of point1 (NORMAL, BREAKLINE, ENDPOINT possible)

NormVecDecorator::pointState SCloughTocherInterpolator::state2 [protected]

state of point1 (NORMAL, BREAKLINE, ENDPOINT possible)

NormVecDecorator::pointState SCloughTocherInterpolator::state3 [protected]

state of point1 (NORMAL, BREAKLINE, ENDPOINT possible)

NormVecDecorator::pointState SCloughTocherInterpolator::state_1 [protected]

state of point_1 (NORMAL, BREAKLINE, ENDPOINT possible)

NormVecDecorator::pointState SCloughTocherInterpolator::state_2 [protected]

state of point_2 (NORMAL, BREAKLINE, ENDPOINT possible)

NormVecDecorator::pointState SCloughTocherInterpolator::state_3 [protected]

state of point_3 (NORMAL, BREAKLINE, ENDPOINT possible)

135

Curriculum vitae

Marco Hugentobler
born October 27th, 1975, in Mönchaltorf (ZH)

Schooling

1982 - 1988 Primary school in Mönchaltorf
1988 - 1994 Kantonsschule Zürcher Oberland in Wetzikon, Matura type E
1995 - 2000 MSc in Geography at the University of Zurich

with a thesis on ‘Fortpflanzung von Unsicherheiten in dreiecksbasierten digitalen
Geländemodellen mit Intervallarithmetik’
(‘Propagation of uncertainties in triangular digital terrain models with interval arithmetics’)
advised by Prof. Dr. Robert Weibel and Dr. Bernhard Schneider

2000 - 2004 PhD at the Department of Geography of the University of Zürich
with a thesis on ’Terrain Modelling with Triangle based Free-Form Surfaces’
advised by Prof. Dr. Robert Weibel, Dr. Ross Purves and Dr. Bernhard Schneider

Publications

• Hugentobler, M. (2000). Fortpflanzung von Unsicherheiten in dreiecksbasierten digitalen Gelän-
demodellen mit Intervallarithmetik. Master’s thesis, Department of Geography, University of
Zurich.

• Hugentobler, M. (2001). Propagation of uncertainties in digital terrain models with interval
methods. In Proceedings of the GIS Research UK 9th Annual Conference, pages 341-344.

• Hugentobler, M. (2002). Interpolation of continuous surfaces for terrain modelling with Coons
patches. In Proceedings of the GISRUK 2002, pages 13-15.

• Hugentobler, M. and Schneider, B. (2004). Breaklines in Coons surfaces over triangles for the
use in terrain modelling. Submitted to Computers & Geosciences.

• Hugentobler, M., Purves, R.and Schneider, B. (2004). Evaluating methods for interpolating
continuous surfaces from irregular data: a case study. Accepted as conference paper for Spatial
Data Handling 2004.

136

