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“To raise new questions, new possibilities, to regard old problems from a new angle, requires
creative imagination and marks real advance in science.”
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Abstract

A recently observed increase in the performance of tracking devices indicates that
capturing positional data in three dimensions is about to become standard in move-
ment ecology. To date, only a few methods exist that include the third dimension
in the modeling and evaluation of movement behavior. This issue could be solved
using simulations of three-dimensional trajectories. Simulated trajectories serve var-
ious purposes, such as the generation of null models for hypothesis testing, the
deliver of the basis for resource selection models, or the quantifying of space use
intensity. In terms of two-dimensional modeling, an algorithm for the simulation
of empirically informed random trajectories between two given points, the eRTG
algorithm, already exists. A three-dimensional version would be of great value in
movement ecology, especially with regard to the investigation of tracking data of
flying or diving organisms. Therefore, this master’s thesis is dedicated to the devel-
opment, implementation, and evaluation of the eRTG in three dimensions, followed
by a use case that demonstrates the algorithm’s capabilities.

The eRTG3D algorithm is based on a probabilistic movement model that reflects
the mover’s behavior from its perspective as well as its movement behavior in rela-
tion to the target. Therein, empirical distribution functions extracted from observed
tracking data ensure that the simulated trajectories maintain a predefined geometry
and arrive at the destination while remaining as random as possible. Since it is not
trivial to move from two dimensions to three dimensions, a number of physical con-
straints, which further restrict the freedom of movement in the three-dimensional
space, are necessary. An extended version of the eRTG3D algorithm allows the sim-
ulation of gliding and soaring trajectories of soaring birds on an uplift suitability
map. The concluding demonstrator use case calculates the collision probabilities of
soaring white storks during their fall migration with airplanes at Zurich Airport,
based on high-resolution gliding and soaring simulations.

The major contribution of this thesis is a successfully verified algorithm that is
capable of generating empirically informed random trajectories between two given
points in the three-dimensional space. The simulated trajectories maintain the pre-
defined geometry and are ecologically valid. Furthermore, the demonstrator use
case at Zurich Airport showed the highest collision probabilities of birds and planes
in the northern arrival and the eastern departure corridors.

Keywords 3-D; trajectory simulation; random walk; probabilistic model; move-
ment ecology; tracking data; bird flight; gliding and soaring; bird-strike probability
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Chapter 1

Introduction

In the past decade, technologies to track moving objects have evolved rapidly. The
accuracy of measurements and the handling and miniaturization of tracking devices
has also made significant progress. Therefore, powerful tracking technologies, are
increasingly spreading across various fields of research. Especially the Global Po-
sitioning System (GPS) has become the standard technology for the determination
of positional data in high spatial and temporal resolution. Additionally, there is a
growing trend to record not only the horizontal but also the vertical component of
positions. Location data in three dimensions offer great potential to study many phe-
nomena more comprehensively, because space is often not sufficiently represented
as a flat surface. Additionally, the accuracy of Three-dimensional (3-D) measure-
ments increases steadily, which further promotes their use (Byrne et al., 2017).

Nevertheless, many situations remain, where the temporal or spatial coverage
with movement data in 3-D is insufficient for the study of certain phenomena. This
is either due to high costs of tracking moving entities or a lack of technological pos-
sibilities. A common factor driving costs is the number of moving entities that need
to be tracked. Tracking a flock of birds, for example, can quickly become very expen-
sive or logistically impossible. In addition, high costs can also be caused by a difficult
accessibility of the moving entity. Often it is also the tracking technology itself which
restricts the data acquisition because of insufficient range or limited battery life. The
limited battery capacity of GPS-tracking devices leads to the well-known trade-off
between overall duration of data-collection time and temporal resolution (McMahon
et al., 2017). Therefore, trajectory simulation is a necessity in many scientific appli-
cations, such as enhancing the temporal resolution of tracking data in retrospect by
inserting appropriately simulated possible locations between the observed fixes, re-
ferred to as bridging, or deriving statements from movement data on an individual
level about the behavior of a larger group on population level. A further impor-
tant use of simulations is the completion of missing data in recorded trajectories. A
particularity of the GPS is the need for access to sufficient satellite signals, so as to
obtain a valid fixpoint. As a consequence of insufficient signals or other disturbing
factors within the tracking device, missing fixes in the record can arise. Completing
the missing sections with simulated trajectories ensures a continuous analysis of the
data and is therefore a big advantage (Wentz, Campbell, and Houston, 2003).
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1.1 Motivation and Goal

The scientific field, in which GPS tracking data typically forms the fundamental basis
for the major part of research is movement ecology (Nathan et al., 2008; Nathan
and Giuggioli, 2013). Especially, animal movement records are available for many
species from different time periods with varying temporal and spatial resolution.
A well-known data source is the movebank1 repository hosted by the Max Planck
Institute for Ornithology2. Among other animal tracking data sets, the repository
also houses many GPS records of birds that contain the vertical position component.
Even though large amounts of data are available, they are often insufficient to meet
the requirements for analyzing the spatial behavior of birds in 3-D.

In animal ecology, a sufficient temporal resolution of the collected tracking data
is often a major issue. Especially when observing migrating birds, which are the ap-
plication focus of this thesis, handling the trade-off between full coverage and tem-
poral resolution is of crucial importance. Thus, the use of simulations to overcome
the limitations retrospectively is clearly understandable. Since the knowledge about
the movement behavior of the observed animals is often incomplete, probabilistic
movement-simulation models, such as Random Walks (RWs), are most suitable to
simulate the needed trajectories (Technitis et al., 2015).

The empirically Informed Random Trajectory Generator (eRTG) is a powerful
probabilistic movement-simulation algorithm (Technitis et al., 2016). The algorithm
is capable of generating realistic random trajectories in a Two-dimensional (2-D)
space between two given fixpoints in the Cartesian coordinate system. The trajectory
simulation is based on empirical distribution functions extracted from observed tra-
jectories (training data) and thus reflects the geometrical movement characteristics
of a species or subgroup. Since they are as random as possible within the prede-
fined movement behavior, the simulated trajectories can be used as null models for
hypothesis testing, as a basis for resource-selection models, to enhance the tempo-
ral resolution retroactively, or to quantify space-use intensity. Also, for most pop-
ulations, only a few individuals are tracked and the eRTG algorithm provides the
possibility to make predictions on larger populations (Technitis et al., 2016).

As Van Toor et al. (2018) state, the eRTG algorithm offers great advantages over
other movement-simulation models, since it is able to simulate individual trajecto-
ries between given points that reflect the geometric properties of template trajecto-
ries. They emphasize the usefulness of the algorithm in simulation tasks, in which
the distance to be overcome is defined (given starting and endpoint) and the geomet-
ric properties of the simulated tracks are decisive. In this case, the eRTG algorithm
ideally meets the conditions. Nevertheless, the eRTG clearly has the drawback that
the trajectory generation is limited to the 2-D space and thus the algorithm is not
suitable for the investigation of research problems in 3-D.

1www.movebank.org
2www.orn.mpg.de
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Although many GPS devices already record 3-D location data with the longitude, lat-
itude and height of tracked animals, the third dimension is widely neglected among
many studies in movement ecology. Or, as Tracey et al. (2014, p. 1) address the prob-
lem regarding animal space use studies:

“(. . . ) progress has been limited by the inability of existing modeling
techniques to take advantage of the three-dimensional (3-D) data sets,
constraining estimates of animal space use to an often biologically un-
realistic 2-D “Flatland” (. . . ). Biologists are only beginning to recognize
the theoretical and applied value of incorporating the vertical aspect into
analyses of animal space use.”

This indicates that the problem is not only insufficient access to movement data in
3-D, but that there is also a lack of appropriate scientific models and concepts to ad-
equately consider the third dimension. In many research problems (Bras, Jouma’a,
and Guinet, 2017; Cooper, Sherry, and Marra, 2014; Ferter et al., 2015; Weinzierl
et al., 2016), not only the 2-D position on the Earth’s surface, but also the height
information of a location is of large interest. The necessity of the third dimension
becomes especially apparent when the research is concerned with flying or diving
animals, which are not confined to the Earth’s surface. Even on uneven surfaces, the
third dimension is hardly negligible. Ignoring the vertical component may consider-
ably affect the understanding of the animals’ behavior and lead to misinterpretations
of their space use and energy expenditure. Hence, the simulation of empirically
informed random trajectories of individuals that are moving freely through air or
water between two given endpoints in the 3-D space could be very advantageous
for many of these research aims. An important task could be the estimation of the
3-D Utilization Distribution (UD) of a bird species, based on a simulated migrating
flock of birds in a certain region and during a given period. Such a 3-D UD could,
for instance, allow the prediction of collision probabilities with starting and landing
airplanes around airports located in the same area. A further task could be the study
of the influence of meteorological factors and surface properties on the gliding and
soaring behavior of birds, by the incorporation of uplift columns into the generation
of empirically informed random trajectories.

As literature indicates, movement ecology requires a probabilistic movement
simulation algorithm capable of generating trajectories in 3-D. This thesis therefore
contributes to ongoing research in the field as its extends the functionality of the
existing eRTG algorithm in a way that makes the algorithm capable of generating
empirically informed random trajectories with a third dimension. It will further pro-
vide an illustrative application example of the newly crafted empirically Informed
Random Trajectory Generator in 3-D (eRTG3D) algorithm to facilitate and promote
the use of the algorithm across the field of movement ecology.
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1.2 Research Questions

The extension of the eRTG under the conditions previously detailed suggests a tri-
partite division of this thesis, each part tackling one research question. The research
questions are concerned themselves separately with the development, evaluation
and application of the eRTG3D algorithm.

First, a simple approach for the incorporation of the third dimension into the exist-
ing eRTG algorithm is developed and implemented. In an iterative procedure, the
complexity of the implementation is increased step by step. Hence, the first research
question is dedicated to the development of the eRTG3D algorithm.

RQ 1 Development – How is the third dimension best modeled and implemented in the
eRTG algorithm so that empirically informed random trajectories can be generated
in 3-D space?

Given that a functioning solution of the algorithm exists, the latter has to be ex-
amined for its reliability and representativeness. First, the probabilistic model is
internally verified for correctness. Then, the validation of the output of the eRTG3D
algorithm follows. It is assessed, whether the simulated trajectories represent the
originally given movement behavior. The verification and validation requires the
formulation of the second research question.

RQ 2 Evaluation – How representative are the random trajectories generated with the
eRTG3D algorithm?

After a successful evaluation of the algorithm, it is applied to real problems to illus-
trate some of its potential application areas. Specifically, the eRTG3D algorithm is
used to estimate an UD in 3-D of white storks during fall migration in the Swiss Cen-
tral Plateau. The resulting 3-D UD is then compared to the UD of airplanes, starting
from and landing at Zurich Airport during this period. Comparing the two UDs
results in a proxy for the bird-strike probabilities in the different arrival and depar-
ture corridors. Hence, the third research question focuses on an illustrative example
application of the eRTG3D algorithm.

RQ 3 Application – What are the collision probabilities of white storks (Ciconia ciconia)
and airplanes in the arrival and departure corridors at Zurich Airport (ZRH) during
the birds’ fall migration?

Given these research questions, the overall aim of this thesis can be summarized
as the development, implementation and evaluation of a probabilistic movement-
simulation algorithm in 3-D, followed by a demonstration case study.
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1.3 Outline

• In Chapter 2, the necessary background in the fields of movement ecology
and computational movement analysis are given and the need for simulations
in animal ecology is argued for. Subsequently, the relevant scientific research
gaps are identified.

• Chapter 3 introduces the study area covered and the data used in this work.

• Chapter 4 explains the methodology for developing and evaluating the final
version of the eRTG3D algorithm. In addition, the procedure for calculating
bird-strike probabilities at Zurich Airport is explained.

• Chapter 5 presents the results with regard to the representativeness and valid-
ity of the new algorithm.

• Chapter 6 discusses the results and the applied methodology, and reviews the
research questions.

• Chapter 7 offers conclusions and makes recommendations for future research.
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Chapter 2

Background

2.1 Movement Ecology

The movement of individual organisms, defined as the change in location of an in-
dividual over time, is an intrinsic and characterizing property of most organisms
encountered on Earth. Movement ecology, the research field that investigates the
movements of animals, plants, or microorganisms, usually addresses the following
four fundamental questions (Nathan and Giuggioli, 2013):

(I) Why? – Challenges the motivation for the movement, (II) how? – Investigates
the nature of the motion, (III) when and where? – Examines spatial and temporal
patterns, and (IV) what? – Assesses ecological and evolutionary consequences of
the change in location. To assess these questions, various paradigms have evolved.

The biomechanical paradigm focuses on the physical properties of the motion itself;
energy expenditure, mechanics, and physiology, all in relation to the motion of the
individual, are the major point of interest (Vogel, 2003).

The cognitive paradigm sets focus on the movement-related decisions that motile
individuals take. It is of primary interest, to understand the navigation mechanisms,
which can be interpreted as rules influencing the spatial decisions (Poucet, Lenck-
Santini, and Save, 2003).

The optimality paradigm investigates the relative effectiveness of different move-
ment strategies to reach the same goal (e.g. energy gain or reproduction). The
paradigm concentrates on ecological or evolutionary timescales to reason the domi-
nance of a strategy in a given situation (Fretwell and Lucas, 1970).

The random paradigm, to which this thesis can mainly be assigned, investigates
movement paths using probabilistic models that are grounded on theories such as
Random Walks (RWs), diffusion or anomalous diffusion. The big advantage of this
approach is its ability to overcome the often-encountered fact of missing cognitive
and mechanistic information about the exact movement behavior of an organism, as
it assumes that the components of movement are following certain probability dis-
tributions. Therefore, large-scale analyses without the necessity of detailed previous
knowledge become possible (Technitis et al., 2015).

While the first two paradigms are strongly focused on short-term motion of indi-
vidual organisms, the latter two are more concerned with long-term spatio-temporal
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patterns in the movement. To unite the different paradigms, Nathan et al. (2008) pre-
sented the following framework:

ut+1 = F(Ω, Φ, rt, wt, ut) (2.1)

In this framework, the potential new position ut+1 of an organism is modeled as a
function F of the current place ut, internal state wt, motion capacity Ω, navigation
capacity Φ, and environmental factors rt. The crucial contribution of the framework
of Nathan et al. (2008) is that it splits movement into parts, to which quantitative
values can be assigned. This is a mandatory requirement for fitting probabilistic or
deterministic models to movement behavior.

2.1.1 Perspectives on Movement

In general, there are two fundamentally different approaches of perceiving move-
ment in space. On the one hand, the observer moves with the mover and repeatedly
records information about the position in a predetermined time interval. This means
that a time-stamped sequence of locations for the moving entity is created. This La-
grangian view of movement is widespread in movement ecology. GPS tracking, in
which the tracking device is constantly at the location of the moving subject, is a
typical example of the Lagrangian principle. The Lagrangian view is an internal,
individual-based perspective (Both et al., 2013).

The Eulerian approach, on the other hand, is based on observation points that are
permanently distributed in space and observe movement in its context. Therefore,
it is an external, place-based perspective on movement. Entities that pass an obser-
vation are captured by recording the time of passing and the identity of the passing
entity (Laube, 2014).

Recently, a shift from the Eulerian to the Lagrangian approach in movement ecol-
ogy has been observed. This is mainly due to substantial technological progress in
tracking devices that support the Lagrangian perspective. Nevertheless, the Eule-
rian approach still dominates the recording of movement of microorganisms, seeds
or flying insects, since their movement is usually an externally powered transport
and they are too small for carrying heavy tracking devices. On the other hand, the
application of the Lagrangian approach on larger organisms allows the quantifica-
tion of movement with a high spatio-temporal resolution and on sufficiently large
scales.

From the different perspectives on movement, movement ecology has also es-
tablished two different traditions. In studies, which are based on the Lagrangian
view, movement is usually expressed with incremental movement parameters that
describe properties of the motion between consecutive fixpoints (e.g. the distance
and direction of movement), while in studies that are grounded on the Eulerian
view, movement is generally modeled as a diffusion process (Smouse et al., 2010).
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2.1.2 Spatio-temporal Scale of Movement

In studying movement behavior it is crucial to define certain terms, which refer to
the different scales of organism movement. Segments of a movement trace of an in-
dividual that are linked to the same set of goals, are summarized as a movement phase
(Nathan et al., 2008). Migration and foraging are the most prominent movement
phases. A movement phase, in turn, can be composed of various types of motion,
such as walking or swimming. These motion types are termed canonical movement
modes. The sequence of all movement phases (and modes) together defines the life-
time track of an individual.

FIGURE 2.1: Spatio-temporal scale of movement. Source: Nathan et al.
(2008, p. 2)

2.1.3 Utilization Distributions in Space and Time

A crucial concept in animal ecology are Utilization Distributions (UDs), which are
used to examine animal movement behavior at an aggregated scale are in space and
time. Van Winkle (1975) defines an UD as “(. . . ) the two-dimensional relative frequency
distribution for the points of location of an animal over a period of time.” According to this
definition, a UD is the animal’s relative frequency of occurrence in the 2-D space.
Van Winkle’s UDs are grounded on the concept of the space-time cube, in which
movement is represented as a path in a 3-D space with (x, y, t)-dimensions. It is
obvious that a definition that limits space use to a 2-D plane is not sufficient in virtu-
ally all cases. Even non-flying and non-diving animals use space in different layers
of height. An ape, for example, would stay at the exact same position in the (x, y)-
plane while climbing up a tree and therefore change the type of its nearby environ-
ment only by a shift in the z-dimension of the (x, y, z)-space. Because of this issue
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Keating and Cherry (2009) extend the UD to all four dimensions of space and time
(x, y, z, t).

To quantify a UD over a period of time for an animal, the relative frequency of
the visiting time for every location in the area of interest can be calculated, based
on movement data. A simple method is to split space into regular units (e.g. cells,
hexagons or voxels) and to sum up the time an animal stays in each unit. The proba-
bility of occurrence in a specific spatial unit is achieved by dividing the summed up
time by the total time spent in the region.

The downside of this method is that the shape and scale of the splitting unit
strongly influence the resulting UD. Also, the anchor point placement of the regular
units in space affects the result. To at least partially avoid this issue, various tech-
niques for the estimation of UDs have been developed. Most of the UD estimators
in 2-D are grounded on the concept of Kernel Density Estimation (KDE), because
it bypasses the distortions induced by the splitting into regular spatial units. The
underlying equation is described by Gatrell et al. (1996):

λ̂t(s) =
n

∑
i=1

1
τ2 · k ·

(
s− si

τ

)
(2.2)

In this equation, k is the kernel weighting function and τ is the bandwidth, which
is often also denoted as h. The KDE smooths the influence of each data point si on
the surrounding region, allowing an intensity estimate λ̂t(s), even at a location s,
where no data is observed. The result is a smooth UD in 2-D, which is easy to inter-
pret. Tracey et al. (2014) go further and extend the the concept to a Movement-based
Kernel Density Estimator (MKDE) that allows the estimation of UDs in 3-D. Never-
theless, some distortions still remain and some new uncertainties are introduced by
setting the parameters τ and k and by the choice of the underlying grid resolution to
visualize the result.

Another concept that is intrinsically linked to UDs are Home Ranges (HRs) of
animals. Burt (1943) denotes the HR as the space an animal traverses on a reg-
ular basis in order to pursue the normal activities of food gathering, mating and
raising its young. Occasional movement outside the usual area, which might serve
exploratory purposes, is not considered to be part of the HR. Although HRs are de-
fined differently across the field of movement ecology, there was a shift to a more
cognitive and less data-driven definition in recent years (Powell and Mitchell, 2012).
The animal is familiar with resources, escape routes and potential mates in its HR
and, therefore, HRs are closely related to cognitive maps the animal gathers about
its environment. Studies have shown that the spatial knowledge provided by an HR
affects the individual fitness of an animal (Blanco and Cortés, 2007).

UDs and HRs are two different concepts to represent a spatio-temporal pattern in
animal movement behavior. But the motivation behind the concepts is clearly differ-
ent: An animal of a migrating species may have two HRs, separated by a migration
route. The route itself is not considered to be part of the HRs, while a UD could be
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defined exactly for the time period of migration, for the HRs or for the whole life-
time track of the animal. UDs specify only a probability of occurrence for a given
time period, whereas HRs are linked to ecological properties of the environment.

Nevertheless, HRs often are derived from a certain probability contour of UDs,
which represents the proportion of time the animal spends inside the contour. Since
this approach has reached its limits, more sophisticated methods have been devel-
oped. They segment movement data into different time periods and define HRs over
areas that provide vital resources for the different periods (Demšar et al., 2015).

2.2 Modeling Movement

In this section, necessary terms and concepts for the modeling of movement and the
space containing the movement are introduced. These terms and concepts have their
origins in Computational Movement Analysis (CMA), the field devoted to analyz-
ing movement processes with methods from a range of fields including GIScience
(Laube, 2014).

2.2.1 From Traces to Trajectories

An organism that is moving through space describes a movement trace that can be
captured based on one of the two perspectives described in Section 2.1.1. The mod-
eling is accomplished by representing the trace as a set of time-stamped locations
in a 2-D (x, y) or 3-D (x, y, z) coordinate system (Laube, 2014). In general, no in-
formation about the mover’s shape and extent is collected, the mover is therefore
commonly represented as a Moving Point Object (MPO). The MPO ignores the ac-
tual dimensions of the the mover and the movement is reduced to a sequence of
time-stamped observation points. It should be noted that the term movement also
includes geometric changes of the object itself. A change in geometry, for example, is
by no means negligible when analyzing the movement of tropical cyclones (Dodge,
Weibel, and Lautenschütz, 2008).

The sequence of time-stamped points does not represent the full trace the mover
covers, since movement between the fixpoints remains unknown. The path be-
tween two position fixpoints is usually approximated by a straight line. Such a
sequence of time-stamped locations representing a trace is called a trajectory, where
(x, y, z)T1 , . . . , (x, y, z)Tn , are measurements at consecutive time steps Tn (Gudmunds-
son, Laube, and Wolle, 2012).
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FIGURE 2.2: Movement spaces in 2-D: a) Euclidean homogeneous
space, b) Constrained Euclidean space, c) Space-time aquarium, d)
Heterogeneous field space, e) Irregular tessellation, f) Network space.

Based on: Laube (2014, p. 12)

When modeling movement, not only traces are abstracted into trajectories, also the
space in which movement takes place is modeled. Laube (2009) therefore describes
movement spaces, which can be considered for the modeling of the 2-D space (Figure
2.2). The simplest case described is the Euclidean homogeneous space, in which a mover
is able to move freely in all directions of space. The constrained Euclidean space limits
the movement with insurmountable obstacles situated in the space. The space-time
aquarium concept (also space-time cube) attempts to depict the temporal dimension as
well. In each of these three concepts, a continuous movement of the object in space is
possible. In contrast, the heterogeneous field space limits movement to individual cells.
Location changes inside a field are discarded and movement is therefore no longer
continuous, but takes place in discrete steps with abrupt cell changes. The irregular
tessellation concept no longer divides space into uniform fields, but represents it us-
ing irregular polygons. In the network space, movement is captured on a predefined
network of nodes and edges. Such a network can be given by, for example, a road
network in the movement of cars, but also by the migration of animals between dif-
ferent habitats along known routes. The different movement spaces suggest certain
ways of looking at movement. It seems more natural to associate a Euclidean ho-
mogeneous space with a Lagrangian view and to look at a network space from a
Eulerian perspective. However, movement in a network space can also be recorded
using the Lagrangian principle and be snapped onto the network afterwards.
Although these movement spaces are described for 2-D movement, they are eas-
ily extensible to the 3-D space. In particular, the constrained Euclidean space and
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heterogeneous field space in 3-D are important for this thesis. The 3-D constrained
Euclidean space can be thought of as a continuous (x, y, z)-coordinate system with
3-D objects (e.g. the Earth’s surface) in it that limit the freedom in movement. The
heterogeneous field space becomes a heterogeneous voxel space in which the space is
divided into regular cubes (voxels) between which the movement takes place (Fig-
ure 2.3).

y

x

z

(A) Top view

y

z

x

(B) Frontal view

FIGURE 2.3: Heterogeneous voxel space.

2.2.2 Quantitative Assessment of Trajectories

A trajectory in the form of a time-stamped fixpoint sequence, which is connected via
straight paths, does not permit extensive statements about the movement behavior
of an organism. Only purely spatial statements about preferred areas and possi-
ble routes connecting them can be derived. Often, however, statements about the
mode of movement or the movement phases encountered are desired. From the ex-
act position of a fixpoint and the time of the measurement, it is possible to calculate
further properties, which quantitatively describe the relationship between two suc-
cessive fixpoints. These movement parameters allow to solve more complex tasks, as
for example the division of a trajectory into sections of different movement modes
(Dodge, Weibel, and Lautenschütz, 2008). The derived movement parameters are
calculated from the primitive parameters (x, y, z, t). For example, the first derivative
of the positions (x, y, z) yields the parameters direction and distance. The duration
between two fixpoints is obtained solely from the time t. Combining the first deriva-
tives of the positions and the time results in the parameter velocity. The velocity
is a vector, which includes the direction of movement and the current speed of the
movement. The derivative of speed yields a secondary parameter called the acceler-
ation (Giannotti and Pedreschi, 2008). Table 2.1 shows an overview of the movement
parameters adapted for the 3-D case (Dodge, Weibel, and Lautenschütz, 2008).



14 Chapter 2. Background

Dimension Primitive Primary derivatives Secondary derivatives

Spatial
Position
(x, y, z)

Distance
f (x, y, z)

Spatial distribution
f (distance)

Direction
f (x, y, z)

Change of direction
f (direction)

Spatial extent
f (x, y, z)

Sinuosity
f (distance)

Temporal
Instance

(t)
Duration

f (t)
Temporal distribution

Interval
(t)

Travel time
f (t)

Change of duration
f (duration)

Spatio-
temporal
(x, y, z, t)

–
Speed

f (x, y, z, t)
Acceleration

f (speed)
Velocity

f (x, y, z, t)
Approaching rate

TABLE 2.1: Movement parameters adjusted to 3-D, Based on: Dodge,
Weibel, and Lautenschütz (2008, p. 4)

The primary derivative direction in 3-D consists of two components: the azimuth an-
gle ϕ and the polar angle θ. As shown in Figure 2.4, ϕ is defined as the angle between
the x axis and the orthogonal projection of the line segment covered on the (x, y)-
plane. The distance of the point to the origin is called radius r. This combination
of azimuth, polar, and radial coordinates (ϕ, θ, r) is the convention used in physics
for spherical coordinates. In mathematics, ϕ, and θ are reversed in the definition.
Given a triple of spherical coordinates (ϕ, θ, r), an azimuth reference direction and
a reference plane, a point is uniquely determined in the Euclidean space (Arfken,
Weber, and Harris, 2013; Weisstein, 2016).

FIGURE 2.4: Spherical coordinate system according to the definition
used in physics.
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The conversion of points in the spherical coordinate system into a Cartesian coordi-
nate system is described by the following equations:

x = r · sin(θ) · cos(ϕ) (2.3)

y = r · sin(θ) · sin(ϕ) (2.4)

z = r · cos(θ) (2.5)

Two consecutive fixpoints with the connecting line segment between them form an
individual step of the trajectory. Therefore, the distance covered in one step is also
called step length d. For every step, the change in azimuth (turning angle t) and the
change in polar angle (lift angle l) can be calculated, which are secondary derivatives
of the position. The movement from the mover’s perspective is given by these three
values (t, l, d). A common practice to model the movement behavior of a moving
organism in a stochastic manner is the extraction of distributions from turning angles
ti, lift angles li and step lengths di, which describe the movement behavior (Smouse
et al., 2010).

2.2.3 Movement Models

Random Walks

A widespread probabilistic movement model as introduced by Patlak (1953) are
Random Walks (RWs). An RW is a stochastic process that describes a trajectory
consisting of multiple random steps. In the context of ecology, RWs are frequently
used to model animal movement, because they are very efficient if not much or no a
priori knowledge is available about the animal’s movement behavior. In contrast to
deterministic models, which include many parameters, RW models involve strong
simplifications of natural animal movement behavior (Bartumeus et al., 2005).

The foundation of RWs can be traced back to the Brownian motion of small parti-
cles. A very simple illustration of an RW is given by observing the irregular motion
of small particles. In dependence on the absolute temperature T, particles move
through space with velocity v =

√
kT/m, where k is the Boltzmann constant and m

the mass of the particle. Since there are other particles present, there is a high prob-
ability that collisions with other particles occur. A single particle is forced to move
in space and thus performs an RW. Every collision leads to a change in the direction
of the movement and therefore defines a new step. In the example of many collid-
ing particles, the starting point of all particles is at the same location. Due to the
colliding particles’ tendency to occupy the entire space, the probability of collisions
decreases with the progressing dilution of the particles. This results in increasing
step lengths over time. The expected step length at each time step is therefore de-
pendent on time and the diffusion constant. The process of particles diluting from
a given starting point is termed diffusion and can be approximated by RW models
(Berg, 1993; Brown, 1828).
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Simple Isotropic Random Walk The Simple Isotropic Random Walk (SIRW) used
in early models of movement is uncorrelated and unbiased. Uncorrelated means
that the direction and distance covered in a step are independent of the movement
in the previous step. The new location is only dependent on the location of the pre-
vious step, but not on the previous movement properties itself (i.e. the process is
Markovian regarding the location). Unbiased refers to the fact that the particles are
not moving in a preferred global direction (Codling, Plank, and Benhamou, 2008).
SIRWs therefore have a uniform distribution of the turning angle at each step, be-
cause every direction between 0 and 2π is equally likely to occur. The step length
is usually modeled with a Gaussian or another exponentially decaying distribution
(Bartumeus et al., 2005).

Correlated Random Walk In Correlated Random Walks (CRWs), each step chooses
a direction which is correlated with the direction of the previous step. This means
the direction of a step is dependent on the previous movement and propagates itself
into the movement of the following steps, although its influence becomes smaller
the further the trajectory moves from the initial step. The distribution of the step
length is still Gaussian or exponentially decaying, but the angular distribution of
the turning angles is now nonuniform (Figure 2.5 A).

In Biology, CRWs have frequently been used to describe the movement of ani-
mals, because animals have the general tendency to move forward and thus zig zag
movement is less likely to occur. The tendency to continue in the same direction is
known as persistence. It is important to state that the CRW is globally unbiased,
since through the correlation of the motion, no overall preferred direction occurs in
the generated walk. However, a so-called localized bias exists, which describes the
tendency of the individual to persist in the present direction of movement. There-
fore, the location at every step of a correlated random walk is no longer a Markov
process (Kareiva and Shigesada, 1983).

Biased Random Walk If we take the above-mentioned example of the Brownian
motion and assume a force acting on the particles (e.g. gravity), the collisions are
still random, but there is a global tendency in the direction of movement, which
is called drift. In this case, the RW is uncorrelated, but directionally biased, and
therefore called Biased Random Walk (BRW). It is important to distinguish between
the global directional bias (drift) in the BRW and the localized directional bias in the
CRW.

Biased Correlated Random Walk In Biased Correlated Random Walks (BCRWs),
the globally preferred direction (drift) and the direction of the last steps influence
the movement of the next step (Figure 2.5 B). The drift is caused by an external force,
which acts with the same intensity on all individuals in dependence of their location
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in space. The correlation is due to a biased choice of direction of an individual at
each step (Codling, Bearon, and Thorn, 2010).

(A) Correlated
Random Walk

(CRW)

(B) Biased Cor-
related Random

Walk (BCRW)

FIGURE 2.5: Random Walk (RW) examples. Source: Codling, Plank,
and Benhamou (2008, p. 817)

Continuous-time Random Walk and Lévy Flight Continuous-time Random Walks
(CTRWs) are used to model anomalous diffusion of particles that spread slower than
the Brownian diffusion. The deceleration of the process is achieved by having the
particles wait at every step for a random time interval before allowing them to per-
form the next step. In the case of particles that spread faster than in normal diffusion,
the step length is modeled using the heavy-tailed Lévy distribution (power-law dis-
tribution) instead of a Gaussian or another exponentially decaying distribution. By
doing so, large step lengths between steps in the movement of a particle are encour-
aged. Because of these huge jumps thus generated, this random walk model is called
Lévy flight (Srokowski, 2008; Zaburdaev, Denisov, and Klafter, 2015).

Lévy Walk Since particles (or animals) in the Lévy flight model can cover distances
that are physically not possible in a single step, the maximum velocity of the move-
ment has to be limited. By confining the heavy-tailed probability distribution to
ballistic cones representing the maximum possible velocity, the Lévy flight model is
constrained and now termed Lévy walk. The directions of the steps are still isotropic
and random (uniform distribution of the turning angles), but the overall pattern of
the random walk has changed significantly. Lévy walks consist of walk clusters con-
nected by long and straight journeys between them. This behavior is observed in
many different species, especially during foraging. It is suggested that Lévy walks
are a more effective search strategy than Brownian searching, because they reduce
oversampling (Bartumeus et al., 2005; Smouse et al., 2010; Zaburdaev, Denisov, and
Klafter, 2015).
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Reinforced Random Walk RWs in which the history of movement affects the sub-
sequent movement of a mover are termed reinforced RWs. These walks prefer pre-
viously visited locations and the movement therefore becomes memory-based. The
incorporation of a spatial memory in the Reinforced Random Walk (RRW) provides
a crucial extension to the RW models (Foster, Grassberger, and Paczuski, 2009).

In movement ecology, it is very likely that many organisms are able to capture
and store information about the landscape in which they live. Furthermore, it is
assumed that the acquired spatial information influences the movement behavior
of organisms. Memory-based movement is observable in organisms of varying de-
grees of complexity. Ants, for example, prefer paths on which other ants have se-
creted pheromones, inducing a chemotactic force. This attraction to previously vis-
ited places leads to the formation of a complex trail network in which hundreds of
thousands of ants participate. Since the pheromones vanish over time, the shortest
and therefore more frequented trails are preferred, while ineffective trails disperse.
Similar memory-based effects on movement behavior have been observed in slime-
producing myxobacteria, as the bacteria tend to follow their own or others’ slime
traces (Fontelos and Friedman, 2015; Stevens and Othmer, 1997).

Space-time Prism

In contrast to the probabilistic RW models the Space-time Prism (STP) concept im-
plements a deterministic rule based on the theory of time geography, as described
by Hägerstrand (1970). The STP defines all the points that are possible to be reached
by an individual in the three-dimensional space-time cube (x, y, t), given a maxi-
mum speed, a starting and an endpoint (Figure 2.6). These points are denoted as
Potential Path Space (PPS) in the space-time cube. The projection of the PPS on the
(x, y)-plane defines the Potential Path Area (PPA), which includes all the locations
where a visit is possible (Miller, 1991).

(A) Space–time path (B) Space–time prism
and potential path

area

FIGURE 2.6: Space-time Prism (STP) concept. Source: Yu (2006, p. 5)



2.2. Modeling Movement 19

A visual representation of the STP for 3-D trajectories is more difficult to imagine,
due to the fourth dimension of time. Nevertheless, a 3-D potential path space of pos-
sibly reachable points, given the maximum speed and time budget, is also applicable
to the 3-D case.

Brownian Bridge Movement Model

While RW models generate trajectories that start from a single point without a fixed
endpoint, the Brownian Bridge Movement Model (BBMM) estimates the probability
of visiting each location between the fixpoints of observed movement data. By fitting
the BBMM to the observed data, a probability surface for the animal’s occurrence is
generated, covering the observation extent (Bullard, 1991; Horne et al., 2007). For
this, the BBMM uses Brownian bridges, which are stochastic processes that assume
Brownian motion of an individual between a starting and endpoint of successive
location pairs (Chow, 2009). The uncertainty of the location of an individual is high-
est at the midpoint in time between the two points and zero at the exact times of the
starting and endpoint. The probability density of a Brownian bridge is defined as the
relative time spent in an area during the time interval between the two points. The
BBMM combines all the successive Brownian bridges to one probability surface of
occurrence for the overall time of observation. Because the probability density of the
Brownian bridge is defined through a relative time spent in an area, the individual
Brownian bridges are weighted with the proportion of the time interval regarding
the total time. Potential application areas of the BBMM are estimating UDs and mi-
gration routes of animals or evaluating the influence of fine-scale resource selection
on animal movement patterns (Calenge, 2006; Kranstauber et al., 2012).

Random Trajectory Generator

The Random Trajectory Generator (RTG), proposed by Technitis et al. (2015), is an
algorithm that combines the concepts of RWs, STPs and the BBMM to efficiently
generate random trajectories in 2-D between given starting and endpoints, while
minimizing the directional bias. The algorithm considers the maximum speed and
the maximum available time for the completion of a movement as physical limita-
tions. Like the BBMM, the RTG can be used to estimate possible positions between
two observed fixes, but instead of yielding a probability surface of occurrence (UD),
individual random trajectories connecting the starting with the endpoint are gen-
erated. The RTG overcomes many limitations of previous movement models, as it
provides the opportunity to generate random walks that are conditioned to the fixes
of observed data and, at the same time, pays respect to the time budget available and
the maximum possible speed (Long, 2016). The RTG can enrich coarse movement
data with random walks to obtain a higher resolution or to predict possible paths
between two manually defined points when a time budget and maximum speed are
set.
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Empirically Informed Random Trajectory Generator

The eRTG is a substantial extension to the RTG algorithm (Technitis et al., 2016). The
eRTG connects two endpoints with random trajectories in 2-D, which are empiri-
cally informed and thus represent the movement characteristics of the template tra-
jectory. In contrast to the RTG, in which all space-time reachable points (defined by
the concept of STPs) have the same probability of being chosen, the eRTG integrates
empirical movement parameters into the random trajectory generation. Although
all the paths generated by the RTG are possible, the paths generated by the eRTG are
ecologically more likely to occur in a given species or subgroup.

FIGURE 2.7: Concept of the eRTG: (i) shows the effect of the origin
(ii) the effect of the destination and (iii) the combined effect. Source:

Technitis et al. (2016, p. 2)

The eRTG generates trajectories in a stepwise procedure between two successive
points (A and B) with discrete time-steps (Figure 2.7). The reachable area for the
next step is defined by an intersection of the maximum speed circles from the two
points. The radius of each maximum speed circle is given by the available travel
time to reach the other point. From the starting point A a probability surface of
possible next locations is created, based on the empirically observed dependency of
turning angles and step lengths. Conversely, the probability surface of point B is
a gravitational force, which is forcing the movement towards point B. Combining
the probability surfaces of point A and B, and limiting it to the potential point area
given by the maximum speed, the next point’s joint probability surface is obtained.
Therefore, the mover performs a CRW, which is constrained to the fixed endpoint
B. This procedure is repeated for all n time steps that are given by the ratio of the
duration of walking and the user-defined time interval (Technitis et al., 2016).
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2.2.4 Movement Simulation in Animal Ecology

In animal ecology, the causes and consequences of animal movement are of funda-
mental interest (Crist et al., 1992). The selection of resources, for example, is given
by the physical capabilities and limitations in the movement of an animal (Forester,
Im, and Rathouz, 2009). Since humanity harnesses almost the entire surface of the
Earth for its own benefit, it is important to assess the potential impact of ongoing
land use changes on wildlife. Studying animal movement is the only way of identi-
fying and protecting areas that are of vital importance to animals (Cooke, 2008). In
addition, possible conflict regions of humans and animals can be recognized, such
as hunting grounds that overlap pastures, or bird migration corridors, which can
prove as potentially dangerous for airplanes. For many animal species, movement
data is not available in a sufficient coverage, which is why methods are needed to
derive more information from the scarce data available for larger regions and ani-
mal populations. The simulation of movement data, based on a movement model is
a promising approach to overcome the lack of data.

Simulations of trajectories, which are generated by estimating possible positions
between given fixpoints of an observed trajectory, can also be used to fill in missing
data or to up-sample low-resolution data. In addition, simulated trajectories, which
were generated using certain assumptions, serve as null hypotheses in order to test
observed trajectories against the simulated trajectories (Technitis et al., 2015).

The simulation of trajectories is always grounded on a movement model which
makes assumptions about the movement behavior of an animal. These assumptions
may either be deterministic rules or probabilistic distributions extracted from ex-
isting data. In the eRTG, probabilistic distributions propose points in space that are
most likely to be visited, while an STP implements a deterministic rule that limits the
reachable points, based on a maximum possible speed and a time budget available.
More complex deterministic rules require a profound knowledge of the behavior of
animals. However, sufficient previous knowledge is often not accessible, either due
to its complexity or because of the lack of appropriate measuring devices. Also, ex-
ploratory and opportunistic movement is difficult to model with deterministic rules
(but see Song and Miller (2014)). Therefore, in most cases, probabilistic movement
models, based on the random paradigm (Section 2.1, p. 7), are used to simulate tra-
jectories.

Van Toor et al. (2018) use the eRTG to simulate trajectories of bar-headed geese
Anser indicus between range fragments. The ecological likelihood of the simulated
trajectories is estimated in retrospect, based on properties of the crossed environ-
ment. Based on this likelihood, the connectivity in wintering areas and breeding
areas is derived. This example illustrates how predictions on animal movement be-
havior can be made using simulations, even outside the spatial and temporal range
of the available data.
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2.3 White Stork Ecology

The white stork Ciconia ciconia is a bird species from the stork family Ciconiidae.
White storks weigh 2.5 to 4.5 kg and are about 80 to 100 cm long. In adult animals,
the wingspan typically ranges from 200 to 220 cm. Except for the black feathers on
the wings, the plumage is pure white. The beak and the legs are colored reddish.
White storks feed on small animals such as earthworms, insects, frogs, mice, rats,
fish and on carrion. Due to the many sources of food that they are able to use, white
storks are food opportunists, feeding on food that is abundant at a particular time.
In search of prey, meadows and marshes are crossed and prey is quickly caught with
the beak. Also, in shallow waters, water and bottom are searched for prey. Due to
their hunting characteristics, white storks mainly inhabit open and semi-open land-
scapes. Wet and water-rich areas, such as floodplains and grasslands, are preferred.

The birds are active during the day and usually sleep at night. White storks
can reach ages up to and above 35 years and sexually mature in their fourth year.
They nest on objects that clearly exceed their surroundings in height, such as rocky
outcrops, trees or buildings. Often, loose colonies with up to 30 couples are formed.
White stork couples are faithful to their nest and, if possible, return to it every year.
The nesting site is changed if the raising of offspring was not successful or if new
pairs are formed (Elliott, 1992).

2.3.1 Population and Migration

(A) Population size
per country

(B) Migration routes,
breeding and winter-

ing grounds

FIGURE 2.8: Estimated population sizes in 2004 and 2005 and migra-
tion routes of white storks. Modified figures, based on: wikipedia.org

In 2004 and 2005 the worldwide population size of white storks was estimated at
approximately 700 000 individuals. Figure 2.8 (A) shows the estimated population
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size per country. The largest populations live in eastern Europe and in Spain during
the breeding season; together they consist of 450 000 to 500 000 mature individuals.
The overall trend is a growth in population, although there are some populations
which are in decline. The decline is mainly due to land use change, which includes
the drainage of swamps and the disappearance of grasslands (Waterbird Population
Estimates, 2018).

White storks are Palearctic migrants (Walther, 2004) which use the assistance of
uplift to cover long migration routes between their wintering and breeding grounds
(Flack et al., 2016). Due to their reliance on updrafts, it is not possible for white
storks to travel long distances over open water, which is why they prefer to travel
over land. In order to reach their wintering grounds on the African continent, the Eu-
ropean populations use the straits of Gibraltar or the Bosporus to cross the Sea. The
European birds breed from February to April in the Palearctic and migrate south-
wards in the fall, when they form large flocks with hundreds to thousands of indi-
viduals (Flack et al., 2018). The main departure from the European breeding grounds
takes place in August and lasts until the end of September. The major part arrives
in the African wintering grounds early in October (Berthold et al., 2002; Berthold,
Kaatz, and Querner, 2004).

Figure 2.8 (B) shows common migration routes, which can be separated into an
eastern and a western corridor (Berthold et al., 2001). The choice of the corridor
depends on the breeding location of the white stork population. Birds breeding in
eastern Europe usually travel south using the eastern corridor. They pass the strait
of the Bosporus, fly over Turkey, Syria, Israel and Egypt, from where they continue
south following the Nile. Some birds even reach the southern tip of the African
continent. The western corridor is used by birds that breed in central and western
Europe. They travel via Germany, Switzerland, France and Spain, after which they
cross the Mediterranean at the strait of Gibraltar. Once on the African continent,
the Sahara desert poses the last obstacle to overcome before reaching the wintering
grounds. The white storks that use the western corridor usually stay north of the
equator, in the Sahel, since the African rain forest blocks their further journey to the
south. During the migration phase, white storks depend on suitable stopover sites,
where they can feed, drink and rest.

The major part of the population, around 500 000 individuals, uses the eastern
corridor. Although the eastern corridor is twice as long as the western corridor, the
storks need the same time to reach their wintering grounds. In spring, the white
storks start their migration north and arrive in Europe in the end of March and in
April (International BirdLife, 2016; Sanderson et al., 2006).

2.3.2 Flight Behavior

The predominant locomotion type of birds is flying. Bird flight can further be di-
vided into different canonical movement modes. Flapping flight (powered flight)
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is the movement of birds induced through the flapping of the wings, which gen-
erates a forward-directed thrust. In gliding flight (unpowered flight), the loss of
altitude is converted into a forward direction of movement. In soaring flight (exter-
nally powered), uplift is used to gain height, which is then again converted into a
forward direction of movement by gliding (Alerstam, Gudmundsson, and Larsson,
1993; Hedenstrom, 1993; Hedenstrom and Alerstam, 1998; Videler, 2006; Shepard
and Lambertucci, 2013).

FIGURE 2.9: Soaring phase (i), where the bird gains height followed
by a gliding phase (ii), where the potential energy is converted into

kinetic energy. Source: Shepard and Lambertucci (2013, p. 2)

White storks are heavy birds and can therefore only use flapping flight for short dis-
tances. To cover large distances, they depend on vertically moving air masses that
allow soaring flight (Figure 2.9). There are two types of uplift that soaring birds
can use to gain height: orographic and thermal uplift. Orographic uplift is the rise in
elevation of air masses above steep terrain, as for example over valley slopes and
in front of mountain ridges. Controversy, the thermal uplift is induced by convec-
tion cells, caused by small-scale heterogeneity of solar heat absorption and storage
of the Earth’s surface. The current potential of a landscape with regard to soaring
and gliding flight can be summarized as energy landscape (Péron et al., 2017). The
energy landscape includes orographic uplift, caused by the topography, thermal up-
lift, induced by the weather conditions, as well as the distances between uplift zones
and the current wind velocities. Soaring birds strive to minimize their Cost of Trans-
port (CoT) by using uplift to gain height (Hedenstrom, 1993; Shepard and Lamber-
tucci, 2013). The height gained while soaring is equivalent to the potential energy
(Ep = mgh, where m is the mass and h is the position in height of the bird, and g
is the acceleration of free fall), which is converted into kinetic energy (Ek = 1

2 mv2,
where m is the mass and v is the speed of the bird) during gliding. Due to these
physical dependencies and limitations, soaring birds are expected to adjust their
flight behavior to the prevailing uplift conditions. Therefore, the energy landscape
can be used to make assumptions about the flight height and the preferred route in
a given landscape (Bohrer et al., 2012; Oloo, Safi, and Aryal, 2018).
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2.4 Research Gaps

In the above review of theory and related work, whenever possible, concepts were
presented that also apply to the 3-D case. Nevertheless, it became obvious that most
of the current research restricts organism movement to a 2-D plane. In recent years,
more and more 3-D movement data has become available, but due to the lack of
appropriate movement models, the analysis is often still limited to the x and y coor-
dinates. Especially when studying flying or diving animals, the incorporation of the
height is of crucial importance. Probabilistic simulation models, such as the eRTG,
are capable of reproducing trajectories that are empirically informed between given
points, but due to the missing third dimension, the concepts are inadequate for many
applications. Therefore the following research gaps need to be addressed:

• A probabilistic movement model, which represents the movement behavior in
3-D from the mover’s perspective is clearly missing.

• A trajectory generator, based on such a probabilistic movement model, which
is capable of producing individual empirically informed random trajectories
in 3-D that are conditional on a given endpoint, does not exist.

• Most of the current approaches to analyze 3-D tracking data are restricted to
the spatial extent of the observation and do not allow predictions in new, un-
seen areas, where no tracking data exist.

• Bird flight: To the author’s knowledge, there is no model that allows the sim-
ulation of gliding and soaring trajectories based on an uplift suitability map
between two given points.

• UDs are usually restricted to the 2-D space and no method is available to derive
a UD in 3-D, based on a vast amount of simulated tracks in a new, unseen
region.
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Chapter 3

Study Area and Data

3.1 Study Area

The study area is the Swiss Central Plateau (green area in Figure 3.1), which extends
from Lake Geneva in the southwest of Switzerland to Lake Constance in the north-
east. In the south it is confined by the Alps and in the north the Jura mountain ridge
forms a natural barrier. The altitude varies between 400 to 600 m above sea level and
the landscape is hilly with several lakes and rivers.

FIGURE 3.1: The biogeographical regions of Switzerland. Modified
figure, based on: swisstopo.ch

Especially the region around Lake Constance is a breeding ground of white storks.
The populations living there breed from spring to fall and begin their journey to-
wards their wintering grounds in August and September. They prefer the western
migration corridor and thus cross the Swiss Central Plateau towards the southeast.
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There are several stop over sites in the Swiss Central Plateau, preferably lakes and
associated wetlands. With the Alps in the south and the Jura in the north, topog-
raphy dictates the white storks’ migration corridor. Since the Swiss Central Plateau
is a densely populated area with several major cities, the space use of humans and
white storks overlaps. To the north of Zurich, there is Zurich Airport (red marker in
Figure 3.1), which lies on the direct route of the birds migrating southeast.

For the high-resolution analysis of the movement behavior of white storks in the
region near the airport, a buffer of 15 km was drawn around it. All high-resolution
simulations and airplane flight trails were masked to this buffer. The Cartesian pro-
jected coordinates of the airport in the Swiss projected coordinate system (CH1903+
/ LV95) are: 2 684 039 m east, 1 257 554 m north, and 421.5 m above sea level.

3.2 Data

3.2.1 Trajectories of White Storks

The GPS tracking data of white storks breeding near lake Constance stems from the
study Fall migration of white storks in 2014 (Movebank Study ID 332044860) and is a
subset of the data in the study LifeTrack White Stork SWGermany 2014-2017 (Move-
bank Study ID 21231406) on the movebank data repository. The data was published
by Flack, Fiedler, and Wikelski (2017) and Weinzierl et al. (2016).

The data set contains the fall migration trajectories of 60 individuals from August
until the end of September 2014. 7 153 159 GPS fixes were obtained during this pe-
riod, by GPS devices attached to the birds. Beside the position also the height above
the ellipsoid was recorded. Additionally, an accelerometer also collected data. The
size of the GPS tracking data, without accelerometry is 1.7 GB. Due to limited battery
life, the GPS tracking device only recorded data at regular sequences, with interrup-
tion intervals in between. The recorded sequences usually last 300 s and have a high
temporal resolution with a time lag of 1 s. Between the high-resolution sequences,
the recording pauses for about 600 s.

The battery-saving recording technique that was used to record this data set
is termed timed sub-sampling. The high-resolution sub-sampling can be scheduled
based on regular intervals or be triggered by other sensors that consume less energy
and run continuously, such as a 3-D-acceleration trigger. In case of solar energy-
powered tracking devices, the sub-sampling starts whenever the battery power is
sufficiently high. The advantage of this technique is that it provides a statistically
valid picture of the movement behavior in high resolution and at the same time en-
sures a long-time coverage of the movement (Sherub et al., 2017).

After a visual inspection of the data in a Geographic Information System (GIS),
the tracking data of white stork Wibi 2 / DER AU044 (eobs 3943) was chosen as it
displays typical soaring and gliding flight behavior. The Coordinate Reference Sys-
tem (CRS) was transformed from latitude and longitude data (WGS84) to the Swiss
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projected reference system (CH1903+ / LV95). Then, the trajectory was cropped to
the boundary of the Swiss Central Plateau. The remaining 4 800 GPS fixes were split
into 16 high-resolution sequences interrupted by 15 breaks of 600 s each.

FIGURE 3.2: Fall migration of Wibi 2 crossing the Swiss Central
Plateau, from the Fall migration of white storks in 2014 data set.

According to Péron et al. (2017), the height above ellipsoid is typically more affected
by measurement errors than the position in the (x, y)-plane. The accuracy of GPS
tracking devices is largely depending on the satellite signal availability and there-
fore on the mover’s position. At higher altitudes, surrounded by free sky, better
accuracy often is achieved due to the lack of objects that interfere with the connec-
tion to the satellites. Higher sampling rates, as observed in this data set, lead to
much more precise positioning data, since the connection to the satellites remains
active between the fixpoints and has not to be re-established. Taylor and Blewitt
(2006) provide an in-depth discussion of how satellite-based localization works.

For the evaluation of the algorithm, a low-resolution spring migration trajectory of
the white stork Niclas / DER AU053 (eobs 3341), from the same study (LifeTrack White
Stork SWGermany 2014-2017), was used. Thereby a trajectory section, consisting of
31 fixpoints in the Swiss Central Plateau, was chosen by manual selection in a GIS.
The average time lag between the fixpoints is 20 minutes. In this trajectory sec-
tion from March 2017, Niclas crosses the Swiss Central Plateau during his migra-
tion northwards to the breeding grounds near Lake Constance. Again, the data has
been transformed from latitude and longitude data to the Swiss projected reference
system. Since the trajectory section does not contain any missing data, no further
actions were necessary.
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3.2.2 Digital Elevation Model

The digital height model dhm25, which serves as a reference for the flight height
above ground and limits the constrained Euclidean space in which the simulated
birds move, comes from swisstopo1. The raster data layer covers the entire territory
of Switzerland with a cell size of 25 m. Swisstopo derives this matrix model from
the vector-based National Map 1 : 25 000 by interpolation. Comparisons of height
values from the raster with photogrammetrically measured control points show that
in the Swiss Central Plateau and the Jura, the average error is 1.5 m; in the Prealps
and Ticino it is 2 m, and in the Alps it is 3 to 8 m (Swisstopo, 2018).

3.2.3 Uplift Suitability Map

Scacco et al. (in prep.) derived an uplift suitability map, based on observed soaring
bird flight behavior and landscape features, which assesses the availability of uplift
across Europe. The predictions of 10 models with a binary variable (0 = flapping
flight, 1 = soaring flight) as response and different static environmental variables
(elevation, land cover, etc.) as predictors were averaged. The resulting layer contains
values from 0 to 1, which represents the likelihood of encountering uplifts that a
bird can use for soaring. In Figure 3.3, the uplift suitability map was masked by the
outline of Switzerland.

FIGURE 3.3: Uplift suitability map masked by the outline of Switzer-
land.

1www.swisstopo.admin.ch
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3.2.4 Air Traffic at Zurich Airport

In the past few years, Buchmüller et al. (2015) have recorded and preprocessed the
complete flight traffic at Zurich Airport. The flight trails, which are stored as spatial
PostGIS2 objects in a PostgreSQL3 Database (DB), are already classified into depar-
tures and arrivals. Arriving airplane trails are further divided into north, east and
west flight corridor. The following Structured Query Language (SQL) query was
used to extract and filter the data from the DB:

LISTING 3.1: SQL query: Accessing and filtering the flight trails

1 SELECT day , a r r i v a l , f l i g h t t r a i l : : t e x t FROM f l i g h t s 2
2 WHERE (EXTRACT(MONTH FROM day ) = 9 OR EXTRACT(MONTH FROM day ) = 8)
3 AND EXTRACT(YEAR FROM day ) = 2017
4 AND NOT a r r i v a l = ‘UAD’
5 AND NOT a r r i v a l = ‘ Undefined ’ "

The retrieved position data of the flight trails is stored in latitude and longitude data
(WGS84). Therefore, the CRS was changed from WGS84 to CH1903+ / LV95. Then
the trails were cropped to the 15 km buffer around Zurich Airport. Often, when the
planes were on the ground in the airport, height values below surface level were
measured. To cope with this issue, these heights were mapped to the height of the
surface at this position.

(A) Arrivals (B) Departures

FIGURE 3.4: Flight traffic at Zurich Airport in August and September
2017.

Figure 3.4 shows a summary of the flight trails, the Digital Elevation Model (DEM)
and the white stork trajectory in the 15 km buffer around Zurich Airport. The white
stork Wibi 2 (black line) has come very close to the northern arrival and the eastern
departure corridors. Although the two data sets were recorded in the same season
of different years, it can be assumed that the white storks’ migration corridors stay
more or less constant (Van den Bossche et al., 2002).

2www.postgis.net
3www.postgresql.org
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Chapter 4

Methodology

In this part of the thesis, the methodology that is used to realize, evaluate, and subse-
quently apply the eRTG3D is introduced. The chapter is divided into three sections,
each dealing with one research question. Since the design and the implementation
of the algorithm was an iterative procedure, in which the complexity of the versions
continuously increased, only the methodology of the final version is described here.
This version was also evaluated and applied in the demonstrator use case.

The implementation, evaluation, and application of the eRTG3D were written in
R1, a language and environment for statistical computing and graphics (R Develop-
ment Core Team, 2008). The implementation started from an existing R script for the
2-D version of the eRTG (Technitis et al., 2016). RStudio2 served as an open-source
Integrated Development Environment (IDE) to create an R package containing the
final version of the eRTG3D. In the description of the eRTG3D in the following sec-
tions, reference to the corresponding R functions will be made by means of footnotes.

4.1 Development and Implementation of the eRTG3D

Since different laws apply to the motion in the third dimension, a direct extension of
the 2-D eRTG to 3-D is not feasible in one step. The strategy to cope with the increas-
ing complexity arising from the inclusion of the third dimension was the elaboration
of several versions of the eRTG3D. The complexity and functionality of the versions
were increased gradually. First, a simple and unconstrained version in 3-D was elab-
orated, which afterwards was extended with vertical constraints, such as the Earth’s
surface and the maximum flight height. Then, probabilistic distributions, extracted
from the absolute flight height over the ellipsoid and the relative flight height over
ground, were incorporated. They promote the use of absolute heights and distances
to the ground which are biologically more likely. To achieve fully representative
simulated trajectories in 3-D, a probabilistic distribution of the gradient angle g (po-
lar angle θ) is added to the final version. In addition, a slightly modified version
was developed that allows bird flight simulations on an uplift suitability map. This
version combines the movement modes gliding and soaring in one model.

1www.r-project.org
2www.rstudio.com
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4.1.1 P Probability – The Mover’s Behavior from its Perspective

Turn-Lift-Step Histogram

The starting point of the algorithm is the mover’s behavior from its perspective.
This perspective on the change of absolute orientation and position in space can be
described by probabilistic distributions of the turning angle t, lift angle l, and step
length d. To provide a sensible representation of the movement, these independent
secondary derivative movement parameters have to be connected. If the turning
angle, lift angle, and step length depend on each other, a sharp turning at high ve-
locity, which means a long covered distance in one step, is less likely to occur than
a smooth turn. To establish this dependency, a 3-D histogram, the turn-lift-step his-
togram, is extracted from the tracking data3. This histogram can be seen as a voxel
cube with (t, l, d)-dimensions. Every combination of turning angle, lift angle, and
step length is represented by a unique point that belongs to a voxel in the cube. The
voxels represent a 3-D binning of the 3-D histogram, and their (bin-) size in each
dimension is estimated by the Freedman–Diaconis rule:

binSize = 2 · IQR(x)
3
√

n
(4.1)

In this rule, IQR is the interquartile range of the data sample x and n is the number of
observations (Freedman and Diaconis, 1981). Given the bin sizes in all three dimen-
sions, a voxel space is set up that spans between the minimum and maximum value
in each dimension. Then, the (t, l, d)-combination of every step is assigned to its cor-
responding voxel in the voxel space. Further, the occurrences per voxel are counted
and normalized by the total number of observed steps. The resulting turn-lift-step
histogram (or tld-cube) represents the probability of every (t, l, d)-combination in the
voxel space to occur.

Autodifferences

The turn-lift-step histogram is not sufficient to fully describe the movement behavior
from the perspective of the mover, since it reveals nothing about the autocorrelation
of the (t, l, d)-combinations. However, since there is a consistency in the movement
of animals, it is highly unlikely that a large step with a little change of direction is fol-
lowed by a short one that includes an abrupt change of direction. The concept used
in animal ecology to describe this dependency of steps on previous ones, is the cal-
culation of autodifferences. Autodifferences are the differences in the turning angles,
lift angles, and step lengths with a lag of 1, which maintains a minimal level of auto-
correlation in each of the terms. A function is fitted to the kernel density estimates of
each of the autodifferences in order to approximate the underlying Probability Den-
sity Functions (PDFs). The KDE uses a Gaussian kernel with the statistical property

3Appendix A.2: eRTG3D: turnLiftStepHist()
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σ2
k =

∫
t2k(t)dt that is always equal to 1. Therefore, the bandwidth is the standard

deviation of the kernel (Sheather and Jones, 1991; Venables and Ripley, 2003).

Height Distributions

There are physical limitations that constrain the birds from moving freely in the 3-D
space. Underground flying is, for obvious reasons, as impossible as flying at ex-
treme altitudes, which can not be performed due to insufficient oxygen content, low
temperatures and problems with air density. The distribution of the height values is
therefore used to limit the degree of freedom in the third dimension.
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FIGURE 4.1: Height above ground and ellipsoid.

As Figure 4.1 indicates, there are two different perspectives on flight height: (A) the
height above ground, which is the vertical distance between the bird and the Earth’s
surface, and (B) the height above ellipsoid, which is the vertical distance that is defined
relatively to a reference ellipsoid. In general, the height above ellipsoid can be seen
as the height above sea level, since the ellipsoid is usually fitted to the surface of
the Earth at sea level. The distribution of the height above ellipsoid represents the
preferred flight heights of a bird, which, for example, prevents it from crossing a
mountain at an unrealistic altitude, whereas, the height above ground describes the
behavior of the bird with regard to a changing topography, which prevents it from
flying too close to the surface or even underground. With the goal of forcing the bird
to fly at heights that are biologically more likely, the PDFs of both heights are esti-
mated by fitting approximation functions to the KDEs of their empirically observed
values.

Gradient Distribution

A particularly important distribution, especially for the gliding and soaring behav-
ior of birds, is that of the gradient g. Due to gravity, flying with a gradient between
0 and π

2 requires either uplift or the bird needs to generate a thrust by flapping its
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wings. In contrast, while descending with a gradient angle between π
2 and π, the po-

tential energy of the altitude can be converted into kinetic energy and the bird moves
forward. When modeling the different movement modes it becomes apparent that
the choice between descending and ascending has to be considered. In soaring mode
generally ascending gradients should be preferred over descending angles. There-
fore, the PDF of the gradient is also approximated by fitting a function to the KDE
of the gradient.

The combination of the turn-lift-step histogram with the approximations for the
PDFs of the autodifferences, height and gradient, is termed the P probability4. The
P probability fully describes the movement behavior from the mover’s perspective
in a stochastic manner. It is important to extract the P probability only from trajec-
tories that have a constant time lag between the fixpoints. Otherwise the extracted
probabilities are distorted and do not represent the movement behavior appropri-
ately. In order to avoid this issue, missing data or delays between the fixpoints have
to be removed from the data. To achieve a constant time lag, the trajectory can be
split into proper trajectory sections5, from which then the P probability is extracted6.

4.1.2 Unconditional Empirical Random Walk

After the extraction of the P probability, an Unconditional Empirical Random Walk
(UERW) in 3-D can be generated7. Since the walk is unconditional, no endpoint is
given. This means that the mover moves away from a given starting point for a
predefined number of steps. The constant time between the locations is identical to
the time lag of the observed trajectory that the P probability was extracted from. The
trajectory is generated in a stepwise procedure.

The trajectory generation needs start conditions. The initial orientation (azimuth
a0 and gradient g0) of the mover and the starting point (x0, y0, z0) have to be set.
Since the walk pays attention to the consistency in the movement behavior by con-
sidering the distributions of the autodifferences, an imaginary previous step has to
be assumed. Therefore, a (t, l, d)-combination is sampled from the turn-lift-step his-
togram with regard to their probability of occurrence. The sampled combination is
used to imitate the previous step. As a result, the initial values (x0, y0, z0, a0, g0, t0,
l0, d0) are complete and the generation of the UERW can be undertaken.

At the given starting point of the walk, all possible combinations (ts, ls, ds) for
the next step i + 1 are taken from the turn-lift-step histogram and weighted with
their probability tldP of occurrence. Since only the middle value of the bins in
each dimension can be selected, no continuous choice in the (t, l, d)-space is pos-
sible. To avoid this issue, a randomly sampled shift from the uniform distribution

4Appendix A.4: eRTG3D: get.track.densities.3d()
5Appendix A.5: eRTG3D: track.split.3d()
6Appendix A.6: eRTG3D: get.section.densities.3d()
7Appendix A.7: eRTG3D: sim.uncond.3d()



4.1. Development and Implementation of the eRTG3D 37

U(− binSize
2 , binSize

2 ) is added to every bin midpoint, whereby the binSize is adjusted
to the corresponding dimension. For each step i and dimension (t, l, d), a new ran-
dom shift (tShi f ti, lShi f ti, dShi f ti) is sampled from the uniform distributions. Like
this, all values in the range of a bin have the same probability to be selected. The
gradients gAlli+1 and azimuths aAlli+1 for all possible next locations are calculated
by:

aAlli+1 = ai + ts + tShi f ti (4.2)

gAlli+1 = gi + ls + lShi f ti (4.3)

The application of the approximation function of the gradient PDF gDens() on all
possible gradients of the next step yields their biological probability gPi+1 of occur-
rence:

gPi+1 = gDens(gAlli+1) (4.4)

Next, the approximation functions (autoT(), autoL(), autoD()) of the autodifference
PDFs are used to estimate the likelihood of the turning angle atPi+1, lift angle alPi+1,
and step length alDi+1 for the next step i + 1, based on the (t, l, d)-combination of
the previous step i:

atPi+1 = autoT(ti − ts + tShi f ti) (4.5)

alPi+1 = autoL(li − ls + lShi f ti) (4.6)

adPi+1 = autoD(di − ds + dShi f ti) (4.7)

The probability Pi+1 for the selection of the next location, from the perspective of the
mover, is achieved by multiplication of the different probabilities. To aggregate the
autodifference probabilities into one probability, the cubic root of their multiplica-
tion is taken (see reasoning in Section 6.1 on combining probabilities, p. 76):

Pi+1 = tldP · gPi+1 · 3
√

atPi+1 · alPi+1 · adPi+1 (4.8)

A sample with the probability Pi+1 on the voxel of the turn-lift-step histogram and
the addition of the corresponding uniformly distributed shift terms results in the
(t, l, d)-combination for the next step (ti+1, li+1, di+1), from which the next location
(xi+1, yi+1, zi+1) in Cartesian coordinates is then derived:

xi+1 = xi + di+1 · sin
(

gi + li+1
)
· cos

(
ai + ti+1

)
(4.9)

yi+1 = yi + di+1 · sin
(

gi + li+1
)
· sin

(
ai + ti+1

)
(4.10)

zi+1 = zi + di+1 · cos
(

gi + li+1
)

(4.11)

By repeating these calculations for every step, a UERW in 3-D that has the prescribed
empirical properties is successfully generated. The resulting trajectory can be used
as unconditional walk or to seed the pull towards the target for the simulation of
conditional walks.
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4.1.3 Q Probability – The Pull Towards the Target

A conditional walk, connecting a starting with an endpoint by a predefined number
of steps n, needs an attraction term: the Q probability8. This pull towards the target
ensures that the endpoint is approached and hit. However, the influence of the Q
probability on the walk is not constant, as the movement behavior of the mover
relative to the endpoint varies over time. In order to calculate the Q probability, the
distribution of turning angles, lift angles, and distances to target has to be known
for every step in the walk. The distributions are ideally derived from empirical data
or estimated from an unconditional process with the same properties, such as an
UERW. The turning angle to target tTargeti

9, lift angle to target lTargeti
10 and the

distance to target dTargeti
11 are calculated for every step i ∈ {1, . . . , n}:

tTargeti = atan2(yn − yi, xn − xi)− ai (4.12)

lTargeti = atan2(
√
(xn − xi)2 + (yn − yi)2, zn − zi)− gi (4.13)

dTargeti =
√
(xn − xi)2 + (yn − yi)2 + (zn − zi)2 (4.14)

In this, (xn, yn, zn) is the target location. To extract a tTarget-lTarget-dTarget his-
togram in the same way as described in Section 4.1.1, a sufficient amount of samples
per step in each dimension need to be available. If a conditional walk with n lo-
cations is to be generated, for every step, except for the last one, a histogram cube
needs to be created. Therefore, n− 1 histogram cubes are needed. In order to have
enough samples to ensure sound statistical distributions, a trajectory for the extrac-
tion of the Q probability has to be at least 1500 times longer than the conditional
walk that is to be simulated. This lower bound was determined empirically, as it
yields robust simulation results.

time

lag

b b b b b b b b bb b+

b b b b b b b b bb b+

3 steps to target

2 steps to target

+

FIGURE 4.2: Moving window approach for the extraction of the Q
probability from a trajectory.

8Appendix A.8: eRTG3D: qProb.3d()
9Appendix A.9: eRTG3D: turn2target.3d()

10Appendix A.10: eRTG3D: lift2target.3d()
11Appendix A.11: eRTG3D: dist2target.3d()
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Using a moving window approach for every number of steps left to the target (lag ∈
{n, . . . , 2}), the relationship between the step i = n − lag and the target i = n is
calculated. Figure 4.2 shows the moving window approach for the extraction of the
Q probability for the steps i = n− 3 and i = n− 2 in the conditional walk.

4.1.4 Conditional Empirical Random Walk

Given the P and Q probabilities, a Conditional Empirical Random Walk (CERW)
between two points is simulated12. For this purpose, the same start conditions as for
the UERW and an additional endpoint are needed. A further important parameter
is the number of steps provided to reach the endpoint. If a trajectory should be
reproduced13, usually the same number of steps is taken as the original trajectory
consists of. If a trajectory is simulated between two new sites, the number of steps
is estimated either based on the total available time or the average distance to target
the mover can cover in one step. A time-based estimation of the number of steps is
obtained by dividing the total time by the time lag between the steps:

n =

⌈
tn − t0

timeLag

⌉
(4.15)

Hereby, the result of the division is rounded up to the nearest integer. To gather a
distance-based estimation, the total Euclidean distance between the points is divided
by the mean step to target dmean:

n =

⌈√
(xn − x0)2 + (yn − y0)2 + (zn − z0)2

dmean

⌉
(4.16)

The number of steps needed to connect the two points with a CERW is always de-
fined before the construction of the walk. As for the UERW, the generation of the
CERW is also a stepwise procedure. The selection of a next step starts with the calcu-
lation of the P probability Pi+1 at the current location, based on Equation 4.8. Then,
the Cartesian coordinates of all possible next locations (xAlli+1, yAlli+1,zAlli+1), de-
fined by the current position (xi, yi, zi), possible next azimuths (aAlli+1) and gradi-
ents (gAlli+1) are calculated based on Equations 2.3, 2.4 and 2.5 (p. 15). For all possi-
ble next locations, the turning angle, lift angle and distance to the target are derived
by Equations 4.12, 4.13 and 4.14. The result is a value triplet assigned to every possi-
bility. From the Q probability, the tTarget-lTarget-dTarget histogram that belongs to
the current step is used to assess the probability of occurrence of each of these value
triplets. The probability is obtained by searching the voxel which contains the value
triplet. If a value triplet is located outside the (tTarget,lTarget,dTarget) space of the
histogram, a probability of zero is assigned to the triplet. The resulting probability

12Appendix A.12: eRTG3D: sim.cond.3d()
13Appendix A.13: eRTG3D: reproduce.track.3d()
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Qi+1 represents the likelihood of every possible next location to be picked, based on
the movement behavior in relation to the endpoint.

The final probability PQi+1 is obtained by multiplying Pi+1 and Qi+1. Addition-
ally, the approximation functions of the relative and the absolute flight height PDFs
are used to weight the probability of the next location. To extract the height of the
Earth’s surface ztopo

i+1 at all possible next locations, a DEM covering the extent of the
simulation area is needed. An equal influence of the flight height above ground
and the flight height above ellipsoid is achieved by multiplying them and taking the
square root:

PQi+1 = Pi+1︸︷︷︸
tldP·gPi+1· 3

√
atPi+1·alPi+1·adPi+1

·Qi+1 ·
√

hDistEllipsoid(zi+1) · hDistTopo(zi+1 − ztopo
i+1 ) (4.17)

The probability PQi+1 is now used to sample a voxel from the turn-lift-step his-
togram. The addition of the corresponding uniformly distributed shift terms to the
sample results in the (t, l, d)-combination for the next step (ti+1, li+1, di+1). Then, the
next location (xi+1, yi+1, zi+1) in Cartesian coordinates is derived by Equations 4.9,
4.10 and 4.11. This procedure is repeated until the penultimate step, which produces
the data structure illustrated in Table 4.1.

step x y z a g t l d p

i=0 0.0 0.0 10.0 1.0 2 -0.2 -0.2 1.1 NA
i=1 0.5 0.9 9.6 1.1 1.9 0.1 -0.1 1.1 0.2
i=2 1 1.6 9.4 0.9 1.8 -0.2 -0.1 0.9 0.1

...
i=n-1 11.1 16.7 1.8 0.9 2 -0.2 -0.2 1.1 0
i=n 11 17.5 1.4 1.0 1.9 0.1 -0.1 0.9 NA

TABLE 4.1: Data structure of an example CERW.

In order to complete the walk, the penultimate location (i = n − 1) is connected
with the last location (i = n), which thereby defines the (t, l, d)-combination of the
last step. Finally, it is tested if this combination is possible in the P probability. If the
probability of this combination is not zero, the mover has successfully performed
a CERW. In case that the probability of the final combination is zero, a dead end is
encountered and the walk ends without having reached its destination.

If at any other step during the walk all possible next steps have a probability
of zero, the CERW ends abruptly in a dead end. The fact that PQi+1 is zero can
have several causes; it is mostly due to an insufficient number of steps left to reach
the endpoint. Since the CERW is based on a probabilistic model, not very probable
movement combinations might occur as well. In such a case, the trajectory might
grow into an undesirable direction in respect to the target. The influence of the au-
todifferences can further limit the freedom to reach the target. Other possibilities are
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dead ends caused by the topography or an improper extraction of the probabilities
from the original trajectory.

When extracting the movement behavior of trajectories, it is very important that
this only happens for one movement mode at a time. If different modes occur to-
gether in a trajectory, it must be split accordingly. Otherwise, the extracted turn-lift-
step histogram and the corresponding PDF approximations of the autodifferences
are no longer unique. A simulation based on these probabilities favors the occur-
rence of dead ends, since unrealistic combinations, such as the transition between
the modes, are allowed to occur.

In addition, it is imperative that the time lag between the fixpoints in the origi-
nal trajectory remains constant. Outliers distort the extracted density distributions,
especially if the trajectory is rather short and therefore does not offer many samples.
This issue can be circumvented by splitting the trajectory at steps with deviating
time lags. Thereafter, the extraction of the probabilities is conducted on the clean
sections.

4.1.5 Gliding and Soaring Simulation

Finally, an adapted version of the algorithm, which is capable of simulating gliding
and soaring behavior14, was developed. In this version, the simulation is grounded
on a binary uplift raster layer, where a pixel value of 2 indicates an area that is
suitable for soaring, while 1 denotes an absence of uplift, whereby gliding flight
is enforced. The approach behind the simulation is the assumption that a bird ap-
proaches its target in (conditional) gliding mode and gains height in (unconditional)
soaring mode, without a target direction. This seems to be reasonable, since in soar-
ing mode only the gain in vertical distance matters, whereas in gliding mode the
loss in height is converted into a mainly horizontal movement towards the target.
Since gliding and soaring are two different movement modes of the same individ-
ual, also two P probabilities (one for each mode) must be extracted. In addition, the
pull towards the target must be provided. Based on the assumption that the target
is only approached in gliding mode, the Q probability has to be calculated based on
pure gliding behavior. Therefore, the pull towards the target is either extracted from
a long observed gliding trajectory or from an UERW based on the P probability of
the gliding mode. The number of steps needed to hit the target is estimated using
the distance-based approach.

The glide ratio ε limits the height a bird is allowed to gain in an uplift area. It
defines the horizontal distance ∆s a bird is able to cover per vertical distance ∆h loss:

ε =
∆s
∆h

(4.18)

It can either be estimated by experts or empirically extracted from tracking data.
For soaring birds this ratio typically is somewhere between 15 to 22. If a bird in the

14eRTG3D: sim.glidingSoaring.3d()
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simulation encounters an uplift area (pixel value = 2), it gains height as long as the
conversion of height into horizontal distance is insufficient to reach the endpoint.
Otherwise, the soaring mode is only left if unrealistic heights are reached or the
uplift area ends. The steps covered in soaring mode are unconditional (UERW) and
are therefore not counted as steps in the actual CERW. As soon as the bird switches
from soaring mode back to gliding mode, the pull towards the target is activated
again. In gliding mode the bird ignores uplift areas as long as it has sufficient altitude
to reach the endpoint.

As the bird moves unconditional while soaring, its orientation in space at the
moment of a transition to gliding mode might not be pointed towards the target.
For the calculation of the Q probabilities this issue is problematic, since a situation,
in which the bird is pointed to the opposite direction in respect to the target is very
likely to occur. Depending on the number of steps left, a turn towards the target
in gliding mode might be unrealistic and the Q probability becomes zero. To avoid
this problem, the transition is smoothed if the difference of the bird’s azimuth and
the azimuth towards the target is more than pi

12 . The steps allowed for a smooth
transition towards the target is based on the turning angle of the last step and is at
maximum 9 steps. The number of smoothing steps is calculated by dividing the re-
quired turning angle to the target by the last turning angle. For the given number of
smoothing steps the bird performs a correction-trajectory until its azimuth and gra-
dient are pointed towards the target. In correct orientation, the trajectory continues
in gliding mode until the target is reached or another uplift area is used.

4.1.6 Variations and Efficiency

The formally described versions of the algorithm include the distributions of the
gradient, the absolute and the relative flight height. Therefore, these versions are
tailored to the modeling of bird flight. However, the algorithm also works with a
subset or without these distributions. Simulations without any of these distributions
equate to a space, in which no physical constraints, such as gravity or obstacles,
influence the movement behavior.

Although the focus was placed on the implementation of a properly functioning
algorithm, efforts have been made to increase its efficiency. All processes that do
not depend on previous steps, and are therefore independent, can be calculated in
parallel. To achieve calculations that run on multiple cores, the capabilities of the
parallel package to fork R sessions are used. The extraction of Q probabilities and
the simulation of multiple CERWs can be run in parallel15. To further improve the
efficiency of the trajectory generation, the maximum number of bins per dimension
in the turn-lift-step histogram can be limited. The number of bins is set by default
to a maximum of 25 in each dimension, but the value can be chosen freely. An
unlimited number of bins is still possible by setting the value to infinity16.

15eRTG3D: multicore = TRUE
16eRTG3D: maxBin = Inf
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4.2 Evaluation of the Algorithm

The evaluation of the algorithm is carried out on the previously described version
for one movement mode, using synthetic trajectories and real-life data. For the in-
ternal verification of the algorithm, 3-D CRWs are generated17 for correlation values
between 0.1 and 0.99, since the initially set conditions for their production are pre-
served. Then, these trajectories are reproduced by the eRTG3D algorithm. In a next
step, the simulations are statistically compared with the CRWs that served as input
for the simulations. Due to the fact that the trajectories do not necessarily share the
same extent and area, relative quantities that describe the movement behavior have
to be compared. Therefore, the distributions of the turning angle, lift angle, and step
length of the simulated and the original trajectory are tested against each other. Two
different approaches are applied for testing the distributions.

In order to access the validity of the algorithm, an empirically observed trajec-
tory is reproduced multiple times by the eRTG3D algorithm. The simulations are
then inspected visually in their spatial domain by 2-D18 and 3-D plots19, and in the
statistical domain by plotting distributions of their geometric properties20. Addi-
tionally, a sensitivity analysis of the parameter that limits the maximum number
of bins per dimension in the turn-lift-step histogram is performed. The results are
verified statistically and validated through visual inspection.

4.2.1 Two-sample Kolmogorov–Smirnov Test

The first approach for the verification is a two-sample Kolmogorov–Smirnov test
that is applied to the corresponding distributions of turning angle, lift angle, and
step length and their autodifference distributions21. The Kolmogorov–Smirnov statis-
tic quantifies a distance between the empirical distribution functions of two samples.
Therefore the hypotheses of the test are:

H0 : FX(x) = FY(x) – The probability distributions do not differ significantly.
H1 : FX(x) 6= FY(x) – The probability distributions differ significantly.

To ensure that the simulated trajectory represents the original trajectory, significance
is not allowed for any test at a significance level of α = 0.05. If this condition holds,
the trajectories are considered as statistically not differing. The approach states that
as long as no significant deviations are detected between the distributions of the tra-
jectories, the trajectories can not be classified as unequal movement behavior. This
test is very powerful since it looks at the distributions as a whole and does not just
compare the locations of their means. Nevertheless, its sensitivity to sample size can

17Appendix A.14: eRTG3D: sim.crw.3d()
18eRTG3D: plot2d()
19eRTG3D: plot3d()
20eRTG3D: plot3d.densities()
21Appendix A.15: eRTG3D: test.verification.3d(test = "ks")
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be considered its downside (Wasserstein and Lazar, 2016). At sufficiently large sam-
ple sizes, even the smallest differences between the distributions become significant.
Especially when dealing with simulations that may quickly become very large in
size, a more robust procedure would be desirable.

4.2.2 Mean Difference and One-sample t-Test

The basis of the second statistical test approach, is the assumption that, if two tra-
jectories are identical, the mean difference of many randomly sampled pairs of turn-
ing angles, lift angles, and step lengths should be zero22. The smaller number of
steps of the compared trajectories is taken as sample size. Then, random pairs are
drawn from both trajectories for turning angles, lift angles, and step lengths. The
differences of the pairs build three distributions. The mean of these distributions is
expected to be zero if the trajectories are grounded on the same movement behavior.
Therefore, the distributions are tested against an expected value of zero, by applying
a two-sided one-sample t-test, with the following hypotheses:

H0 : µ = 0 – The mean of the distribution differs not significantly from zero.
H1 : µ 6= 0 – The mean of the distribution differs significantly from zero.

If two trajectories represent the same movement behavior, the tests should not be
significant at a significance level of α = 0.05.

4.2.3 Visual Comparison and Sensitivity Analysis

In order to test the ecological validity of the eRTG3D algorithm, an observed white
stork trajectory is reproduced and then plotted. In addition to the simulations, the
2-D and 3-D plots also contain the original trajectory and are provided with different
backgrounds, such as an uplift suitability map or a DEM. This allows a visual vali-
dation of the simulations in the living environment of the animal. Thereby, the focus
is primarily set on a similar geometry of the simulated trajectories in comparison
to the original, which also includes equal behavior in height and gradient choice.
In addition, the consistency in movement is compared and obvious violations are
checked. Underground flights, unrealistically high altitudes or extreme turning and
lift angles are considered to be impossible.

To estimate the influence of the bin limitation in the turn-lift-step histogram, a
sensitivity analysis is conducted on this parameter. An observed trajectory is repro-
duced with different bin limitations, ranging from only 10 to an infinite number of
possible dimensions in the tld-cube. The resulting trajectories are tested statistically
against each other with the approaches described in Section 4.2.1 and 4.2.2, respec-
tively. In addition, the results are also compared visually.

22Appendix A.15: eRTG3D: test.verification.3d(test = "ttest")
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4.3 Bird-strike Probability at Zurich Airport

In this section, the methodology behind the demonstrator use case of the eRTG3D
algorithm is introduced. The focus is put on the collision probabilities of migrating
white storks and airplanes, starting and landing at Zurich Airport, in fall. Therefore,
the general approach is to derive UDs for white storks and airplanes in a buffer
of 15 km around the airport. The UDs are based on a vast amount of simulated
white stork migration trajectories and the tracked airplane flight trails in August
and September of 2017. The simulations are based on the movement behavior of the
white stork Wibi 2. To ensure as much randomness as possible in the stork’s choice
of a route to cross the Swiss Central Plateau, low-resolution simulations between the
lake Constance and Neuchâtel are conducted. Then they are masked by the buffer
around the airport and up-sampled to high-resolution gliding and soaring behavior.
From these high-resolution gliding and soaring trajectories, the final UD is extracted.
This UD quantifies the space use of the white storks during the fall migration around
Zurich Airport, taking into account the average uplift conditions in the region.

Due to the heavy computational costs for the simulation of a large number of
high-resolution gliding and soaring trajectories, the calculations are exported to the
Draco23 High Performance Computing (HPC) cluster of the Max Planck Society.
Therefore, the work flow is adjusted in a way that the generation of the trajectories
can be distributed across the nodes of the cluster.

4.3.1 Preprocessing Data

After all data sets have been defined and transformed to the same CRS, data prepa-
ration is undertaken. First, the airplane flight trails are checked for missing height
values. Missing height information is filled in by linear interpolation and height
values below ground are set to the level of the topography at this location. This
procedure is omitted for the white stork trajectory of Wibi 2, since no missing val-
ues occur. Then, time-constant sections of the white stork trajectory are identified.
This is done by setting an expected time lag of 1 second, and by allowing a tolerance
of 0.5 seconds. Steps with time lags that deviate more than the set tolerance from
the expected time lag are used to place a split. The result is a list of time-constant
trajectory sections that serve as input for further processing.

Since the gliding and soaring simulations require a binary uplift raster layer, the
continuous uplift suitability map is classified into two categories. The first category
is assigned the value 1 and forces the bird to gliding mode, while the second cat-
egory has the value 2, which allows the bird to fly in soaring mode. The selection
of the biologically sensible threshold of 0.9 is based on a binary classification test
conducted on independent data by Scacco et al. (in prep.). In this test, the sensitivity
is equal to the number of correctly classified soaring steps, and the specificity repre-
sents the number of correctly classified gliding steps. Thresholds between 0.88 and

23www.mpcdf.mpg.de/services/computing/draco
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0.92 were found to give the best results. In Figure 4.3 the chosen threshold is marked
by a vertical dotted black line.
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FIGURE 4.3: Binary classification test for setting a threshold in the
uplift suitability map. Based on: Scacco et al. (in prep.)

4.3.2 Low-resolution Simulation on a Large Scale

Since high-resolution gliding and soaring simulations crossing the Swiss Central
Plateau are computationally too expensive to realize, the approach is to simulate
only inside the buffer of 15 km around the airport in a high resolution. In order to en-
sure an ecologically sensitive, but random distribution of starting and endpoints on
the buffer’s outline, low-resolution simulations crossing the Swiss Central Plateau
are generated. In a next step, their part inside the buffer is up-sampled to high-
resolution gliding and soaring simulations between the low-resolution fixpoints.

120 seconds are chosen as time lag for the low-resolution simulations. This time
lag provides a good compromise between a sufficient number of detailed trajectories
and satisfactory efficiency. First, the proper high-resolution sections of the observed
white stork trajectory are down-sampled to the time lag of 120 seconds. Then, the
P probability is extracted from the down-sampled sections. The starting and end-
points for the simulation of the CERWs are derived from the observed white stork
trajectory of Wibi 2. In order to allow as much freedom as possible, two lines perpen-
dicular to the direct connection of starting and endpoint of Wibi 2 are drawn with
a length of 12 km (Figure 4.4). Regarding the width of the Swiss Central Plateau,
12 km are an appropriate length so as to obtain an ecologically sound distribution of
the white storks. For every simulated CERW a starting and endpoint is randomly
sampled from these lines. The number of steps it takes the CERWs to connect the
randomly sampled starting and endpoints is estimated using the distance-based ap-
proach (Equation 4.16, p. 39). Subsequently, the Q probability is extracted from a
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long UERW that is simulated based on the P probability with a time lag of 120 sec-
onds. Given the P and Q probabilities, and starting and endpoints, the simulation of
the low-resolution CERWs crossing the Swiss Central Plateau can be conducted.

FIGURE 4.4: Random sampling of starting and endpoints for low-
resolution simulations from two lines of 12 km length, perpendicular

to the direct connection of the starting and endpoint of Wibi 2.

4.3.3 High-resolution Gliding and Soaring Simulation

To generate the high-resolution simulations on the sections of the low-resolution tra-
jectories within the buffer, the probabilities for the gliding and soaring flight modes
must be extracted from the original white stork trajectory. For this purpose, the clean
sections of the high-resolution trajectory are further divided into sections of gliding
and soaring. All steps that show a positive change in height are classified as soar-
ing steps. Steps with a negative height change are classified as gliding steps. To
avoid an extreme fragmentation, a moving window median24 is used to smooth the
resulting classification. The size of the windows was defined in comparison to the
number of steps that typical sections consist of. In a first step, the classification is
smoothed with a wide median window covering 11 steps, whereby larger gaps in
long segments are closed. Since this window size is not sensitive to small gaps in
short segments, small gaps in short sections are closed with a further median win-
dow covering 5 steps. Now the P probabilities for the gliding and soaring mode are
extracted separately from the classified sections.

Then, the glide ratio ε, as defined in Equation 4.18 (p. 41), is extracted from the
gliding sections. Therefore, the difference in height is divided by the difference in

24Appendix A.16: eRTG3D: movingMedian()
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horizontal distance between the starting and endpoint of every gliding section. In
order to minimize the influence of outliers, the median of the glide ratios of all glid-
ing sections is taken and set as the glide ratio for the simulation.

The up-sampling to high-resolution trajectories is conducted between each pair
of successive fixpoints of the low-resolution trajectory within the buffer. This has
the advantage that not the entire distance within the buffer is up-sampled all at
once, which drastically reduces the required computing power. Since the number
of maximum possible steps between the successive fixpoints is defined in advance,
the Q probability is calculated only once and is then reused for the simulations of
the gliding and soaring sections. For each section that has to be up-sampled, the
number of simulation steps for connecting the successive points is estimated using
Equation 4.16 (p. 39). Then, the Q probability is truncated to this number of steps.
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FIGURE 4.5: Up-sampling procedure of a low-resolution trajectory
crossing Zurich Airport to a high-resolution gliding and soaring tra-

jectory.

Figure 4.5 illustrates the up-sampling procedure. In a first step, the low-resolution
trajectory crossing the Swiss Central Plateau is generated. Afterwards, the fixpoints
inside the 15 km buffer around the airport are identified and connected by high-
resolution gliding and soaring CERWs. This procedure is repeated until 100 000
white stork trajectories have been simulated in the region of Zurich Airport.

4.3.4 High Performance Computing Cluster

The Max Planck Computing and Data Facility hosts several HPC systems, including
the Draco cluster, which is used in this case. Most of its compute nodes have a
main memory of 128 GB and 64 cores if Hyper Threading (HT) is enabled (Table
4.2). For an efficient simulation of the trajectories on the HPC cluster of the Max
Planck Society, the procedure is adjusted in a scalable and modular manner. Since
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the cluster is accessed via a batch system, the Slurm Workload Manager25, batch jobs
have to be defined. These batch jobs are then submitted to the batch queue on the
cluster.

type nodes cores clock memory

co
m

pu
te

768 64 (HT) 2.3 GHz 128 GB
1 64 (HT) 2.3 GHz 256 GB
4 64 (HT) 2.3 GHz 512 GB
64 80 (HT) 2.2 GHz 256 GB

gp
u 102 64 (HT) 2.3 GHz 128 GB

4 64 (HT) 2.3 GHz 256 GB

total 943 61 376 (HT) 1.12 PetaFlop/s 131 072 GB

TABLE 4.2: System configuration of the Draco HPC cluster of the Max
Planck Society. Based on: www.mpcdf.mpg.de

Every batch job has to define the resources and maximum time that it needs before-
hand. Based on the amount of resources ordered, the priority is determined in the
batch queue. To avoid a low priority in the queue, the generation of the 100 000 tra-
jectories is split into smaller parts. Therefore, only 1 000 trajectories per batch job are
simulated. In addition, the batch job is limited to one node of the cluster, where it
can use all cores and the total memory of the node. Following from this, each batch
job is simultaneously generating 64 trajectories on one node until the total 1 000 are
simulated. Due to its small size, the batch job is treated with high priority and gets
the required resources assigned faster. To achieve 100 000 trajectories, the batch job
is submitted 100 times to the Draco cluster via the Slurm Workload Manager, using
the following instructions:

LISTING 4.1: Slurm: Instructions for the cluster

1 #SBATCH −−j ob−name=s i m T r a c k s
2 #SBATCH −−ou tp ut= l o g / s imTracks_%a . o . l o g
3 #SBATCH −−t ime = 1 2 : 0 0 : 0 0
4 #SBATCH −−nodes =1
5 #SBATCH −−a r r a y =1−100
6 #SBATCH −−n t a s k s =64
7 #SBATCH −−p a r t i t i o n = g e n e r a l
8 #SBATCH −−cpus−per−t a s k =1
9 #SBATCH −−mem−per−cpu =1024

Since the batch job is executed 100 times and thus 100 times the same input data
sets are needed for the simulation, it is possible to prepare the data sets beforehand
and save them in a single file. This file, which includes the P and Q probabilities for
the different resolutions, the uplift suitability map, and the DEM, is loaded into the
node’s memory whenever a batch job is started on a node.

25www.slurm.schedmd.com
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4.3.5 Collision Probability

Once the high-resolution white stork trajectory simulation and the filtering of the
airplane flight trails are completed, UDs for birds and planes are extracted. For this
purpose, a voxel space with a voxel resolution of 100× 100× 100 m is defined for
the spatial extent of the 15 km buffer. The height of the voxel space is delimited by
the lowest topography value and the maximum flight height observed in the sim-
ulated bird trajectories. Since the time lag between the fixpoints in the simulations
is constantly 1 second, the total time the bird spends in a voxel can thus be calcu-
lated by adding up the fixpoints per voxel26. A relative measure for the expected
time spent in a voxel is obtained by dividing each voxel count value by the total
number of fixpoints in the voxel space. Thus, a probability of occurrence of white
storks is calculated for each voxel during fall migration. Since the time lag is also
constant in the airplane data set, the same procedure is applied on the flight trails to
obtain a probability of occurrence of airplanes around Zurich Airport in August and
September of 2017.

The two voxel spaces, which represent the UDs of the white storks and airplanes,
have the same anchor point and orientation in space and are therefore congruent
with each other. This constellation mathematically allows a multiplication of the
two UDs that yields the likelihood of appearing in the same voxel during the same
period. Under some simplifying assumptions, as for example a static mean weather
and a constant spatial distribution over time, the resulting voxel space represents
the collision probabilities of white storks and airplanes at Zurich Airport during fall
migration.

26Appendix A.17: eRTG3D: voxelCount()
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Chapter 5

Results

5.1 Empirically Informed Random Trajectory Generator in 3-
D

The major contribution of this thesis is the eRTG3D, an algorithm capable of gener-
ating empirically informed random trajectories in the 3-D space between two given
fixpoints. The trajectory generation is based on the methodology introduced in the
preceding chapter and provides robust and traceable simulations that meet the ini-
tial requirements. The algorithm has a modular structure, which splits the simula-
tion procedure into smaller parts. This allows the reuse of structures that are needed
multiple times for simulations with the same conditions. Furthermore, it makes the
algorithm well-extensible and adjustable to complex scientific problems. In con-
trast, a slimmed-down version of the algorithm can be used for simple applications
to maintain a high level of computational efficiency.

The methodology was implemented in R and is available via the R package
eRTG3D1. Beyond the basic functionality of the eRTG3D, the package also provides
functions for testing and visualizing the results. Methods that facilitate the prepro-
cessing of the input data, such as the transformation of the CRS in 3-D or the cleaning
of outliers from trajectories, extend the package. Furthermore, wrapper functions
that combine multiple functions of the algorithm together guarantee an easy out-
of-the-box use of the algorithm. Finally, the package supports move objects from the
move2 package and comes with a linkage to the sf 3 package. The sf package deliv-
ers a framework to encode spatial vector data, the so-called Simple Features (SFs).
It binds to GDAL4 for reading and writing spatial data, to GEOS5 for spatial oper-
ations, and to Proj.46 for CRS transformations. The eRTG3D package comes with
functions that convert the observed and simulated trajectories to simple features.
The resulting sf, data.frame objects enable the use of the full functionality of the sf
package, which also includes the access to spatial databases, such as PostGIS7.

1www.github.com/munterfinger/eRTG3D
2www.cran.r-project.org/package=move
3www.cran.r-project.org/package=sf
4www.gdal.org
5www.osgeo.org/geos
6www.proj4.org
7www.postgis.net
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The algorithm has been implemented such that always the same inputs must be
provided in advance. Only then, the simulation of trajectories can be conducted.
Therefore, a standard procedure has been established. First, the P and Q probabil-
ities are extracted either from suitable trajectories or from clean trajectory sections.
Then, the start and end conditions are set. Thus, these structures remain constant
and any number of CERWs can be generated. The following block of code illustrates
the standard procedure of the algorithm by which a bird’s trajectory is reproduced:

LISTING 5.1: Standard procedure for reproducing a trajectory

1 l i b r a r y (eRTG3D)
2

3 t r a c k S e c t i o n s <− t r a c k . s p l i t . 3 d ( bird , timeLag )
4 P <− get . s e c t i o n . d e n s i t i e s . 3 d ( t r a c k S e c t i o n s , DEM = dem)
5

6 n . l o c s <− nrow ( bird )
7 s t a r t <− Reduce ( c , b ird [ 1 , 1 : 3 ] )
8 end <− Reduce ( c , b ird [ n . locs , 1 : 3 ] )
9 a0 <− bird $a [ 1 ]

10 g0 <− bird $g [ 1 ]
11

12 f a c t o r <− 1500
13 UERW <− sim . uncond . 3 d ( n . l o c s = n . l o c s ∗ fac tor , s t a r t = s t a r t ,
14 a0 = a0 , g0 = g0 , d e n s i t i e s = P )
15

16 Q <− qProb . 3 d (UERW, n . l o c s = n . l o c s )
17

18 CERW <− sim . cond . 3 d ( n . l o c s = n . locs , s t a r t = s t a r t , end = end ,
19 a0 = a0 , g0 = g0 , d e n s i t i e s = P ,
20 qProbs = Q, DEM = dem)

To generate more than one CERW (e.g. 100), all available cores of the computer can
be addressed with the following code:

LISTING 5.2: Reproduce a trajectory multiple times in parallel

1 CERWs <− n . sim . cond . 3 d ( n . sim = 100 , mult icore = TRUE,
2 n . l o c s = n . locs , s t a r t = s t a r t , end = end ,
3 a0 = a0 , g0 = g0 , d e n s i t i e s = P ,
4 qProbs = Q, DEM = dem)
5 CERWs <− f i l t e r . dead . ends (CERWs)

An easier way to get the same results as above is provided by a wrapper function:

LISTING 5.3: Wrapper function for the reproduction of trajectories

1 CERWs <− reproduce . t r a c k . 3 d ( bird , DEM = dem,
2 n . sim = 100 , mult icore = TRUE)
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5.2 Verification

For the verification of the algorithm, 10 CRWs with correlation values between 0.1
and 0.99 were reproduced 30 times each by the eRTG3D algorithm. The limitation
of the bins in the turn-lift-step histogram was deactivated, which means that an
infinite number of bins was possible in each dimension. Additionally, the gradient
distribution was not incorporated in the generation of the CERWs, since the CRWs
were not constrained by any physical limitations and thus unconstrained movement
in space was allowed. Furthermore, simulations that have encountered a dead end,
were ignored. Figure 5.1 shows two CRWs using a correlation value of 0.1 and 0.99,
respectively, with their reproductions by the eRTG3D algorithm and the PDFs of the
turning angles, lift angles, and step lengths.
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FIGURE 5.1: CRWs with a correlation of 0.1 and 0.99 and their repro-
ductions by the eRTG3D algorithm. A) Correlation of 0.1: 3-D plot,
B) Correlation of 0.1: Densities, C) Correlation of 0.99: 3-D plot, D)

Correlation of 0.99: Densities.
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The reproductions were then tested against the original CRWs by applying the ap-
proach described in Section 4.2.1 (p. 43). Table 5.1 lists the p-values of the Kolmogorov–
Smirnov tests:

cor turning angle lift angle step length auto turn auto lift auto step

0,1 0,942 0,639 0,919 0,627 0,272 0,887
0,2 0,968 0,223 0,942 0,638 0,132 0,369
0,3 0,588 0,358 0,629 0,711 0,026 0,486
0,4 0,925 0,79 0,48 0,985 0,259 0,457
0,5 0,993 0,32 0,568 0,994 0,125 0,476
0,6 0,972 0,68 0,66 0,944 0,505 0,68
0,7 0,884 0,861 0,919 0,828 0,638 0,995
0,8 0,919 0,518 0,991 0,828 0,791 0,741
0,9 0,96 0,69 0,912 0,627 0,093 0,345
0,99 0,952 1 0,639 0,386 0,894 0,515

TABLE 5.1: p-values of the Kolmogorov–Smirnov tests.

Following the methodology described in Section 4.2.2 (p. 44), the mean pair-wise dif-
ferences between the distributions of the trajectories were tested against zero (Table
5.2):

cor turning angle lift angle step length

0,1 0,952 0,716 0,811
0,2 0,813 0,621 0,566
0,3 0,742 0,841 0,957
0,4 0,895 0,852 0,903
0,5 0,966 0,531 0,759
0,6 0,567 0,889 0,222
0,7 0,76 0,429 0,689
0,8 0,264 0,998 0,643
0,9 0,405 0,566 0,964
0,99 0,754 0,328 0,811

TABLE 5.2: p-values of the t-tests for the mean differences.

At a significance level of α = 0.05, no test results of both approaches are significant,
which means that no reproduction is significantly different from its original CRW.
To determine a possible trend in the reproduction quality with respect to the corre-
lation of the CRWs, Figure 5.2 was created. It indicates a weak trend in the results
of the t-tests, whereby reproductions of CRWs with low correlations tend to have
higher p-values. In contrast, the p-values of the Kolmogorov–Smirnov tests do not
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show a dependency on the correlation values of the initial CRWs. However, the au-
todifferences distributions of the lift angles have the lowest p-values, while at a high
correlation of 0.99 all scores are good.
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FIGURE 5.2: p-values of the statistical tests, conducted on the distri-
butions of the CRWs versus the CERWs.

In addition, the autocorrelation of the azimuth and gradient was calculated at a lag
of one for every CRW and the corresponding CERW. Since each CRW was repro-
duced 30 times, the mean of the autocorrelation values of the CERWs was taken.
Since the CRWs’ turning and lift angles were sampled from a wrapped normal dis-
tribution, correlated by a concentration parameter, the calculated autocorrelations of
the CRWs are not exactly equal to the initially set correlation values for their produc-
tion. A linear model was fitted to the autocorrelations in the azimuth and gradient.
The r2 value is 0.605 for the azimuth and 0.708 for the gradient. This means that
approximately two-thirds of the variance in the autocorrelations is explainable.
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5.3 Validation

The validation of the eRTG3D algorithm in terms of its biological and ecological
validity is based on 30 reproductions of the low-resolution trajectory of the white
stork ‘Niclas’ by the eRTG3D algorithm. Niclas traversed the Swiss Central Plateau
during his migration northwards. As with the verification of the algorithm in the
previous section, the simulation of the trajectories allowed an unlimited number of
bins in each dimension of the turn-lift-step histogram. Trajectories that did not arrive
at the destination were ignored. Figure 5.4 shows the original trajectory together
with the simulations in their topographical environment. Each trajectory consists of
31 fixpoints.

FIGURE 5.4: White stork Niclas crossing the Swiss Central Plateau
(black line), was reproduced 30 times by the eRTG3D algorithm (light

blue lines).

Most of the simulated trajectories are concentrated around the path of Niclas and
remain between the Jura Mountains in the north and the Alps in the south. How-
ever, a few trajectories also use valleys in the southern foothills of the Alps for their
northward-directed migration. In addition, there are some rare cases in which the
simulated trajectory passes through mountain ranges, which is not possible. In gen-
eral, the flight height of Niclas varies slightly more than in most simulated trajec-
tories. Therefore, also the distribution of the gradient seems to vary less within the
simulations, which makes them appear smoother.

As the simulation of the trajectories involved the distributions of the gradient
and the absolute, as well as the relative flight height of Niclas, their properties
should be reflected in the simulations. Figure 5.5 plots the densities of gradient,
relative and absolute flight height of the original trajectory in comparison to the
simulated trajectories. It is important to note that the densities were obtained from
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samples of different sizes. The simulations offered 30 times more fixpoints for the
extraction of the densities.
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FIGURE 5.5: Densities of gradient, relative and absolute flight height
of Niclas’ trajectory and the simulated trajectories.

The density plots indicate that, in the simulations, the lower absolute heights are
overrepresented and the lower relative heights are underrepresented. The density
of the gradient of the simulations is narrower and has the mode (most frequently
occurring value) at a slightly smaller value than the gradient density of Niclas.

5.4 Sensitivity Analysis

The sensitivity analysis of the maximum bin parameter was also conducted on the
movement behavior of Niclas. For different limits of the maximum number of bins
in the turn-lift-step histogram, the trajectory of Niclas was reproduced 30 times by
the eRTG3D algorithm.

maxBin turning angle lift angle step length auto turn auto lift auto step

12 0,858 0,493 0,916 0,499 0,171 0,869
15 0,874 0,325 0,991 0,68 0,091 0,952
25 0,903 0,228 0,916 0,619 0,044 0,985
50 0,874 0,058 0,866 0,639 0,001 0,96
100 0,833 0,124 0,881 0,721 0,002 0,899
150 0,7 0,15 0,934 0,629 0,002 0,968
250 0,797 0,098 0,866 0,731 0,001 0,931
500 0,72 0,098 0,797 0,731 0,001 0,919
Inf 0,7 0,095 0,903 0,608 0,001 0,936

TABLE 5.3: Sensitivity analysis of the maximum number of bins: p-
values of the Kolmogorov–Smirnov tests.
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The same statistical tests that have been used in the verification process of the al-
gorithm were applied in the sensitivity analysis comparing the simulations with
the original trajectory of Niclas. The p-values of the tests of both approaches are
listed in Tables 5.3 and 5.4, respectively. At a significance level of α = 0.05, only the
Kolmogorov–Smirnov tests of the autodifferences of the lift angle are significant for
reproductions that are based on turn-lift-step histograms that allow more than 25
bins per dimension. Furthermore, the tests of the lift angle have rather low p-values,
but they are not significant. Most of the other p-values are close to 1.

maxBin turning angle lift angle step length

12 0,532 0,861 0,592
15 0,922 0,371 0,711
25 0,798 0,947 0,192
50 0,889 0,93 0,315
100 0,9 0,916 0,944
150 0,929 0,97 0,347
250 0,501 0,994 0,46
500 0,726 0,774 0,88
Inf 0,832 0,826 0,739

TABLE 5.4: Sensitivity analysis of the maximum number of bins: p-
values of the t-tests for the mean pair-wise difference.

In general, the p-values of the t-tests are higher than the p-values of the Kolmogorov–
Smirnov tests. Furthermore, no t-test result is significant. In contrast to the first ap-
proach, in which the p-values of the step lengths are the highest, the p-values of the
step lengths in the second approach tend to be lowest.
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FIGURE 5.6: p-values of the sensitivity analysis, conducted on the dis-
tributions of the observed trajectory versus the CERWs, with varying

maximum number of bins allowed in the turn-lift-step histogram.
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In Figure 5.6, the results of the t-tests indicate the trend that the values tend to be
closer to one for high numbers of maximum possible bins. This trend is less pro-
nounced in the results of the Kolmogorov–Smirnov tests; and the trend is even
reversed for the p-values of the lift angles and the corresponding autodifferences,
where the p-values are sometimes even significant (α = 0.05) for a large number of
maximum possible bins. Besides the p-values of the lift angles and the correspond-
ing autodifferences, the results of the Kolmogorov–Smirnov tests seem to be less
affected by the number of allowed bins.
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FIGURE 5.7: A limit of maximum 12 bins per dimension versus an
unlimited number of bins. A) Maximum of 12 bins: 2-D plot, B) Max-
imum of 12 bins: Densities, C) Infinite number of bins possible: 2-D

plot, D) Infinite number of bins possible: Densities.

The visual comparison of the simulations with a maximum limit of 12 bins per di-
mension with simulations based on an unlimited turn-lift-step histogram shows that
the spatial variance is stronger in simulations with the lower bin limitation. These
trajectories are distributed more widely in space and follow the original trajectory of
Niclas (white deposited line in Figure 5.7 A and C) less closely. Furthermore, it can
be observed that the variation at the beginning of the simulations, that is near the
starting point, is significantly greater. In addition, the simulations with an unlim-
ited histogram seem to better follow the topography, as they do not traverse the Jura
Mountains in the north, and as they follow the course of valleys in the south more
precisely.
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5.5 Bird-strike Probability at Zurich Airport

In this section, the results of the demonstrator use case of the eRTG3D algorithm are
presented. All the intermediate steps, which were necessary to eventually obtain the
joint collision probability of migrating white storks and airplanes at Zurich Airport
in fall, are outlined by various figures and tables.

5.5.1 P and Q Probabilities of the Different Modes

In order to extract the P and Q probabilities for the low-resolution simulations, the
trajectory of Wibi 2 was split into clean sections. Thereby, a time lag of one second
was ensured with a tolerance of 0.05 seconds. The clean sections were then down-
sampled to a time lag of 120 seconds. From these down-sampled sections, the P
probability was extracted. Then, a UERW, 1500 times longer than the trajectory of
Wibi 2, served as input for the calculation of the Q probability.

FIGURE 5.8: Gliding (light blue line) and soaring (pink line) classifi-
cation of a section of the trajectory of Wibi 2.

Starting again from the trajectory of Wibi 2, the clean high-resolution sections fur-
ther were split into gliding and soaring sections. Therefore, the steps were classified
based on positive or negative change in height into gliding or soaring steps. After-
wards, the moving median approach, described in Section 4.3.3 (p. 47), was applied
on the binary classification. The classification result was visually checked and 3
gliding and 7 soaring sections were omitted, since they were either too short or did
not reflect a clear flying behavior. Figure 5.8 shows a clean example section of the
trajectory of Wibi 2 and its classification into gliding and soaring.

From the classified sections, turn-lift-step histograms were extracted for the glid-
ing and soaring mode, respectively. Illustrations of these histograms are shown in
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Figures 5.9 and 5.10, whereby their tld-cubes were mapped to the spatial dimen-
sions, starting from the origin (0, 0, 0). While the turn-lift-step histogram of the soar-
ing mode is strongly scattered with an upward directed tendency, the movement in
gliding mode is more focused towards the front and the step length is much longer.

FIGURE 5.9: Turn-lift-step histogram, representing the gliding mode.

FIGURE 5.10: Turn-lift-step histogram, representing the soaring
mode.
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Furthermore, the density approximations of the gradient, as well as absolute and
relative flight heights, were gathered for the two modes. In Figure 5.11 the differ-
ence in the distribution of the gradient between the two modes becomes obvious.
Since an angle of π

2 represents an exactly horizontal flight, this threshold nicely sep-
arates the two densities. The gradient in soaring mode varies more strongly than in
gliding mode, because soaring depends on the encountered uplift conditions, while
the gliding behavior is more independent from the environment and therefore more
constant.
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FIGURE 5.11: Gradient densities of gliding (light blue) and soaring
(pink) mode, extracted from the classified sections.

As Table 5.5 indicates, the approach of the destination mostly takes place in glid-
ing flight mode, with a mean step towards the target value of −16.88. Further, the
negative median glide ratio of −5.05 in soaring mode quantifies the height gain,
which means Wibi 2 gains 1 m of height per 5 m horizontal movement towards the
target. In contrast the bird converts 1 m of height loss into almost 18 m of horizontal
movement.

mode sections steps mean dz mean step2target median glide ratio

gliding 25 2218 -0,98 -16,88 17,67
soaring 20 1764 1,19 -3,99 -5,09

TABLE 5.5: Gliding and soaring classification statistics.

To assess the extracted P probabilities, a gliding and a soaring section was repro-
duced that are shown in Figures 5.12 and 5.13, respectively. Thereafter, the simula-
tions were tested statistically against the original sections. Except for the step length,
no significant deviation occurred8.

8Appendix C.1 and C.2: p-values of the tests
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FIGURE 5.12: Reproductions (light blue lines) of a gliding section
(black line).

FIGURE 5.13: Reproduction (light blue line) of a soaring section
(black line).
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5.5.2 Gliding and Soaring in One Model

Given stable probabilities, the two modes were tested combined in one model. There-
fore, a trajectory section of Wibi 2 (white deposited line in Figure 5.14), consisting of
one soaring and two gliding sections, was reproduced 9 times based on the two
modes and a binary uplift background layer. Due to the tendency of approaching
the target in gliding mode, the Q probability was extracted from an UERW that was
simulated based on the P probability of the gliding mode.
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ENDEND
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Wibi 2: Reproduced gliding and soaring section

FIGURE 5.14: 2-D plot of the gliding and soaring reproductions and
the uplift suitability map (yellow = uplift, red = no uplift).
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FIGURE 5.15: Densities of the gliding and soaring reproductions, and
original trajectory, respectively.
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About 70 percent of the simulated CERWs encountered a dead end. This rate is
significantly higher than the dead end rate of the algorithm version that simulates
trajectories based on one movement mode, which is usually about 15 percent.

FIGURE 5.16: 3-D plot of the gliding and soaring reproductions (light
blue lines) and the original trajectory section (black line).

Figure 5.16 shows the original and the simulated trajectories in 3-D. It is well rec-
ognizable that the simulated birds use the uplift areas to gain height until they have
enough potential energy accumulated to reach the target. They also ascend about to
the same height as the original trajectory and follow its path. There are also CERWs
that use the uplift areas several times, because they could not gain enough height on
the first climb.

After this successful combination of gliding and soaring behavior in one model, the
Q probability for the maximum number of gliding steps in the final simulations was
calculated. Then, all input data sets for the simulation were exported to an RData
file for the cluster. In addition to the P and Q probabilities for the various modes,
the file also contains the raster files of the DEM and the binary uplift suitability map.
Furthermore, the two vectors for the random sampling of the starting and endpoints
of the low-resolution simulation and the buffer around Zurich Airport are included.
Finally, parameters such as the glide ratio or the mean step towards the target in
gliding mode are part of the file. With these preparatory steps in place, the large-
scale simulations on the cluster can be performed.
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5.5.3 Simulations on the HPC Cluster

As soon as all input data sets were prepared for the cluster, the simulations on the
HPC cluster could begin. The simulation batch job9 was submitted 100 times to the
Draco cluster via the Slurm Workload Manager, by the script shown in Listing 4.1
(p. 49). Since the requested times and resources of the submitted jobs were rather
small, they were treated with high priority in the queue of the cluster. Figure 5.17
shows the simulation jobs in the queue of the account munterfi that was used.

FIGURE 5.17: Screenshot of the simulation batch jobs in the queue on
the Draco cluster.

Approximately three days later, 100 000 high-resolution gliding and soaring trajec-
tories in the 15 km buffer around Zurich Airport were generated. They were saved
in portions of 1 000 trajectories each, as RData files to the file system of the cluster.
The size of all simulated trajectories together is nearly 9 GB.

FIGURE 5.18: 100 high-resolution gliding and soaring simulation ex-
amples in relation to the original trajectory of Wibi 2.

9Appendix A.18: simTracks.R
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Figure 5.18 places 100 example simulations and the original trajectory of Wibi 2 into
their spatial context of the Swiss Central Plateau. The black lines in the figure indi-
cate the locations from which the starting and endpoints were sampled. As soon as a
low-resolution simulation has crossed the buffer, the up-sampling to high-resolution
gliding and soaring trajectories began.

FIGURE 5.19: 10 simulation examples and a subset of 50 flight trails
per flight corridor at Zurich Airport.

The statistical comparison of 1 000 random samples of the 100 000 simulations with
the original trajectory revealed significant deviations for all Kolmogorov–Smirnov
tests, while only the distributions of the step lengths differed significantly in the
t-tests10.
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FIGURE 5.20: Densities (A) and autodifferences densities (B) of the
high-resolution gliding and soaring simulations.

10Appendix C.3: p-values of 1 000 reproduced gliding and soaring CERWs
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5.5.4 Joint Utilization Distribution

Based on a voxel space of 100× 100× 100 m, the UDs of airplanes and white storks
were calculated by counting the fixpoints per voxel, followed by a subsequent stan-
dardization over the entire number of fixpoints. Then, the two voxel spaces were
multiplied. The resulting voxel space represents the probability of a common occur-
rence per voxel in the 3-D space, and therefore is a joint UD of birds and airplanes.
Figures 5.22, 5.23 and 5.24, respectively, show the voxel spaces as horizontal image
slices in bands of 100 m altitude each. The lower and upper bounds of each band are
recorded in the title of each image slice (e.g. m500.600 designates the height band
between 500 and 600 m altitude).

The simulated white storks fly mainly at altitudes between 700 and 1000 m. They
spend more time in areas with good uplift conditions. Since the flight of the birds
is directed towards the south, the northern edges of the areas with good uplift con-
ditions are preferably used for soaring. In total, the probability of occurrence is
highest along the northern edges at altitudes between 800 and 900 m. In the UD of
the airplanes, the individual flight corridors are clearly recognizable. The northern
corridor is strongly favored for arrivals, while the western direction is preferred for
departures. The departure corridors are spatially more spread out than the arrival
corridors, whereby the spread increases above an altitude of 1000 m. However, the
arrival corridors proceed at a shallower angle than the departure corridors. The
joint UD indicates the highest collision probabilities in the northern arrival corridor
between 600 and 900 m altitude. The western departure corridor also has a higher
collision probability at altitudes between 800 and 1100 m.

Figure 5.21 shows a 3-D rendering of the overlaid UDs of the birds (yellow) and
the airplanes (blue), and the collision probability (red) at Zurich Airport.

FIGURE 5.21: 3-D rendering of the bird-strike probability.
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FIGURE 5.22: UD of white storks. Scale: logarithmic.
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FIGURE 5.23: UD of airplanes. Scale: logarithmic.
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FIGURE 5.24: Collision probabilities of white storks with airplanes
during fall migration. Scale: logarithmic.
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Chapter 6

Discussion

In this chapter, the results of the last chapter are critically discussed and the findings
placed in the context of the research questions posed at the outset of this thesis.
Therefore, each research question is dealt with individually in a separate section.
For reasons of comparability, each section uses the same structure.

6.1 RQ 1 – Development and Implementation

The first part of this thesis was devoted to the development and implementation of
a probabilistic movement model that allows the simulation of trajectories in the 3-D
space. The development started from the existing eRTG algorithm, as introduced
by Technitis et al. (2016), which generates empirically informed random trajectories
in the 2-D space. Following from this, the crucial criterion was to ensure that the
simulated 3-D trajectories mimic a previously determined movement behavior and
have a predefined starting and endpoint. These important characteristics were used
to guarantee that the eRTG3D algorithm is applicable for many different tasks in the
field of movement ecology. Situations, for example, in which an insufficient amount
of 3-D movement data is available, can be bridged by means of simulation. In ad-
dition, the new model should help to fill in missing data in 3-D trajectories as well
as to enable up-scaling the temporal resolution of low-resolution 3-D trajectories.
Another application area of the algorithm was set to be the creation of null models
for the expected movement in 3-D space. Therefore, the first research question was
posed as follows:

RQ 1 Development – How is the third dimension best modeled and implemented in the
eRTG algorithm so that empirically informed random trajectories can be generated
in 3-D space?

Research Question 1 forms the core of this thesis. All following steps and procedures
depend on the successful development and implementation of the eRTG3D. Hence,
the major part of the total time was invested into the development of the methodol-
ogy for Research Question 1. The goal was to maintain the modular concept of the
2-D eRTG and to develop the resulting eRTG3D algorithm as comprehensively as



74 Chapter 6. Discussion

possible. Although the application part of the thesis is fully devoted to the simula-
tion of bird trajectories, the core of the algorithm was developed in such a way that
the 3-D movement is defined in a generic manner and not just limited to bird flight.

The basic concept behind the trajectory simulation is a stepwise procedure that
is grounded on two probabilities, which are extracted from an observed input trajec-
tory in 3-D. The first probability, the P probability, describes the movement behavior
from the mover’s perspective, while the second probability, the Q probability, rep-
resents the attraction towards the target. From this modular construction principle
it follows that, with the eRTG3D algorithm, not only conditional but also uncondi-
tional trajectories, so-called UERWs, can be generated. The UERWs serve a further
purpose since the Q probability can be extracted from them if the original input tra-
jectory does not consist of a sufficient number of fixpoints. The core of both proba-
bilities is a multidimensional histogram, a voxel space, that represents either (t, l, d)-
combinations for one step (P probability) or (t, l, d)-combinations for multiple steps
in respect to the target (Q probability). Therefore, a new concept has been devel-
oped: the turn-lift-step histogram or tld-cube. Further, the consistency in movement
was considered by incorporating density approximations of the autodifferences in
each of the (t, l, d)-dimensions. The concept of fitting approximation functions to
density estimates of empirical distributions was then applied to further movement
parameters, such as the absolute and relative flight height and the gradient. Finally,
in the stepwise simulation of a CERW, the probability of every possible next location
is assessed by the extracted histograms and the approximation functions. Based on
this probability, the next location is sampled. This procedure is repeated until the
trajectory either encounters a dead end or reaches the target.

Interpretation of the Resulting Algorithm

By extending the eRTG to the third dimension, the algorithm is now based on a
3-D probabilistic movement model. This makes it possible to simulate empirically
informed trajectories in 3-D space. They can either be unconditional (UERW) or
conditional on a given endpoint (CERW). Further, the 3-D space in which the sim-
ulations take place, may be characterized in various ways. Frequently used heights
above ground and ellipsoid, or preferred gradients, are used to limit the freedom
in the movement of the simulations. Thereby, physical constraints in the 3-D space,
such as obstacles or gravity, may be accounted for.

The eRTG3D algorithm is a very robust algorithm that requires virtually no pa-
rameters. Further, it is computationally scalable and adaptable to a variety of prob-
lems. The simulations can be performed independently of the original spatial extent,
since they only require start conditions, an endpoint and a movement behavior rep-
resented in the empirical distributions of movement parameters of given trajectories.
This means that the simulations can take place in new and unobserved regions that
are not congruent with the extent of the original trajectory. While most of the current
approaches to analyze 3-D tracking data extract summarizing characteristics, which
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describe the distribution of occurrences in the given 3-D space of the observation
(Cooper, Sherry, and Marra, 2014; Tracey et al., 2014; Bras, Jouma’a, and Guinet,
2017), the eRTG3D is not bound to the spatial extent of the data collection. This
allows to make predictions about a probable movement behavior of an animal in a
region where it has not been tracked before. This circumstance opens up a multitude
of new research opportunities.

In comparison to other 3-D trajectory simulation algorithms, such as the 3-D
RRW of Foster, Grassberger, and Paczuski (2009), the endpoint that the empiri-
cally informed random trajectories have to reach may be defined. This property
is a unique feature of the eRTG3D algorithm within the field of animal movement
simulation. Furthermore, due to the modular design of the algorithm, most of the
RW types can be imitated and thereby turned into a conditional version. For exam-
ple, by the inclusion of a background layer that reinforces already visited places, a
conditional RRW version could easily be realized by the eRTG3D.

Uncertainties and Limitations

Although great efforts have been invested in the development of a suitable method-
ology for implementing the third dimension, some uncertainties have nevertheless
arisen. They either are a direct consequence of the properties of the input data, or
they have emerged with the choice of a particular way to solve a problem, even
if other approaches were available. In the following, the uncertainties concerning
Research Question 1 are discussed and their handling is justified.

Data If the algorithm is not applied to synthetic data, but to real movement data
most likely GPS tracking data will be used. Since the accuracy of the GPS devices
depends on the quality of the satellite link, it can not be assumed that the position-
ing error is constant. The quality of the data is largely dependent on the geometry
of the current recording situation. In an open sky situation, the record will be more
accurate than in a covered terrain, where the direct contact to the satellites could be
disturbed. Such disturbances may result in a delay in the recording time interval or
even in missing data. In the case of the eRTG3D, besides the position in the (x, y)-
plane, the height information is of crucial importance. It should be noted that the
z-component of GPS tracking data is often more affected by errors than the (x, y)-
position. Bouten et al. (2013) tested a light-weight GPS device on white storks. At
a measurement interval of 6 s, the positional mean error was 2.45 m and the mean
altitude error was 2.77 m. At larger time intervals between the fixpoints, the accu-
racy in the position and height measurements decreases. This is due to the fact that
in long intervals the satellite connection is not maintained and thus at the time of
the fixpoint recording less satellites are usually available. In addition, the success
rate for obtaining fixpoints decreases, which in the end leads to irregular time lags
between the fixpoints. In order to automatically split trajectories into clean sections
with a constant time lag, a tolerance of ±0.5 times the standard deviation of all time
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lags, as maximum variation from the expected time lag, showed good segmentation
results.

Cartesian coordinates Since the formulae behind the algorithm are based on the
Cartesian (x, y, z)-coordinate system, latitude and longitude coordinates are not sup-
ported. They have to be transformed into a Cartesian projected CRS. It follows that
the curvature of the Earth’s surface is not taken into account in the calculations. This
is negligible for simulations on a small spatial scale, but if large-scale simulations are
planned, the curvature of the earth must be considered. A solution is to divide the
simulation into several sections and then simulate them individually in the corre-
sponding Cartesian CRS. Then, the sections are converted to latitude and longitude
data and stitched together. Thereby, it is helpful to follow the zones of the Universal
Transverse Mercator (UTM) coordinate system, which approximates the slope of the
Earth with a system of projected CRSs with local projection parameters.

Bin size estimation Since the Freedman–Diaconis rule is very robust and well es-
tablished in scientific literature, it was chosen to estimate the bin size per dimension
in the turn-lift-step histogram. But there are further formulae and rules of thumb for
the estimation of the optimal bin size available, as for example the Sturges’ formula,
Rice Rule, Scott’s normal reference rule, and many others (Lane et al., 2011). In order
to better support the choice of a method, it would be conceivable to implement the
most promising methods in the eRTG3D algorithm and compare the resulting sim-
ulations with each other.

Combining probabilities To obtain the probability Pi+1 for each individual step,
several probabilities must be combined. This is done by multiplying the different
probability values at any next location (Equation 4.8, p. 37). By just multiplying the
individual terms, no weighting takes place. In the case of the probabilities for the au-
todifferences in each dimension, the probability is concerned about the same prop-
erty. Therefore, in their combination they have to be weighted as less important than
the probability of the turn-lift-step histogram, so as to maintain enough freedom in
movement. To achieve this, the probabilities of the autodifferences are multiplied
with each other and then the cubic root is taken. Then, the individual probabilities
are united into one probability value per location and can be multiplied with the
turn-lift-step histogram probability. Figure 6.1 illustrates the issue based on three
empirical distribution functions (blue lines) extracted from values that were sam-
pled from normal distributions with varying µ and σ2 parameters. By multiplying
the three distributions, the probabilities decrease drastically; by applying the cubic
root, the probabilities rise again. In the lower plot of the figure, the two resulting
distributions are shown standardized between 0 and 1. The distribution, where the
third root was taken, is wider and thus allows more freedom in the choice of the
next location than the simple multiplication. Therefore, the combined influence of
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the autodifferences is of equal importance as the probabilities of the turn-lift-step
histogram in the final probability Pi+1.
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FIGURE 6.1: Combining probabilities: Multiplication versus multipli-
cation and applying the cubic root.

The same approach is applied in Equation 4.17 (p. 40), where the two probabili-
ties for the absolute and relative flight height are multiplied and the square root is
taken to unite them into one probability. Another approach to avoid this issue could
be to weight the probabilities individually. But this would introduce a variety of
new problems and an extensive sensitivity analysis on the definition of the weights
would become necessary. Various other approaches have been explored in this work,
such as omitting the root or dividing by the number of probabilities. All alternative
approaches increased the dead ends encountered by the CERWs.

Dead ends Since the eRTG3D algorithm is grounded on a probabilistic movement
model, dead ends are not necessarily a bad thing. The CERWs should reflect the
geometric characteristics of the movement behavior of the original trajectories and,
at the same time, should be as random as possible within this limitation. Hence, the
CERW may maneuver itself into a dead end because the algorithm does not foresee
more than one step and thus does not schedule its entire route. The downside of the
dead ends is that they alone can not reveal why the CERWs got stuck, since a dead
end is encountered if the sum of one probability term in the Equation 4.17 (p. 40)
is zero. Thus, it is difficult to detect whether the initially extracted probabilities are
distorted or the given topography favors many dead ends. By saving the individ-
ual probability terms for every step, this issue could be solved, since this would
allow their analysis in retrospect, and possibly backtracking. Additionally, further
conclusions can be drawn about the (movement) suitability of the environment, by
studying the locations in the 3-D space where the dead ends occurred.
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Line of sight Since the simulation is based on fixpoints which are arranged in a
sequence in order to form a trajectory, the actual path between the fixpoints is ig-
nored. When simulating trajectories in a 3-D space that contains obstacles, such as
the Earth’s surface, this concept can be problematic. If the temporal resolution of the
simulation is smaller than the spatial scale of the objects in space, a trajectory might
pass through them, since during the simulation only the subsequent fixpoint can not
be inside or below the object. In Figure 6.2, for example, the connecting straight line
between two subsequent fixpoints passes through the Earth’s surface, even though
both endpoints are above the surface. To overcome this issue, it would be necessary
to calculate the Line of Sight (LoS) for every path between all steps. Since this is
a computationally demanding task in which all height differences from the line to
each grid cell of the DEM passing the line are calculated, it is not possible to solve
the problem this way. A simple workaround is to use a sufficiently high temporal
resolution in the simulations and thus eliminate situations in which an obstacle is
traversed between two subsequent fixpoints.
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FIGURE 6.2: Line of sight between two subsequent fixpoints.

Reflections on RQ1

As an answer to Research Question 1, it can be stated that the methodology for
the simulation of empirically informed random trajectories in 3-D largely retains
the modular concept of the initial 2-D eRTG, consisting of a P and a Q probability,
respectively. However, the individual components of the concept and the stepwise
trajectory generation itself were extended to the third dimension. Due to the great
freedom of movement in 3-D space, the introduction of further physical constraints
became necessary. As a consequence, a methodological concept was developed that
appropriately reproduces movement behavior in the 3-D space. Additionally, this
methodology was implemented in the R package eRTG3D.
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6.2 RQ 2 – Evaluation

The second part of the thesis was dedicated to the evaluation of the newly devel-
oped and implemented algorithm. Not only the internal correctness of the devel-
oped probabilistic movement model, but also the ecological validity of the final
implementation has to be inspected. Therefore, the second research question was
formulated as follows:

RQ 2 Evaluation – How representative are the random trajectories generated with the
eRTG3D algorithm?

In order to answer Research Question 2, the evaluation of the eRTG3D algorithm was
split into an internal verification, a validation in terms of its environmental validity
and a sensitivity analysis of the parameter that limits the maximum number of bins
in the turn-lift-step histogram. All test results have been interpreted at a significance
level of 5 percent (α = 0.05).

For the internal verification, two statistical test procedures have been developed.
In each case, an initial trajectory was compared with 30 simulated reproduction tra-
jectories that were based on the movement characteristics extracted from the initial
trajectory. In order to guarantee the independence of the tests from the spatial extent
of the trajectories, properties, which describe the steps from the mover’s view (turn-
ing angle, lift angle and step length), were tested against each other. The first statis-
tical test procedure is based on two-sample Kolmogorov-Smirnov tests, whereby the
distributions of all available sample pairs are tested against each other. Due to the
susceptibility of the Kolmogorov–Smirnov test to the sample size, a second approach
was developed. Here, the distributions of the differences in turning angle, lift angle
and step length of a limited number of sample pairs were tested on two sides against
an expected value of 0, using a one-sample t-test. The limit of the sample pairs was
set to the length of the shortest trajectory in the test. Both methods have in common
that they do not test equality in itself, but assume that as long as no significant de-
viation can be determined, the trajectories can be regarded as originating from the
same movement behavior.

In order to assess the ecological validity of the eRTG3D algorithm, an empiri-
cally observed trajectory of a white stork was reproduced 30 times by the eRTG3D
algorithm. Then, the geometrical properties and the choice of flight path of the re-
productions were compared visually with the original trajectory. The visual compar-
ison was based on various 2-D and 3-D plots, in which also background properties,
such as the DEM, had been visualized.

For the sensitivity analysis, the same white stork trajectory as used for the eco-
logical validation was reproduced 30 times each for 9 different values of the dimen-
sion limiting parameter in the turn-lift-step histogram. Thereafter, the reproductions
were tested statistically and compared visually against the original.
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Interpretation of the Evaluation Results

Verification

The verification of the algorithm was conducted on synthetic trajectories. Testing the
CRWs, which were created for different correlation values, against their reproduc-
tions revealed no significant results (Table 5.1 and 5.2, p. 54). Since the initial CRWs
were reproduced 30 times each, it can be assumed that the results are constant and
reproducible. Furthermore, only a weak trend was identifiable in the p-values of the
t-tests in dependency of the correlation values of the initial CRWs (Figure 5.2, p. 55).
Although most p-values are close to 1, their interpretation remains tricky due to the
influence of the sample size, a problem that is addressed in the next section. More-
over, they do not allow drawing direct conclusions in terms of the equality of the
reproductions, since the p-values represent only the probability of obtaining a result
as it is, in the case when the null hypothesis is true. However, it is important to note
that, independently of the correlation value for the production of the CRWs (con-
sistency in movement), no reproduction was significantly different than its initial
CRW. The algorithm therefore is considered to be robust against different variations
in the consistency in movement of trajectories. This finding is further underlined
by Figure 5.3 (p. 55), where the autocorrelations of both, the CRWs and their repro-
duction CERWs, are calculated retrospectively. The autocorrelation in step length
was omitted in this figure, since in the production of the CRWs the length of each
step was sampled from a predefined normal distribution and therefore was not cor-
related with the step length of the preceding step. In any case, the eRTG3D was
able to reconstruct CRWs with trajectories that had no significantly different distri-
butions of turning angle, lift angle and step length and their autocorrelation values
resembled the values of the original CRWs.

Validation

The validation of the eRTG3D algorithm in terms of its biological and ecological va-
lidity was conducted based on 30 reproductions of the low-resolution trajectory of
a white stork crossing the Swiss Central Plateau. Figure 5.4 (p. 56) indicates that
most of the simulated CERWs are biologically feasible. There are two trajectories
that traverse a mountainous area. Here, the line of sight-problem, which was pre-
viously mentioned in this chapter, becomes apparent, since the big time lag used in
the simulations allows passing through the small southern foothills of the Alps. This
is clearly a methodological problem of the algorithm, but it can easily be avoided
by increasing the temporal resolution of the simulations. Besides this problem, all
simulations appear to be ecologically plausible, as they avoid unrealistically high
altitudes and flybys close to the ground. Further, the consistency in movement re-
sembles the original white stork trajectory. Furthermore, the majority of the simula-
tions choose a path that leads to the target just as directly as the original trajectory.
A few reproductions are slightly more scattered and hold north or south in regard to
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the original trajectory, but they remain within the Swiss Central Plateau. Due to the
random component of CERWs, the spatial scattering is also desired. The scattering
can further be explained by the fact that, besides the DEM, no background, which
would further limit the freedom in the movement, such as the uplift suitability map,
was used in these simulations.

Sensitivity Analysis

Apart from the autodifferences of the lift angle, no test result of the sensitivity anal-
ysis was significant (Table 5.3 and 5.4, p. 57). It can be assumed that the influence
of the gradient distribution and the height distributions distort the choices with re-
gard to the lift angle and that, therefore, the autodifferences in the lift angle deviate
significantly from the original. This statement is underlined by the fact that no other
distributions of the autodifferences deviate significantly from the original trajectory.
Figure 5.6 (p. 58) indicates that the larger the allowed number of bins becomes, the
more robust the result is. In this case, robust means that the variation of the p-values
in the different dimensions (turning angle, lift angle, step length and the correspond-
ing autodifferences) is smaller and they are closer to 1. This circumstance is well
traceable, as even a strongly limited turn-lift-step histogram allows for a continuous
choice in every dimension, since a uniform distributed shift term is added to each
bin midpoint. Thus, as the number of allowed bins in the histogram increases, the
probability to draw an extreme sample due to the shift term will decrease, since the
voxel bin is smaller in each dimension. The visual comparison (Figure 5.7, p. 59) of
the results is also very clear. The simulations that are based on an unlimited turn-lift-
step histogram respond better to the changing topography. They follow the course
of valleys more exactly and better use topographically suitable regions. Moreover,
they avoid an unrealistic outburst from the Swiss Central Plateau to the north.

Uncertainties and Limitations

Regarding the methodology that was used to cope with Research Question 2, some
uncertainties and limitations need to be addressed.

P-value Although the p-value is a widely used statistical measure that underpins
many evaluations of research results, it often leads to false interpretations and mis-
use of test results. In the case of this thesis, where the p-values are used to estimate
whether two trajectories originate from the same movement behavior, it is important
to note that the p-value says nothing about the probability of the null hypothesis
(H0) itself. It only represents the probability to receive exactly the same result as ob-
served in the sample, given the null hypothesis is true (Goodman, 2008; Greenland
et al., 2016). Since, at a significance level of 5 percent (α = 0.05), the correct null
hypothesis is discarded (type I error) every 20th time on average, the p-value should
be calculated several times by repeating the experiment (Head et al., 2015).
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Sample size A fundamental limitation of the statistical significance analysis is the
susceptibility of the p-value to the sample size, or, as Wasserstein and Lazar (2016,
p. 132) adress the problem:

“Any effect, no matter how tiny, can produce a small p-value if the sam-
ple size or measurement precision is high enough, and large effects may
produce unimpressive p-values if the sample size is small or measure-
ments are imprecise.”

In the context of this thesis, this implies that, when short trajectories are compared
against each other, the test results have the tendency to overlook actually important
deviations between the distributions. By contrast, long trajectories or a large number
of short simulations increase the sample size and thus ensure that even the slightest
deviations between the distributions of turning angle, lift angle and step length lead
to significant test results.

Distribution of height The visual inspection of the densities of the absolute and
relative flight height and the gradient in Figure 5.5 (p. 57) revealed that the lower
absolute heights are overrepresented and the lower relative heights are underrepre-
sented. Due to the influence of the topography on the relative flight height in the
simulations, a variation from the original flight height is to be expected to a certain
extent, but the trend seems to be systematic. An explanation for this could be that
both height probabilities (absolute and relative) have the same weight during the
creation of the CERWs. In real life, it may happen that one height is more impor-
tant than the other. From the systematic over- and underrepresentation it can be
concluded that the altitude in the simulations is generally somewhat more constant
than in the original trajectory. The same constancy is also evident in the density of
the gradient, which is slightly narrower and has the mode at a slightly lower value
than the original gradient density. It can be assumed that the stronger constancy
in the heights and gradient originates from the influence of the autodifferences, that
limit the variation in movement. The white stork trajectory chosen for the validation
has a low temporal resolution of 20 minutes. This may not be an ideal condition for
the extraction of the autodifference approximations, since the variance is expected
to be extremely high.

Reflections on RQ2

With respect to the initially posed Research Question 2, it can be concluded that, due
to the successful verification, the reliable validation and the robust sensitivity anal-
ysis, the trajectories generated with the eRTG3D are internally correct, ecologically
valid and thus able to adequately reproduce 3-D movement behavior. From the sen-
sitivity analysis it further follows that the choice of a low maximum number of bins
is only justified if a high computational efficiency is of maximum concern.
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6.3 RQ 3 – Application

In the third part of the thesis, the capabilities of the eRTG3D algorithm were shown
by means of a demonstrator use case. As an example use case, the estimation of
probabilities of migrating white storks colliding with airplanes near Zurich Airport
was chosen. Thus, the third research question was posed as follows:

RQ 3 Application – What are the collision probabilities of white storks (Ciconia ciconia)
and airplanes in the arrival and departure corridors at Zurich Airport (ZRH) during
the birds’ fall migration?

The idea behind Research Question 3 was to demonstrate and cover as many appli-
cations of the eRTG3D algorithm as possible in one use case. In order to achieve this,
the standard functionality of the eRTG3D algorithm was used for the low-resolution
simulation of white stork trajectories crossing the Swiss Central Plateau. Then, the
modularity of the algorithm was used for its extension by the gliding and soaring
functionality. Thereby, the uplift suitability map, as a further physical constraint,
was included into the simulations. Finally, the low-resolution trajectories were up-
sampled to high-resolution gliding and soaring trajectories based on the gliding and
soaring version of the algorithm. The temporal up-sampling of trajectories is a fur-
ther application that the eRTG3D algorithm was designed for. Outsourcing the cal-
culations to a cluster demonstrated the scalability of the algorithm, which is based
on its modularity and ability to parallelize the simulation processes.

To complete the application part, UDs were derived from the simulated trajecto-
ries of the white storks and the observed airplane flight paths. Since the calculation
of the UDs was not part of the core task of this master’s thesis, the reasonably simple
approach of voxel counting was chosen. As a last step, the collision probability was
obtained by multiplication of the two UDs.

Interpretation of Results

The final high-resolution gliding and soaring trajectories in the area around Zurich
Airport look very plausible (Figure 5.19, p. 67). As the distributions of the flight
height and the gradient as well as the consistency in movement resemble the move-
ment characteristics that were observed in the trajectory of Wibi 2. Furthermore, the
gliding and soaring appears to be very natural, since no extreme heights are gained
and no unrealistically long gliding phases occur.

It has to be pointed out that all statistical results of the Kolmogorov–Smirnov
tests are significant. Also in the t-tests, the distribution of the step length in the sim-
ulations varies significantly from the observed distribution in Wibi 2. These nega-
tive statistical test results have three causes. Firstly, there are two movement modes
in the simulations and in the original trajectory. However, the proportion of time
spent in each mode is not defined beforehand, since it is mostly depending on the
flight path chosen and the uplift suitability encountered while following the path.
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Therefore, this proportion varies from trajectory to trajectory, which leads to differ-
ent distributions across the simulations. Secondly, the transition between soaring
and gliding phases is smoothed. Thereby, the bird is oriented towards the target.
Since the movement covered in this correction path is not sampled from the P and
Q probabilities, the final distributions of the simulations are slightly distorted. Fi-
nally, the third reason is the vast size of the samples that are compared, which affects
the robustness of the p-value. Every simulated trajectory consist of more than 1 000
steps and 1 000 simulated trajectories were tested against the original trajectory of
Wibi 2.

Although the statistical test results of the final simulations are not as positive as
expected, it can nevertheless be assumed that the simulated trajectories are ecolog-
ically valid and represent plausible white stork migration routes. This conclusion
is based on the better statistical results, which were obtained when the movement
modes were tested separately (Table C.1 and C.2, p. xlv), and the visual inspection
of the densities of the turning angle, lift angle, step length, and the corresponding
autodifferences in Figure 5.20 (p. 67).

From the observed trajectory of Wibi 2 it became clear that the white storks pass
through the airspace above Zurich Airport during their fall migration. The calcu-
lated UD of white storks passing above the airport further reveals that most of the
birds use the space to the north of the airport for their journey at altitudes between
700 and 1 000 m. This is mainly due to the fact that white storks encounter good
uplift conditions there and the route to their destination in the southwest is more
direct. A similar trend in space use is observed in the UD of the airplanes, where the
northern arrival corridor and the eastern departure corridor are preferred and used
in similar height bands that the white storks use too. Buchmüller et al. (2015) come
to similar results in their analyses of the air traffic at Zurich Airport (Figure 6.3).

FIGURE 6.3: Air traffic corridors for arrivals (red) and departures
(blue) at Zurich Airport. Source: Buchmüller et al. (2015, p. 181)



6.3. RQ 3 – Application 85

Uncertainties and Limitations

In the methodology that was applied to cope with the third research question, there
are some points that have to be considered critically. These points are discussed in
the following.

Individuality The probabilities (P and Q) for the simulations were, for the sake
of simplicity, only extracted from the trajectory of one white stork. However, as
the available data basis in the movebank data repository is very large, and due to its
modular structure, the eRTG3D algorithm would be very well suited to perform sim-
ulations based on multiple individuals. To achieve this, several white stork trajecto-
ries would have to be prepared accordingly and then, several probabilities could be
extracted from them. By means of a random sampling for each simulation of a tra-
jectory, the movement behavior of an individual white stork could hence be drawn
from the previously extracted probabilities. Overall, this would most likely lead to
ecologically more representative simulations.

Binary uplift suitability Since the uplift suitability map is classified into a binary
layer, the edge areas of uplift zones are consistently and intensely used for soaring.
If, instead of a rigid binary classification, a continuous uplift suitability map with
intensity values between 0 and 1 was used, the transition between the zones would
be less pronounced. It is also important to note that the uplift suitability map repre-
sents an average weather situation, which is independent of the time of day and the
day of the year.

Voxel resolution The resolution of the voxel cells of 100× 100× 100 m was chosen
in regard to the average size of airplanes. A plane is only represented as a point in
the analysis, but it has a much larger extension. Consequently, the calculation of the
collision probabilities is based on the assumption that, whenever an airplane and a
bird meet in such a voxel, they inevitably collide.

Distribution over time When calculating the UDs, the spatial distribution of birds
and airplanes is considered to be constant over time. This means that it is not distin-
guished at what time a bird passes the airspace above the airport. The same applies
to the UD of the airplanes.

Reflections on RQ3

In order to answer Research Question 3 it can be concluded that the highest cal-
culated risk of collisions during the fall migration of white storks is located in the
northern arrival corridor at altitudes between 600 and 900 m. In addition, the colli-
sion probability is also higher in the eastern departure corridor at altitudes between
800 and 1 100 m. These results seem plausible, since a migration route to the north
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of the airport is more favorable for the white storks, while at the same time the air
traffic is the most intense in this region. Due to the underlying assumption that the
spatial distributions of birds and airplanes are constant over time, the calculated
probabilities can not be considered as absolute. They rather show the danger for
bird strikes relatively between the different flight corridors, while good uplift con-
ditions can drastically increase the duration that white storks spend in an airspace.
Thus, the danger of collisions of soaring birds with airplanes could be estimated by
measuring the uplift conditions in the flight corridors, as these measurements could
be used as a proxy for estimating the bird-strike probability in real time.
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Chapter 7

Conclusion

7.1 Summary

The work on this thesis started off with a comprehensive review of literature with
the objective to identify important research gaps in the field of 3-D animal movement
simulation. In order to address the identified research gaps, three research questions
have been posed. The first research question was dedicated to the development and
implementation of the eRTG3D algorithm in order to enable the simulation of em-
pirically informed random trajectories in 3-D space. The second research question
tackled the evaluation of the algorithm, which was subdivided into an internal veri-
fication of the algorithm, an ecological validation of the generated trajectories, and a
sensitivity analysis. The third research question was concerned with the demonstra-
tion of the capabilities of the eRTG3D algorithm. To this end, an illustrative example
application was carried out, whereby the collision probabilities of migrating white
storks with airplanes at Zurich Airport were calculated. In the subsequent discus-
sion the obtained results were interpreted and the methodology applied was criti-
cally examined. Finally, the results were reflected with regard to the initially posed
research questions and thereby the research questions were answered.

7.2 Contributions

Although the thesis was tripartite due to the formulation of three research questions,
the most important knowledge gains are summarized in one comprehensive list that
presents the outcome of this thesis as a whole:

• An extensive literature review was conducted, which summarized the exist-
ing movement simulation models in the field of movement ecology. Thereby,
crucial research gaps in the field of 3-D movement simulation were identified.

• Thereafter, starting from the existing concept of the eRTG, a new probabilistic
movement model that represents the movement behavior of a mover from its
perspective in 3-D was developed, termed eRTG3D.

• The eRTG3D algorithm was then implemented, based on this 3-D probabilis-
tic movement model, which enables the simulation of unconditional (UERWs)
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and conditional (CERWs) empirically informed random trajectories in the 3-D
space.

• Subsequently, the new algorithm was successfully evaluated. The trajectories
simulated by the eRTG3D algorithm are statistically reliable and ecologically
valid.

• The successful evaluation allows the use of the eRTG3D algorithm for model-
ing and studying movement phenomena in 3-D, based on observed tracking
data. It should be noted that the regions within which the simulations take
place must not be congruent with the initial spatial extent of the original track-
ing data that was used training the algorithm. Hence, the eRTG3D algorithm
even enables movement analyses outside the original area of observation in
new regions.

• Furthermore, a version of the algorithm reproducing the movement behavior
of soaring birds was developed and implemented. To the author’s knowledge,
no other algorithm exists, which is capable of simulating gliding and soaring
flight behavior of birds in 3-D, based on an uplift suitability map.

• The modular and efficient design of the algorithm, its independence of the ini-
tial spatial extent and the fact that actual trajectories are generated between
two given points introduce a multitude of new possibilities tackle movement-
related research questions in 3-D. These new possibilities include the gener-
ation of null hypotheses for movement in 3-D under given assumptions, the
temporal up-sampling of 3-D trajectories, the bridging of missing data in 3-D,
or the derivation of statements about the 3-D movement behavior of a larger
group based on the observed movement behavior of an individual, to name
but a few.

• A demonstrator use case was conducted. The estimation of collision proba-
bilities of soaring white storks and airplanes at Zurich Airport successfully
demonstrated the use of the different capabilities of the eRTG3D algorithm.

• The demonstrator use case further revealed that the highest collision proba-
bility of white storks with airplanes at the airport Zurich during their fall mi-
gration is located in the northern arrival corridor (600− 900 m a.s.l.) and in the
eastern departure corridor (800− 1 100 m a.s.l.). Furthermore, the crucial influ-
ence of the prevailing uplift conditions on the space use of soaring birds was
highlighted.

• Finally, the eRTG3D algorithm is available as an R package on www.github.com,
which makes it easily accessible, facilitates its use among the field of move-
ment ecology, and favors its further development.
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7.3 Future Research

Further research related to the eRTG3D algorithm can be split into two types: On
the one hand, the new algorithm, as it exists now, enables the study of a variety
of new movement phenomena of flying animals by means of simulations in 3-D.
Furthermore, the investigation of the gliding and soaring behavior of birds is made
possible to a new extent. On the other hand, the eRTG3D algorithm itself can be
further developed and extended. The methodology of the current eRTG3D version
features some critical points that have been addressed in Chapter 6. It would be im-
portant to further explore these issues, and, for example, to find a methodological
solution to the line of sight problem. In addition to the immediate improvement of
the existing methodology, there are almost unlimited possibilities of extending the
eRTG3D algorithm with exciting new capabilities. Due to the modular methodolog-
ical concept of the eRTG3D algorithm, the development and implementation of such
extensions should be straightforward. In the following, some interesting extensions
worth thinking about are proposed.

A capability that could be implemented with relatively little effort is the exten-
sion of the algorithm for diving animals. Hence, only the water surface would need
to be introduced as a confining top layer and the already integrated DEM layer could
be replaced by a bathymetric layer, which represents the bottom of the water body.
As a consequence, the simulation of trajectories that are limited to a water body
would become possible. Another useful enhancement of the algorithm could be the
merging of the 2-D with the 3-D version. Thus, it should be possible to switch seam-
lessly between the versions during the simulation, e.g. using the 2-D version for
simulating long-haul, large-scale migration, while using the 3-D version for more
detailed and more local movements. It would further be beneficial to allow the
inclusion of multiple movement modes per individual in a more general manner.
The switch between modes could then be coordinated by additional physical con-
straints, such as energy expenditure or the time of day. In addition, the integration
of social attractors and networks into the algorithm would enable simulations of the
movement behavior of individuals with respect to other individuals or even swarm
behavior. Finally, the development could even be directed towards an agent-based
model, in which entire lifespans of individuals, including their predators or com-
peting species, as well as available resources, could be included so as to reflect an
entire ecosystem. In this regard, the main property of the algorithm that uncondi-
tional and conditional empirically informed random trajectories can be generated, is
particularly useful, since exploratory as well as targeted movement behavior could
by this manner be included in the agent-based model.

As this concluding section has highlighted, the possibilities of the eRTG3D algorithm
are far from being exhausted, on the contrary, further exciting research topics and
versatile applications have just been made possible through the eRTG3D algorithm.
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Appendix A

Code

R Package ’eRTG3D’

In this section of Appendix A the key functions of the eRTG3D package are listed.
As the development of the package will be further continued, this code represents
the state of the functions used to answer the research questions. Listing A.1 gives an
overview on the specifications of the package at the time of submission of this thesis.

LISTING A.1: eRTG3D: DESCRIPTION
1 Package : eRTG3D
2 T i t l e : Generate Empir ica l ly Informed Random T r a j e c t o r i e s in 3−D
3 Version : 0 . 5 . 2
4 Authors@R : c (
5 person ( " Merlin " , " Unter f inger " , email = " info@munterfinger . ch " , r o l e = c ( " aut " , " c re " ) ) ,
6 person ( " Kamran " , " S a f i " , email = " ksafi@orn .mpg. de " , r o l e = " aut " ) ,
7 person ( " George " , " T e c h n i t i s " , email = " george . techni t i s@gmai l . com " , r o l e = " aut " ) ,
8 person ( " Robert " , " Weibel " , email = " r o b e r t . weibel@geo . uzh . ch " , r o l e = " aut " ) )
9 URL: ht tps :// github . com/munterfinger/eRTG3D

10 Descr ipt ion : The e m p i r i c a l l y informed random t r a j e c t o r y generator in three dimensions (eRTG3D)
11 i s an algorithm to generate r e a l i s t i c random t r a j e c t o r i e s in a 3−D space
12 between two given f i x points in space . The t r a j e c t o r y generat ion i s based on
13 empir i ca l d i s t r i b u t i o n f u n c t i o n s e x t r a c t e d from observed t r a j e c t o r i e s ( t r a i n i n g data )
14 and thus r e f l e c t s the geometr ica l movement c h a r a c t e r i s t i c s of the mover .
15 Depends : R (>= 3 . 5 . 0 )
16 Imports : C i r c S t a t s (>= 0.2−4) ,
17 d o P a r a l l e l (>= 1 . 0 . 1 1 ) ,
18 ggplot2 (>= 2 . 2 . 1 ) ,
19 gr idExtra (>= 2 . 3 ) ,
20 r a s t e r (>= 2.6−7) ,
21 r a s t e r V i s (>= 0 . 4 5 ) ,
22 p a r a l l e l (>= 3 . 5 . 0 ) ,
23 pbmcapply (>= 1 . 2 . 5 ) ,
24 plyr (>= 1 . 8 . 4 ) ,
25 p l o t l y (>= 4 . 7 . 1 ) ,
26 sp (>= 1.2−7)
27 License : GPL (>= 1.2−7)
28 Encoding : UTF−8
29 LazyData : t rue
30 RoxygenNote : 6 . 0 . 1
31 Suggests : kn i t r ,
32 rmarkdown ,
33 s f (>= 0.6−3)
34 Vignet teBui lder : k n i t r

The current version of the package can be accessed as follows:

• Install package from inside R:
devtools :: install _github("munterfinger/eRTG3D")

• Download source: www.github.com/munterfinger/eRTG3D
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LISTING A.2: eRTG3D: stepTurnLiftHistogram()
1 t u r n L i f t S t e p H i s t <− function ( turn , l i f t , step , printDims = TRUE, rm . zeros = TRUE, maxBin = 25)
2 {
3 nx <− min (max ( f l o o r (2 ∗ pi / . fd .bw( turn ) ) , 1 2 ) , maxBin )
4 ny <− min (max ( f l o o r (2 ∗ pi / . fd .bw( l i f t ) ) , 1 2 ) , maxBin )
5 nz <− min (max ( f l o o r (max ( step ) / . fd .bw( step ) ) , 1 2 ) , maxBin )
6 i f ( printDims ) { message ( " |TLD cube dimensions : " , nx , " x " , ny , " x " , nz ) }
7 tCuts <− . cutMidpoints ( turn , nx ) ; lCuts <− . cutMidpoints ( l i f t , ny ) ; dCuts <− . cutMidpoints ( step , nz )
8 h <− l i s t ( turn=tCuts [ [ 1 ] ] ,
9 l i f t =lCuts [ [ 1 ] ] ,

10 step=dCuts [ [ 1 ] ] )
11 h <− do . c a l l ( data . frame , h )
12 h <− as . data . frame ( table ( h ) )
13 tRes <− tCuts [ [ 2 ] ] ; lRes <− lCuts [ [ 2 ] ] ; dRes <− dCuts [ [ 2 ] ] ;
14 colnames ( h ) [ 4 ] <− " prob "
15 i f (rm . zeros ) { h <− h [ ! h$prob ==0 , ] }
16 h$prob <− h$prob / sum( h$prob )
17 h [ 1 : 3 ] <− lapply ( h [ 1 : 3 ] , function ( x ) { as . numeric ( l e v e l s ( x ) ) [ x ] } )
18 return ( l i s t ( values = h , tRes = tRes , lRes = lRes , dRes = dRes ) )
19 }

LISTING A.3: eRTG3D: get.densities.3d()
1 get . d e n s i t i e s . 3 d <− function ( turnAngle , l i f t A n g l e , stepLength , d e l t a L i f t , deltaTurn , del taStep ,
2 gradientAngle = NULL, h e i g h t E l l i p s o i d = NULL, heightTopo = NULL, maxBin = 25)
3 {
4 cubeTLD <− t u r n L i f t S t e p H i s t ( turn = turnAngle , l i f t = l i f t A n g l e , step = stepLength , maxBin = maxBin )
5 autoT <− approxfun ( density . default ( deltaTurn ) )
6 autoL <− approxfun ( density . default ( d e l t a L i f t ) )
7 autoD <− approxfun ( density . default ( d e l t a S t e p ) )
8 i f ( ! i s . null ( gradientAngle ) ) {
9 gDens <− approxfun ( density . default ( gradientAngle [ gradientAngle > 0 & gradientAngle < pi ] ) )

10 } e lse {
11 gDens <− function ( x ) { return ( as . numeric ( x > 0 & x < pi ) ) }
12 }
13 i f ( ! i s . null ( h e i g h t E l l i p s o i d ) ) {
14 h D i s t E l l i p s o i d <− approxfun ( density . default ( h e i g h t E l l i p s o i d ) )
15 } e lse {
16 h D i s t E l l i p s o i d <− function ( x ) { 1 }
17 }
18 i f ( ! i s . null ( heightTopo ) ) {
19 hDistTopo <− approxfun ( density . default ( heightTopo ) )
20 } e lse {
21 hDistTopo <− function ( x ) { 1 }
22 }
23 return ( l i s t ( tldCube = cubeTLD , autoT = autoT , autoL = autoL , autoD = autoD , gDens = gDens ,
24 h D i s t E l l i p s o i d = h D i s t E l l i p s o i d , hDistTopo=hDistTopo ) )
25 }

LISTING A.4: eRTG3D: get.track.densities.3d()
1 get . t r a c k . d e n s i t i e s . 3 d <− function ( t rack , gradientDensi ty = TRUE, h e i g h t D i s t E l l i p s o i d = TRUE,
2 DEM = NULL, maxBin = 25)
3 {
4 . i s . df . xyz ( t r a c k )
5 t r a c k <− t r a c k . p r o p e r t i e s . 3 d ( t r a c k )
6 turnAngle <− t r a c k $ t [ 2 : nrow ( t r a c k ) ] ; l i f t A n g l e <− t r a c k $ l [ 2 : nrow ( t r a c k ) ] ; stepLength <− t r a c k $d [ 2 : nrow ( t r a c k ) ]
7 deltaTurn <− d i f f ( turnAngle ) ; d e l t a L i f t <− d i f f ( l i f t A n g l e ) ; d e l t a S t e p <− d i f f ( stepLength )
8 i f ( gradientDensi ty ) {
9 gradientAngle <− t r a c k $g } e lse { gradientAngle <− NULL}

10 i f ( h e i g h t D i s t E l l i p s o i d ) { h e i g h t E l l i p s o i d <− t r a c k $z } e lse { h e i g h t E l l i p s o i d <− NULL}
11 i f ( ! i s . null (DEM) ) {
12 . check . e x t e n t (DEM = DEM, t r a c k = t r a c k )
13 heightTopo <− t r a c k $z − r a s t e r : : e x t r a c t (DEM, t r a c k [ , 1 : 2 ] )
14 } e lse { heightTopo <− NULL}
15 return ( get . d e n s i t i e s . 3 d ( turnAngle = turnAngle , l i f t A n g l e = l i f t A n g l e , stepLength = stepLength ,
16 d e l t a L i f t = d e l t a L i f t , deltaTurn = deltaTurn , d e l t a S t e p = del taStep ,
17 gradientAngle = gradientAngle , h e i g h t E l l i p s o i d = h e i g h t E l l i p s o i d ,
18 heightTopo = heightTopo , maxBin = maxBin ) )
19 }

LISTING A.5: eRTG3D: track.split.3d()
1 t r a c k . s p l i t . 3 d <− function ( t rack , timeLag , lag = NULL, t o l e r a n c e = NULL)
2 {
3 . i s . df . xyz ( t r a c k )
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4 i f ( any ( i s . na ( timeLag ) ) ) stop ( " TimeLag i s not allowed to conta in NAs. " )
5 i f ( i s . null ( lag ) ) {
6 m <− mean ( timeLag )
7 } e lse {m <− lag }
8 i f ( i s . null ( t o l e r a n c e ) ) {
9 t o l e r a n c e <− 0 . 5 ∗ sd ( timeLag )

10 }
11 splitRows <− which ( abs (m−timeLag ) > t o l e r a n c e )
12 t r a c k S e c t i o n s <− s p l i t ( t rack , cumsum ( 1 : nrow ( t r a c k ) %in% ( splitRows + 2 ) ) )
13 n S p l i t s <− length ( splitRows ) ; nChange <− round (sum( timeLag [ splitRows ] /m−1 ) ) ;
14 message ( paste ( " |Mean time lag : " , round (m, 2 ) , " , t o l e r a n c e : " , round ( to le rance , 2 ) ,
15 " , number of s p l i t s : " , n S p l i t s , " , proposed change in s teps : " , nChange , sep=" " ) )
16 return ( t r a c k S e c t i o n s )
17 }

LISTING A.6: eRTG3D: get.section.densities.3d()
1 get . s e c t i o n . d e n s i t i e s . 3 d <− function ( t r a c k S e c t i o n s , gradientDensi ty = TRUE, h e i g h t D i s t E l l i p s o i d = TRUE,
2 DEM = NULL, maxBin = 25)
3 {
4 t r a c k S e c t i o n s <− lapply (X= t r a c k S e c t i o n s , FUN= function (X) t r a c k . p r o p e r t i e s . 3 d (X ) [ 2 : nrow (X) , ] )
5 deltaTurn <− Reduce ( c , lapply (X = t r a c k S e c t i o n s , FUN = function (X) d i f f (X$ t ) ) )
6 d e l t a L i f t <− Reduce ( c , lapply (X = t r a c k S e c t i o n s , FUN = function (X) d i f f (X$ l ) ) )
7 d e l t a S t e p <− Reduce ( c , lapply (X = t r a c k S e c t i o n s , FUN = function (X) d i f f (X$d ) ) )
8 t r a c k S e c t i o n s <− do . c a l l ( rbind , t r a c k S e c t i o n s )
9 turnAngle <− t r a c k S e c t i o n s $ t ; l i f t A n g l e <− t r a c k S e c t i o n s $ l ; stepLength <− t r a c k S e c t i o n s $d

10 i f ( gradientDensi ty ) { gradientAngle <− t r a c k S e c t i o n s $g } e lse { gradientAngle <− NULL}
11 i f ( h e i g h t D i s t E l l i p s o i d ) { h e i g h t E l l i p s o i d <− t r a c k S e c t i o n s $z } e lse { h e i g h t E l l i p s o i d <− NULL}
12 i f ( ! i s . null (DEM) ) {
13 . check . e x t e n t (DEM = DEM, t r a c k = t r a c k S e c t i o n s )
14 heightTopo <− t r a c k S e c t i o n s $z − r a s t e r : : e x t r a c t (DEM, t r a c k S e c t i o n s [ , 1 : 2 ] )
15 } e lse { heightTopo <− NULL}
16 return ( get . d e n s i t i e s . 3 d ( turnAngle = turnAngle , l i f t A n g l e = l i f t A n g l e , stepLength = stepLength ,
17 d e l t a L i f t = d e l t a L i f t , deltaTurn = deltaTurn , d e l t a S t e p = del taStep ,
18 gradientAngle = gradientAngle , h e i g h t E l l i p s o i d = h e i g h t E l l i p s o i d ,
19 heightTopo = heightTopo , maxBin = maxBin ) )
20 }

LISTING A.7: eRTG3D: sim.uncond.3d()
1 sim . uncond . 3 d <− function ( n . locs , s t a r t =c ( 0 , 0 , 0 ) , a0 , g0 , d e n s i t i e s , e r r o r = TRUE)
2 {
3 # p r o g r e s s b a r and t ime
4 message ( paste ( " |Simulate UERW with " , n . locs , " s teps " , sep = " " ) )
5 s t a r t . time <− Sys . time ( )
6 pb <− t x t P r o g r e s s B a r (min = 0 , max = n . locs , s t y l e = 3)
7 ui <− f l o o r ( n . l o c s / 20)+1
8 # g e t c o o r d i n a t e s o f t h e t l d C u b e
9 t s <− d e n s i t i e s $ tldCube $ values $ turn

10 l s <− d e n s i t i e s $ tldCube $ values $ l i f t
11 ds <− d e n s i t i e s $ tldCube $ values $ step
12 # g e t p r o b s f o r e a c h turn− l i f t −d i s t a n c e c o m b i n a t i o n
13 t ldProbs <− d e n s i t i e s $ tldCube $ values $prob
14 sCond <− sample ( 1 : nrow ( d e n s i t i e s $ tldCube $ values ) , 1 , prob=t ldProbs )
15 # "x" "y" " z " " a " "g" " t " " l " "d" "p"
16 # "1" "2" "3" "4" "5" "6" "7" "8" "9"
17 RTG <− matrix ( 0 , n . locs , 9 )
18 RTG[ 1 , ] <− c ( s t a r t [ 1 ] , s t a r t [ 2 ] , s t a r t [ 3 ] , a0 , g0 , t s [ sCond ] , l s [ sCond ] , ds [ sCond ] , NA)
19 # c r e a t e random n o i s e i f e r r o r i s TRUE ( uni form d i s t r i b u t e d )
20 i f ( e r r o r ) {
21 t S h i f t <− runif ( n . locs , −d e n s i t i e s $ tldCube $ tRes / 2 , d e n s i t i e s $ tldCube $ tRes / 2)
22 l S h i f t <− runif ( n . locs , −d e n s i t i e s $ tldCube $ lRes / 2 , d e n s i t i e s $ tldCube $ lRes / 2)
23 d S h i f t <− runif ( n . locs , −d e n s i t i e s $ tldCube $dRes / 2 , d e n s i t i e s $ tldCube $dRes / 2)
24 } e lse {
25 t S h i f t <− l S h i f t <− d S h i f t <− numeric ( n . l o c s )
26 }
27 for ( i in 2 : n . l o c s )
28 {
29 # g e t i n f l u e n c e o f c u r r e n t a u t o d i f f e r e n c e s
30 atProbs <− d e n s i t i e s $autoT (RTG[ i −1, 6 ] − t s + t S h i f t [ i ] )
31 alProbs <− d e n s i t i e s $autoL (RTG[ i −1, 7 ] − l s + l S h i f t [ i ] )
32 adProbs <− d e n s i t i e s $autoD (RTG[ i −1, 8 ] − ds + d S h i f t [ i ] )
33 atProbs [ i s . na ( atProbs ) ] <− 0
34 alProbs [ i s . na ( a lProbs ) ] <− 0
35 adProbs [ i s . na ( adProbs ) ] <− 0
36 atProbs <− atProbs / sum( atProbs )
37 alProbs <− alProbs / sum( a lProbs )
38 adProbs <− adProbs / sum( adProbs )
39 # m u l t i p l y and t a k e t h e t h i r d s q u a r e r o o t
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40 pProbs <− t ldProbs ∗ ( atProbs ∗ alProbs ∗ adProbs )^ ( 1 / 3)
41 # a p p l y g r a d i e n t d i s t r i b u t i o n or i f g r a d i e n t D e n s i t y i s s e t t o FALSE in g e t . d e n s i t i e s . 3 d ( ) ,
42 # l i m i t g r a d i e n t t o 0−p i o t h e r w i s e .
43 gAll <− (RTG[ i −1, 5 ] + l s + l S h i f t [ i ] )
44 gProbs <− d e n s i t i e s $gDens ( gAll )
45 gProbs [ i s . na ( gProbs ) ] <− 0
46 gProbs <− gProbs / sum( gProbs )
47 pProbs <− pProbs ∗ gProbs
48 # sample on t u r n L i f t S t e p H i s t = t l d C u b e and add s h i f t s
49 rP <− sample ( 1 : nrow ( d e n s i t i e s $ tldCube $ values ) , s i z e = 1 , prob = pProbs )
50 t <− t s [ rP ] + t S h i f t [ i ]
51 l <− l s [ rP ] + l S h i f t [ i ]
52 d <− ds [ rP ] + d S h i f t [ i ]
53 p <− pProbs [ rP ]
54 # a b s o l u t e s p h e r i c a l o r i e n t a t i o n , wrap a n g l e s around −pi−0 & 0−p i
55 a <− . wrap (RTG[ i −1, 4 ] + t )
56 g <− . wrap (RTG[ i −1, 5 ] + l )
57 # new c o o r d i n a t e s o f t h e nex t s t e p
58 x <− ( d ∗ sin ( g ) ∗ cos ( a ) ) + RTG[ i −1, 1 ]
59 y <− ( d ∗ sin ( g ) ∗ sin ( a ) ) + RTG[ i −1, 2 ]
60 z <− ( d ∗ cos ( g ) ) + RTG[ i −1, 3 ]
61 # "x" "y" " z " " a " "g" " t " " l " "d" "p"
62 RTG[ i , ] <− c ( x , y , z , a , g , t , l , d , p )
63 # upd a t e p r o g r e s s b a r
64 i f ( ( i %% ui ) == 0) { se tTxtProgressBar ( pb , i ) }
65 }
66 rownames (RTG) <− c ( )
67 colnames (RTG) <− c ( " x " , " y " , " z " , " a " , " g " , " t " , " l " , "d" , "p" )
68 # c l o s e p r o g r e s s b a r
69 se tTxtProgressBar ( pb , n . l o c s )
70 c lose ( pb )
71 message ( paste ( " |Runtime : " , round ( as . numeric ( Sys . time ( ) ) − as . numeric ( s t a r t . time ) , 2 ) , " se c s " , sep = " " ) )
72 return ( as . data . frame (RTG) )
73 }

LISTING A.8: eRTG3D: qProb.3d()
1 qProb . 3 d <− function ( sim , n . locs , mult icore = FALSE , maxBin = 25)
2 {
3 i f ( mult icore ) {
4 i f ( . Platform $OS . type == " unix " ) { return ( . qProb . 3 d . unix ( sim , n . locs , maxBin = maxBin ) ) }
5 i f ( . Platform $OS . type == "windows" ) {
6 return ( suppressWarnings ( . qProb . 3 d . windows ( sim , n . locs , maxBin = maxBin ) ) ) }
7 } e lse {
8 s t a r t . time <− Sys . time ( )
9 message ( paste ( " | E x t r a c t i n g Q p r o b a b i l i t i e s f o r " , n . locs , " s teps " , sep = " " ) )

10 # s t e p s minus 2
11 nSteps <− n . l o c s − 2
12 # p r o g r e s s b a r
13 pb <− t x t P r o g r e s s B a r ( min = 0 , max = nSteps , s t y l e = 3)
14 # l i f t a n g l e s t o t a r g e t a s a f u n c t i o n o f number o f s t e p s
15 cubeLis t <− lapply ( 1 : nSteps , function ( x ) {
16 # u pd a t e p r o g r e s s b a r
17 se tTxtProgressBar ( pb , x )
18 # turn ang l e , l i f t a n g l e s and d i s t a n c e t o t a r g e t a s a f u n c t i o n o f number o f s t e p s
19 t <− . wrap ( atan2 ( d i f f ( sim$y , lag = x ) , d i f f ( sim$x , lag = x ) ) − sim$a [ 1 : ( length ( sim$a ) − x ) ] )
20 l <− . wrap ( atan2 ( sqr t ( d i f f ( sim$x , lag = x ) ^ 2 + d i f f ( sim$y , lag = x ) ^ 2 ) ,
21 d i f f ( sim$z , lag = x ) ) − sim$g [ 1 : ( length ( sim$g ) − x ) ] )
22 d <− sqr t ( d i f f ( sim$x , lag = x ) ^ 2 + d i f f ( sim$y , lag = x ) ^ 2 + d i f f ( sim$z , lag = x ) ^ 2)
23 # t h e Qprob i s t h i n n e d t o t h e l a g t h a t s u g g e s t s b r e a k i n g o f f o f t h e a u t o c o r r e l a t i o n
24 # o f t h e t u r n i n g a n g l e t o t a r g e t , t h e l i f t a n g l e t o t a r g e t and t h e d i s t a n c e t o t a r g e t
25 # f o r t h e r e l e v a n t number o f s t e p s . Th i s i s mainly t o r e d u c e redundancy i n t r o d u c e d
26 # by t h e s l i d i n g window a p p r o a c h a d o p t e d in e s t i m a t i n g t h e r e l a t i o n s h i p s
27 k <− max ( head ( which ( a c f ( t , lag . max = nSteps , plot = FALSE) $ a c f < 0 .05 ) ,1 ) −1 ,
28 head ( which ( a c f ( l , lag . max = nSteps , plot = FALSE) $ a c f < 0 .05 ) ,1 ) −1 ,
29 head ( which ( a c f ( d , lag . max = nSteps , plot = FALSE) $ a c f < 0 . 0 5 ) , 1 ) −1 )
30 t <− t [ seq ( 1 , length ( t ) , by = k ) ]
31 l <− l [ seq ( 1 , length ( l ) , by = k ) ]
32 d <− d [ seq ( 1 , length ( d ) , by = k ) ]
33 # g e t s t e p T u r n L i f t H i s t o g r a m s
34 return ( t u r n L i f t S t e p H i s t ( turn=t , l i f t =l , step=d , printDims = FALSE , rm . zeros = TRUE, maxBin = maxBin ) )
35 } )
36 se tTxtProgressBar ( pb , nSteps )
37 c lose ( pb )
38 message ( paste ( " |Runtime : " , round ( as . numeric ( Sys . time ( ) ) − as . numeric ( s t a r t . time ) , 2 ) , " se c s " , sep = " " ) )
39 return ( rev ( cubeLis t ) )
40 }
41 }
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LISTING A.9: eRTG3D: turn2target.3d()
1 t u r n 2 t a r g e t . 3 d <− function ( t r a c k )
2 {
3 . i s . df . xyz ( t r a c k = t r a c k )
4 t r a c k <− t r a c k . p r o p e r t i e s . 3 d ( t r a c k )
5 t a r g e t <− Reduce ( c , t r a c k [ nrow ( t r a c k ) , 1 : 3 ] )
6 . wrap ( atan2 ( t a r g e t [2]− t r a c k $y , t a r g e t [ 1 ] − t r a c k $x ) − t r a c k $a )
7 }

LISTING A.10: eRTG3D: lift2target.3d()
1 l i f t 2 t a r g e t . 3 d <− function ( t r a c k )
2 {
3 . i s . df . xyz ( t r a c k = t r a c k )
4 t r a c k <− t r a c k . p r o p e r t i e s . 3 d ( t r a c k )
5 t a r g e t <− Reduce ( c , t r a c k [ nrow ( t r a c k ) , 1 : 3 ] )
6 . wrap ( atan2 ( sqr t ( ( t a r g e t [1]− t r a c k $x ) ^ 2 + ( t a r g e t [2]− t r a c k $y ) ^ 2 ) ,
7 ( t a r g e t [3]− t r a c k $z ) ) − t r a c k $g )
8 }

LISTING A.11: eRTG3D: dist2target.3d()
1 d i s t 2 t a r g e t . 3 d <− function ( t r a c k )
2 {
3 . i s . df . xyz ( t r a c k = t r a c k )
4 t a r g e t <− Reduce ( c , t r a c k [ nrow ( t r a c k ) , 1 : 3 ] )
5 sqr t ( ( t a r g e t [1]− t r a c k $x ) ^ 2 + ( t a r g e t [2]− t r a c k $y ) ^ 2 + ( t a r g e t [3]− t r a c k $z ) ^ 2)
6 }

LISTING A.12: eRTG3D: sim.cond.3d()
1 sim . cond . 3 d <− function ( n . locs , s t a r t =c ( 0 , 0 , 0 ) , end= s t a r t , a0 , g0 , d e n s i t i e s , qProbs ,
2 e r r o r = FALSE , DEM = NULL, BG = NULL)
3 {
4 s t a r t . time <− Sys . time ( )
5 i f ( ! i s . null (DEM) ) {
6 . check . e x t e n t (DEM = DEM, t r a c k = data . frame ( rbind ( s t a r t , end ) ) )
7 }
8 i f ( ! i s . null (BG) ) {
9 . check . e x t e n t (DEM = BG, t r a c k = data . frame ( rbind ( s t a r t , end ) ) )

10 }
11 # p r o g r e s s b a r and t ime
12 message ( paste ( " |Simulate CERW with " , n . locs , " s teps " , sep = " " ) )
13 pb <− t x t P r o g r e s s B a r (min = 0 , max = n . locs −2, s t y l e = 3)
14 ui <− f l o o r ( n . l o c s / 20)+1
15 # r e p l a c e t h e p r o b a b i l i t y d i s t r i b u t i o n f o r s t e p l e n g t h 1 by t h e one from
16 # t h e qProbs s i n c e t h a t one r e l i e s on more s a m p l e s d e r i v e d from sim
17 d e n s i t i e s [ [ 1 ] ] <− t a i l ( qProbs , 1 ) [ [ 1 ] ]
18 # g e t t h e c o o r d i n a t e s o f t h e s t e p l e n g t h and t u r n i n g a n g l e b i n c e n t r e s
19 names ( s t a r t ) <− c ( " x " , " y " , " z " )
20 names ( end ) <− c ( " x " , " y " , " z " )
21 # g e t c o o r d i n a t e s o f t h e t l d C u b e
22 t s <− d e n s i t i e s $ tldCube $ values $ turn
23 l s <− d e n s i t i e s $ tldCube $ values $ l i f t
24 ds <− d e n s i t i e s $ tldCube $ values $ step
25 # g e t p r o b s f o r e a c h c o m b i n a t i o n
26 t ldProbs <− d e n s i t i e s $ tldCube $ values $prob
27 # sample one randomly t o s e t t h e i n i t i a l c o n d i t i o n s
28 # f o r t h e p r e v i o u s t o f i r s t turn and p r e v i o u s t o f i r s t s t e p
29 # f o r t h e s t a r t p o i n t , a s t h i s i s n e ed ed t o i n f o rm t h e auto−d i f f e r e n c e
30 # l i k e l i h o o d
31 sCond <− sample ( 1 : nrow ( d e n s i t i e s $ tldCube $ values ) , 1 , prob=t ldProbs )
32 # "x" "y" " z " " a " "g" " t " " l " "d" "p"
33 # "1" "2" "3" "4" "5" "6" "7" "8" "9"
34 RTG <− matrix ( 0 , n . locs , 9 )
35 RTG[ 1 , ] <− c ( s t a r t [ 1 ] , s t a r t [ 2 ] , s t a r t [ 3 ] , a0 , g0 , t s [ sCond ] , l s [ sCond ] , ds [ sCond ] , NA)
36 # C r e a t e random n o i s e i f e r r o r i s TRUE
37 i f ( e r r o r ) {
38 t S h i f t <− runif ( n . l o c s − 2 , −d e n s i t i e s $ tldCube $ tRes / 2 , d e n s i t i e s $ tldCube $ tRes / 2)
39 l S h i f t <− runif ( n . l o c s − 2 , −d e n s i t i e s $ tldCube $ lRes / 2 , d e n s i t i e s $ tldCube $ lRes / 2)
40 d S h i f t <− runif ( n . l o c s − 2 , −d e n s i t i e s $ tldCube $dRes / 2 , d e n s i t i e s $ tldCube $dRes / 2)
41 } e lse {
42 t S h i f t <− l S h i f t <− d S h i f t <− numeric ( n . l o c s − 2)
43 }
44 # s t a r t c r e a t i n g t h e t r a c k s t e p f o r s t e p
45 for ( i in 1 : ( n . l o c s − 2 ) )
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46 {
47 # g e t t h e auto−d i f f e r e n c e p r o b a b i l i t y f o r t u r n i n g a n g l e
48 atProbs <− d e n s i t i e s $autoT (RTG[ i , 6 ] − t s + t S h i f t [ i ] )
49 # g e t t h e auto−d i f f e r e n c e p r o b a b i l i t y f o r l i f t a n g l e
50 alProbs <− d e n s i t i e s $autoL (RTG[ i , 7 ] − l s + l S h i f t [ i ] )
51 # g e t t h e auto−d i f f e r e n c e p r o b a b i l i t y f o r s t e p l e n g t h
52 adProbs <− d e n s i t i e s $autoD (RTG[ i , 8 ] − ds + d S h i f t [ i ] )
53 # s e t NAs t o z e r o p r o b a b i l i t y
54 atProbs [ i s . na ( atProbs ) ] <− 0
55 alProbs [ i s . na ( a lProbs ) ] <− 0
56 adProbs [ i s . na ( adProbs ) ] <− 0
57 # s t a n d a r d i z e t h e p r o b a b i l i t i e s t o sum t o one
58 atProbs <− atProbs / sum( atProbs )
59 alProbs <− alProbs / sum( a lProbs )
60 adProbs <− adProbs / sum( adProbs )
61 # c a l c u l a t e t h e p r o b a b i l i t y t o make a s t e p f o r w a r d . The auto−d i f f e r e n c e p r o b a b i l i t i e s a r e
62 # c a l c u l a t e d as one j o i n t l y c o n t r i b u t i n g p r o b a b i l i t y and t h e r e f o r e s q u a r e r o o t e d b e f o r
63 # m u l t i p l i c a t i o n with t h e two d i m e n s i o n a l p r o b a b i l i t y d i s t r i b u t i o n
64 P <− ( t ldProbs ) ∗ ( atProbs ∗ alProbs ∗ adProbs )^ ( 1 / 3)
65 # c a l c u l a t e t h e az imuth
66 a <− . wrap (RTG[ i , 4 ] + t s + t S h i f t [ i ] )
67 # c a l c u l a t e t h e g r a d i e n t
68 g <− . wrap (RTG[ i , 5 ] + l s + l S h i f t [ i ] )
69 # c o n v e r t t h e c o o r d i n a t e s from s t e p l e n g t h t u r n i n g a n g l e d imens i on
70 x1 <− ( ( ds + d S h i f t [ i ] ) ∗ sin ( g ) ∗ cos ( a ) ) + RTG[ i , 1 ]
71 y1 <− ( ( ds + d S h i f t [ i ] ) ∗ sin ( g ) ∗ sin ( a ) ) + RTG[ i , 2 ]
72 z1 <− ( ( ds + d S h i f t [ i ] ) ∗ cos ( g ) ) + RTG[ i , 3 ]
73 # c a l c u l a t e t h e d i s t a n c e s o f t h e c e l l c e n t e r s in t h e s p a t i a l domain
74 # t o t h e t a r g e t ( l a s t l o c a t i o n o f t h e e m p i r i c a l t r a c k )
75 endD <− as . numeric ( sqr t ( ( end [ 1 ] − x1 ) ^ 2 + ( end [ 2 ] − y1 ) ^ 2 + ( end [ 3 ] − z1 ) ^ 2 ) )
76 # c a l c u l a t e t h e az imuth o f t h e c e l l c e n t r e s t o t h e t a r g e t and s u b s t r a c t from i t t h e d i r e c t i o n o f a r r i v a l
77 # r e s u l t i n g in t u r n i n g a n g l e t owards t a r g e t
78 endT <− as . numeric ( . wrap ( atan2 ( as . numeric ( end [ 2 ] − y1 ) , as . numeric ( end [ 1 ] − x1 ) ) − a ) )
79 # c a l c u l a t e t h e g r a d i e n t o f t h e p o s s i b i l i t e s t e p s t o t h e t a r g e t and s u b s t r a c t from i t t h e a n g l e o f a r r i v a l
80 # r e s u l t i n g in t u r n i n g a n g l e t owards t a r g e t
81 endL <− as . numeric ( . wrap ( atan2 ( as . numeric ( sqr t ( ( end [ 1 ] − x1 ) ^ 2 + ( end [ 2 ] − y1 ) ^ 2 ) ) ,
82 as . numeric ( end [ 3 ] − z1 ) ) ) − g )
83 # g e t t h e p r o b a b i l i t i e s o f making i t d i s t a n c e and t u r n i n g a n g l e wi s e
84 # which i s d e r i v e d from t h e two d i m e n s i o n a l p r o b a b i l i t y d i s t r i b u t i o n f o r t h e
85 # a p p r o p r i a t e s t e p b e i n g m o d e l l e d
86 # g e t p o s s i b l e c o o r d i n a t e s
87 qCube <− qProbs [ [ i ] ]
88 tVal <− unique ( qCube$ values $ turn )
89 lVal <− unique ( qCube$ values $ l i f t )
90 dVal <− unique ( qCube$ values $ step )
91 # f i n d c l o s e s t c o o r d i n a t e s
92 tCoords <− u n l i s t ( lapply ( endT , function ( x ) tVal [ which . min ( abs ( tVal−x ) ) ] ) )
93 lCoords <− u n l i s t ( lapply ( endL , function ( x ) lVal [ which . min ( abs ( lVal−x ) ) ] ) )
94 dCoords <− u n l i s t ( lapply ( endD , function ( x ) dVal [ which . min ( abs ( dVal−x ) ) ] ) )
95 # e x t r a c t Q
96 Q <− u n l i s t ( lapply ( 1 : length ( tCoords ) , function ( x ) {
97 t e s t <− ( qCube$ values $ turn == tCoords [ x ] &
98 qCube$ values $ l i f t == lCoords [ x ] &
99 qCube$ values $ step == dCoords [ x ] ) ;

100 i f ( any ( t e s t ==TRUE) ) { return ( qCube$ values $prob [ t e s t ] ) } e lse { return ( 0 ) }
101 } ) )
102 # t h e o v e r a l l p r o b a b i l i t y i s t h e p r o d u c t o f t h e p r o b a b i l i t y
103 # o f making a s t e p f o r w a r d and t h e p r o b a b i l i t y o f making i t t o t h e
104 # t a r g e t . The we i gh t o f t h e t a r g e t p r o b a b i l i t y n e e d s t o be a d j u s t e d
105 # by d i v i s i o n by end d i s t a n c e , b e c a u s e t h e number o f c e l l s t o c h o o s e from
106 # a r e i n c r e a s i n g with d i s t a n c e t o t a r g e t , which n e e d s t o be a c c o u n t e d
107 # f o r p r i o r t o sampl ing b a s e d on o v e r a l l p r o b a b i l i t y
108 Probs <− P ∗ Q / endD
109 # a p p l y g r a d i e n t d i s t r i b u t i o n or i f g r a d i e n t D e n s i t y i s s e t t o FALSE in g e t . d e n s i t i e s . 3 d ( ) ,
110 # l i m i t g r a d i e n t t o 0−p i o t h e r w i s e .
111 gProbs <− d e n s i t i e s $gDens ( g )
112 gProbs [ i s . na ( gProbs ) ] <− 0
113 gProbs <− gProbs / sum( gProbs )
114 Probs <− Probs ∗ gProbs
115 # a c c o u n t f o r p r o b a b l e f l i g h t h e i g h t , i f a DEM i s p r o v i d e d t h e r e l a t i v e f l i g h t h e i g h t i s t a k e n
116 # o t h e r w i s e on ly t h e a b s o l u t e e l l i p s o i d h e i g h t .
117 i f ( ! i s . null (DEM) )
118 {
119 s u r f a c e <− r a s t e r : : e x t r a c t (DEM, cbind ( x1 , y1 ) )
120 demP <− d e n s i t i e s $hDistTopo ( z1 − s u r f a c e ) ∗ as . numeric ( z1 >= s u r f a c e )
121 demP[ i s . na (demP ) ] <− 0
122 demP <− demP / sum(demP)
123 hProb <− d e n s i t i e s $ h D i s t E l l i p s o i d ( z1 )
124 hProb [ i s . na ( hProb ) ] <− 0
125 hProb <− hProb / sum( hProb )
126 Probs <− Probs ∗ sqr t (demP ∗ hProb )
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127 } e lse {
128 hProb <− d e n s i t i e s $ h D i s t E l l i p s o i d ( z1 )
129 hProb [ i s . na ( hProb ) ] <− 0
130 hProb <− hProb / sum( hProb )
131 Probs <− Probs ∗ hProb
132 }
133 # use t h e c o o r d i n a t e s o f t h e s p a t i a l g r i d f o r which t h e p r o b a b i l i t i e s a r e c a l c u l a t e d
134 # and use i t t o o v e r l a y a background r a s t e r f o r example t o a v o i d wa lks in c e r t a i n a r e a s
135 i f ( ! i s . null (BG) )
136 {
137 bgP <− r a s t e r : : e x t r a c t (BG, cbind ( x1 , y1 ) )
138 Probs <− Probs ∗ bgP
139 }
140 # make s u r e we have no m i s s i n g nor n e g a t i v e p r o b a b i l i t i e s
141 Probs [ i s . na ( Probs ) ] <− 0
142 Probs [ Probs <= 0] <− 0
143 # c h e c k whe the r t h e run might have ended up in a dead−end ,
144 # which w i l l s e t t h e z e r o p r o b a b i l i t y s t a t u s t o TRUE
145 i f ( a l l ( Probs = = 0 ) ) {
146 RTG <− NULL
147 c lose ( pb )
148 message ( paste ( "|Runtime : " , round ( as . numeric ( Sys . time ( ) ) − as . numeric ( s t a r t . time ) , 2 ) , " se c s " , sep = " " ) )
149 warning ( "Dead end encountered . " )
150 return (RTG)
151 } e lse {
152 # draw a p o i n t randomly b a s e d on t h e p r o b a b i l i t y
153 rP <− sample . i n t ( nrow ( d e n s i t i e s $ tldCube $ values ) , s i z e = 1 , prob = Probs )
154 # "x" "y" " z " " a " "g" " t " " l " "d" "p"
155 # "1" "2" "3" "4" "5" "6" "7" "8" "9"
156 RTG[ i + 1 , ] <− c ( x1 [ rP ] , y1 [ rP ] , z1 [ rP ] , a [ rP ] , g [ rP ] , t s [ rP ] , l s [ rP ] , ds [ rP ] , Probs [ rP ] )
157 # u pd a t e p r o g r e s s b a r
158 i f ( ( i %% ui ) == 0) { se tTxtProgressBar ( pb , i ) }
159 }
160 }
161 # t h e t r a c k i s f o r c e d t o t a r g e t l o c a t i o n and t h e a p p r o p r i a t e d i s t a n c e i s added
162 RTG[ 1 , 8 ] <− NA
163 RTG[ n . locs , ] <− c ( end [ 1 ] , end [ 2 ] , end [ 3 ] , NA, NA, NA, NA, NA, NA)
164 RTG[ n . locs , 8 ] <− sqr t ( (RTG[ n . locs , 1 ] − RTG[ n . locs −1, 1 ] )^2 +
165 (RTG[ n . locs , 2 ] − RTG[ n . locs −1, 2 ] )^2 +
166 (RTG[ n . locs , 3 ] − RTG[ n . locs −1, 3 ] ) ^ 2 )
167 # Stop i f t h e s t e p l e n g t h o f t h e l a s t s t e p i s l a r g e r than t h e l a r g e s t p o s s i b l e s t e p
168 i f (RTG[ n . locs , 8 ] > max ( d e n s i t i e s $ tldCube $ values $ step , na . rm = TRUE)∗sqr t ( 2 ) ) {
169 RTG <− NULL
170 c lose ( pb )
171 message ( paste ( "|Runtime : " , round ( as . numeric ( Sys . time ( ) ) − as . numeric ( s t a r t . time ) , 2 ) , " se c s " , sep = " " ) )
172 warning ( "Dead end encountered in l a s t s tep . " )
173 return (RTG)
174 }
175 rownames (RTG) <− c ( )
176 colnames (RTG) <− c ( " x " , " y " , " z " , " a " , " g " , " t " , " l " , "d" , "p" )
177 # c l o s e p r o g r e s s b a r
178 se tTxtProgressBar ( pb , i )
179 c lose ( pb )
180 message ( paste ( " |Runtime : " , round ( as . numeric ( Sys . time ( ) ) − as . numeric ( s t a r t . time ) , 2 ) , " se c s " , sep = " " ) )
181 return ( as . data . frame (RTG) )
182 }

LISTING A.13: eRTG3D: reproduce.track.3d()
1 reproduce . t r a c k . 3 d <− function ( t rack , n . sim = 1 , mult icore = FALSE , e r r o r = TRUE,
2 DEM = NULL, BG = NULL, f i l terDeadEnds = TRUE, plot2d = FALSE ,
3 plot3d = FALSE , maxBin = 25 , gradientDensi ty = TRUE)
4 {
5 . i s . df . xyz ( t r a c k = t r a c k )
6 t r a c k <− t r a c k . p r o p e r t i e s . 3 d ( t r a c k )
7 n . l o c s <− nrow ( t r a c k )
8 i f ( n . locs >1500) stop ( " Track i s too long ( >1500 s teps ) . " )
9 turnAngle <− t r a c k $ t [ 2 : nrow ( t r a c k ) ] ; l i f t A n g l e <− t r a c k $ l [ 2 : nrow ( t r a c k ) ] ; stepLength <− t r a c k $d [ 2 : nrow ( t r a c k ) ]

10 deltaTurn <− d i f f ( turnAngle ) ; d e l t a L i f t <− d i f f ( l i f t A n g l e ) ; d e l t a S t e p <− d i f f ( stepLength )
11 h e i g h t E l l i p s o i d <− t r a c k $z
12 i f ( gradientDensi ty ) { gradientAngle <− t r a c k $g } e lse { gradientAngle <− NULL}
13 i f ( ! i s . null (DEM) ) {
14 . check . e x t e n t (DEM = DEM, t r a c k = t r a c k )
15 heightTopo <− t r a c k $z − r a s t e r : : e x t r a c t (DEM, t r a c k [ , 1 : 2 ] )
16 } e lse { heightTopo <− NULL}
17 D <− get . d e n s i t i e s . 3 d ( l i f t A n g l e = l i f t A n g l e , turnAngle = turnAngle , stepLength = stepLength ,
18 d e l t a L i f t = d e l t a L i f t , deltaTurn = deltaTurn , d e l t a S t e p = del taStep ,
19 h e i g h t E l l i p s o i d = h e i g h t E l l i p s o i d , heightTopo = heightTopo ,
20 gradientAngle = gradientAngle , maxBin = maxBin )
21 uerw <− sim . uncond . 3 d ( n . l o c s∗1500 , s t a r t = c ( t r a c k $x [ 1 ] , t r a c k $y [ 1 ] , t r a c k $z [ 1 ] ) ,
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22 a0 = t r a c k $a [ 1 ] , g0 = t r a c k $g [ 1 ] , d e n s i t i e s = D, e r r o r = e r r o r )
23 Q <− qProb . 3 d ( uerw , n . locs , mult icore = mult icore , maxBin = maxBin )
24 cerwList <− suppressWarnings ( n . sim . cond . 3 d ( n . sim = n . sim , n . l o c s <− n . locs ,
25 s t a r t =c ( t r a c k $x [ 1 ] , t r a c k $y [ 1 ] , t r a c k $z [ 1 ] ) ,
26 end=c ( t r a c k $x [ n . l o c s ] , t r a c k $y [ n . l o c s ] , t r a c k $z [ n . l o c s ] ) ,
27 a0 = t r a c k $a [ 1 ] , g0 = t r a c k $g [ 1 ] , d e n s i t i e s =D, qProbs=Q,
28 e r r o r = error , mult icore = mult icore , DEM = DEM, BG = BG) )
29 i f ( f i l terDeadEnds ) { cerwList <− f i l t e r . dead . ends ( cerwList ) }
30 i f ( plot2d ) { print ( plot2d ( or igTrack = track , cerwList = cerwList , DEM = DEM) ) }
31 i f ( plot3d ) { plot3d ( or igTrack = track , cerwList = cerwList , DEM = DEM) }
32 return ( cerwList )
33 }

LISTING A.14: eRTG3D: sim.crw.3d()
1 sim . crw . 3 d <− function ( nStep , rTurn , r L i f t , meanStep , s t a r t = c ( 0 , 0 , 0 ) )
2 {
3 # c o r r e l a t e d a n g l e s
4 t <− C i r c S t a t s : : rwrpnorm ( n = nStep − 2 , mu = 0 , rho = rTurn )
5 a <− . wrap (cumsum( c ( runif ( 1 , 0 , 2 ∗ pi ) , t ) ) )
6 l <− C i r c S t a t s : : rwrpnorm ( n = nStep − 2 , mu = 0 , rho = r L i f t )
7 g <− abs ( . wrap (cumsum( c ( runif ( 1 , 0 , pi ) , l ) ) ) )
8 f <− abs ( s c a l e ( C i r c S t a t s : : rwrpnorm ( n = nStep − 1 , mu = 0 , rho = ( rTurn+ r L i f t ) / 2 ) ) [ , 1 ] )
9 d <− rep ( meanStep , nStep−1) ∗ f

10 # d e l t a s in a l l 3 d i r e c t i o n s
11 dx <− ( d ∗ sin ( g ) ∗ cos ( a ) )
12 dy <− ( d ∗ sin ( g ) ∗ sin ( a ) )
13 dz <− ( d ∗ cos ( g ) )
14 # g e n e r a t e t r a c k
15 t <− data . frame (
16 x = cumsum( c ( s t a r t [ 1 ] , dx ) ) ,
17 y = cumsum( c ( s t a r t [ 2 ] , dy ) ) ,
18 z = cumsum( c ( s t a r t [ 3 ] , dz ) )
19 )
20 return ( t )
21 }

LISTING A.15: eRTG3D: test.verification.3d()
1 t e s t . v e r i f i c a t i o n . 3 d <− function ( t rack1 , track2 , alpha = 0 . 0 5 , plot = FALSE , t e s t = " ks " )
2 {
3 i f ( ! any ( t e s t == c ( " ks " , " t t e s t " ) ) ) stop ( " The v a r i a b l e ’ t e s t ’ must e i t h e r be ’ ks ’ or ’ t t e s t ’ . " )
4 i f ( ! i s . l i s t ( t ra ck 1 ) || ! i s . l i s t ( t ra ck 2 ) ) stop ( " Track input has to be of type l i s t or data . frame . " )
5 i f ( i s . l i s t ( t ra ck 1 ) && i s . data . frame ( t ra ck 1 ) ) { t ra ck 1 <− l i s t ( t ra ck 1 ) }
6 i f ( i s . l i s t ( t ra ck 2 ) && i s . data . frame ( t ra ck 2 ) ) { t ra ck 2 <− l i s t ( t ra ck 2 ) }
7 t ra c k1 <− f i l t e r . dead . ends ( t r ac k1 ) ; t r ac k 2 <− f i l t e r . dead . ends ( t r ac k2 )
8 # t r a c k ( s ) 1
9 t ra c k1 <− lapply ( t rack1 , function ( x ) { t r a c k . p r o p e r t i e s . 3 d ( x ) [ 2 : nrow ( x ) , ] } )

10 d i f f t r a c k 1 <− do . c a l l ( " rbind " , lapply ( t rack1 , function ( x ) { data . frame ( d i f f T = d i f f ( x$ t ) ,
11 d i f f L = d i f f ( x$ l ) ,
12 dif fD = d i f f ( x$d ) ) } ) )
13 t ra c k1 <− do . c a l l ( " rbind " , t ra ck 1 )
14 t1 <− t r a ck 1 $ t ; l 1 <− t ra ck 1 $ l ; d1 <− t ra ck 1 $d ;
15 d i f f T 1 <− d i f f t r a c k 1 $ d i f f T ; d i f f L 1 <− d i f f t r a c k 1 $ d i f f L ; dif fD1 <− d i f f t r a c k 1 $ dif fD ;
16 # t r a c k ( s ) 2
17 t ra c k2 <− lapply ( t rack2 , function ( x ) { t r a c k . p r o p e r t i e s . 3 d ( x ) [ 2 : nrow ( x ) , ] } )
18 d i f f T r a c k 2 <− do . c a l l ( " rbind " , lapply ( t rack2 , function ( x ) { data . frame ( d i f f T = d i f f ( x$ t ) ,
19 d i f f L = d i f f ( x$ l ) ,
20 dif fD = d i f f ( x$d ) ) } ) )
21 t ra c k2 <− do . c a l l ( " rbind " , t ra ck 2 )
22 t2 <− t r a ck 2 $ t ; l 2 <− t ra ck 2 $ l ; d2 <− t ra ck 2 $d ;
23 d i f f T 2 <− d i f f T r a c k 2 $ d i f f T ; d i f f L 2 <− d i f f T r a c k 2 $ d i f f L ; dif fD2 <− d i f f T r a c k 2 $ dif fD ;
24 i f ( t e s t == " ks " ) {
25 message ( " |∗∗∗ Two−sample Kolmogorov−Smirnov t e s t ∗∗∗" )
26 message ( " |H0 : P r o b a b i l i t y d i s t r i b u t i o n s do not d i f f e r s i g n i f i c a n t l y " )
27 message ( " |H1 : P r o b a b i l i t y d i s t r i b u t i o n s d i f f e r s i g n i f i c a n t l y " )
28 # turn
29 turnT <− suppressWarnings ( ks . t e s t ( t1 , t2 , a l t e r n a t i v e = " two . sided " ) )
30 diffTurnT <− suppressWarnings ( ks . t e s t ( di f fT1 , di f fT2 , a l t e r n a t i v e = " two . sided " ) )
31 # l i f t
32 l i f t T <− suppressWarnings ( ks . t e s t ( l1 , l2 , a l t e r n a t i v e = " two . sided " ) )
33 d i f f L i f t T <− suppressWarnings ( ks . t e s t ( di f fL1 , di f fL2 , a l t e r n a t i v e = " two . sided " ) )
34 # s t e p
35 stepT <− suppressWarnings ( ks . t e s t ( d1 , d2 , a l t e r n a t i v e = " two . sided " ) )
36 d i f f S t e p T <− suppressWarnings ( ks . t e s t ( diffD1 , diffD2 , a l t e r n a t i v e = " two . sided " ) )
37 # p r i n t r e s u l t s
38 message ( paste ( " |Turn angle − " , . t e s t 2 t e x t ( turnT , alpha ) , " , a u t o d i f f e r e n c e s − " ,
39 . t e s t 2 t e x t ( diffTurnT , alpha ) , sep=" " ) )
40 message ( paste ( " | L i f t angle − " , . t e s t 2 t e x t ( l i f t T , alpha ) , " , a u t o d i f f e r e n c e s − " ,
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41 . t e s t 2 t e x t ( d i f f L i f t T , alpha ) , sep=" " ) )
42 message ( paste ( " |Step length − " , . t e s t 2 t e x t ( stepT , alpha ) , " , a u t o d i f f e r e n c e s − " ,
43 . t e s t 2 t e x t ( d i f fS tepT , alpha ) , sep=" " ) )
44 i f ( plot ) {
45 suppressWarnings ( plot3d . mul t ip lo t (
46 . plot3d . density ( t1 , t2 , t i t l e T e x t = " Turn angle " ) ,
47 . plot3d . density ( l1 , l2 , t i t l e T e x t = " L i f t angle " ) ,
48 . plot3d . density ( d1 , d2 , t i t l e T e x t = " Step length " ) ,
49 c o l s = 1
50 ) )
51 }
52 return ( l i s t ( turnT , l i f t T , stepT , diffTurnT , d i f f L i f t T , d i f f S t e p T ) )
53 }
54 i f ( t e s t == " t t e s t " ) {
55 message ( " |∗∗∗ One Sample t−t e s t ∗∗∗" )
56 message ( " |H0 : D i f f e r e n c e between t r a c k s does not d i f f e r s i g n i f i c a n t l y from 0 " )
57 message ( " |H1 : D i f f e r e n c e between t r a c k s d i f f e r s s i g n i f i c a n t l y from 0 " )
58 nSample <− min ( nrow ( t ra ck 1 ) , nrow ( t ra ck 2 ) )
59 # turn
60 turnT <− suppressWarnings ( t . t e s t ( d i f f T <− ( sample ( t1 , nSample)−sample ( t2 , nSample ) ) , mu = 0 ,
61 a l t e r n a t i v e = " two . sided " ) )
62 # l i f t
63 l i f t T <− suppressWarnings ( t . t e s t ( d i f f L <− ( sample ( l1 , nSample)−sample ( l2 , nSample ) ) , mu = 0 ,
64 a l t e r n a t i v e = " two . sided " ) )
65 # s t e p
66 stepT <− suppressWarnings ( t . t e s t ( di f fD <− ( sample ( d1 , nSample)−sample ( d2 , nSample ) ) , mu = 0 ,
67 a l t e r n a t i v e = " two . sided " ) )
68 # p r i n t r e s u l t s
69 message ( paste ( " |Turn angle − " , . t e s t 2 t e x t ( turnT , alpha ) , sep=" " ) )
70 message ( paste ( " | L i f t angle − " , . t e s t 2 t e x t ( l i f t T , alpha ) , sep=" " ) )
71 message ( paste ( " |Step length − " , . t e s t 2 t e x t ( stepT , alpha ) , sep=" " ) )
72 i f ( plot ) {
73 suppressWarnings ( plot3d . mul t ip lo t (
74 . plot3d . density ( d i f fT , t i t l e T e x t = "Mean d i f f e r e n c e turn angle " ) ,
75 . plot3d . density ( d i f fL , t i t l e T e x t = "Mean d i f f e r e n c e L i f t angle " ) ,
76 . plot3d . density ( diffD , t i t l e T e x t = "Mean d i f f e r e n c e Step length " ) ,
77 c o l s = 1
78 ) )
79 }
80 return ( l i s t ( turnT , l i f t T , stepT ) )
81 }
82 }

LISTING A.16: eRTG3D: movingMedian()
1 movingMedian <− function ( data , window ) {
2 i f ( ! (window %% 2 == 0 ) ) {window <− f l o o r (window / 2 ) } e lse { stop ( "Window must be an uneven number . " ) }
3 t o t a l <− length ( data )
4 r e s u l t <− vector ( length = t o t a l )
5 for ( i in (window + 1 ) : ( t o t a l−window ) ) {
6 r e s u l t [ i ] <− median ( data [ ( i−window ) : ( i +window ) ] )
7 }
8 r e s u l t [ 1 : window ] <− median ( data [ 1 : window ] )
9 r e s u l t [ ( t o t a l−window ) : t o t a l ] <− median ( data [ ( t o t a l−window ) : t o t a l ] )

10 return ( r e s u l t )
11 }

LISTING A.17: eRTG3D: voxelCount()
1 voxelCount <− function ( points , extent , xyRes , zRes = xyRes , zMin , zMax , s t a n d a r t i z e = FALSE ) {
2 rTem <− r a s t e r : : r a s t e r ( extent , r es=xyRes )
3 rTem [ ] <− 0
4 rS tack <− r a s t e r : : s tack ( )
5 for ( i in 1 : round ( ( zMax−zMin ) / zRes ) ) {
6 c a t ( ’\r ’ , paste ( " |Counting points in Voxels f o r height : " , zMin+( i −1)∗zRes , "m − " ,
7 ( zMin+ i∗zRes ) , "m . . . " , sep = " " ) )
8 f l u s h . console ( )
9 p <− points [ points [ , 3 ] > ( zMin+( i −1)∗zRes ) & points [ , 3 ] < ( zMin+ i∗zRes ) , ]

10 i f ( ! nrow ( p ) == 0) {
11 p <− sp : : S p a t i a l P o i n t s ( coords = cbind ( p [ , 1 ] , p [ , 2 ] ) )
12 r <− r a s t e r : : r a s t e r i z e ( p , rTem , fun= ’ count ’ )
13 r [ i s . na ( r [ ] ) ] <− 0
14 rS tack <− r a s t e r : : s tack ( rStack , r )
15 } e lse {
16 rS tack <− r a s t e r : : s tack ( rStack , rTem )
17 }
18 names ( rS tack ) [ i ] <− c ( paste ( "m" , zMin+( i −1)∗zRes , "−" , ( zMin+ i∗zRes ) , sep = " " ) )
19 }
20 i f ( s t a n d a r t i z e ) {
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21 maxR <− max ( r a s t e r : : maxValue ( rS tack ) )
22 minR <− min ( r a s t e r : : minValue ( rS tack ) )
23 for ( i in 1 : length ( rS tack@layers ) ) {
24 rStack@layers [ [ i ] ] <− ( rS tack@layers [ [ i ] ] − minR ) / (maxR − minR )
25 }
26 }
27 c a t ( ’\r ’ , " |Done .\n" )
28 f l u s h . console ( )
29 return ( rS tack )
30 }

High Performance Computing Cluster

LISTING A.18: HPC cluster: simTracks.R
1 # ! / usr / b i n / env / mpcdf / s o f t / SLES122 / common /R / 3 . 4 . 2 / gcc −6.3_mkl−2017 / b i n / R s c r i p t
2
3 #SBATCH −−j ob−name=s i m T r a c k s
4 #SBATCH −−ou tp ut= l o g / s i m T r a c k s _%a . o . l o g
5 #SBATCH −−e r r o r = l o g / s i m T r a c k s _%a . e . l o g
6 #SBATCH −−t ime = 1 2 : 0 0 : 0 0
7 #SBATCH −−nodes =1
8 #SBATCH −−a r r a y =1−100
9 #SBATCH −−n t a s k s =64

10 #SBATCH −−p a r t i t i o n = g e n e r a l
11 #SBATCH −−cpus−per−t a s k =1
12 #SBATCH −−mem−per−cpu =1024
13
14 # ######################################################################################
15 ## S i m u l a t i o n o f s o a r i n g g l i d i n g t r a c k s o f w h i t e s t o r c k s (CERWs) c r o s s i n g ZRH ##
16 ## Master ’ s T h e s i s − eRTG3D ##
17 ## 19 / 3 / 2018 ##
18 ## M. U n t e r f i n g e r , Geography UZH ( m e r l i n . u n t e r f i n g e r u z h . ch ) ##
19 # ######################################################################################
20
21 # Load l i b r a r y and s e t up d a t a n e ed ed
22 l i b r a r y (eRTG3D)
23 load ( f i l e = " data / c l u s t e r D a t a . RData " )
24
25 # S e t random s e e d
26 seed <− sample ( 1000000 :9999999 , 1 )
27 s e t . seed ( seed )
28
29 # S e t s i m u l a t i o n p a r a m e t e r s
30 n . sim <− 1000
31 l i m i t <− 25
32 nCores <− 64
33
34 # S i m u l a t e h igh r e s o l u t i o n s o a r i n g g l i d i n g t r a c k s o f w h i t e s t o r c k s (CERWs) c r o s s i n g ZRH
35 c a t ( " Simulat ion of " , n . sim , " t r a c k s on " , nCores , " Cores , with seed = " , seed , "\n" , sep = " " )
36 t <− Sys . time ( )
37 g l i d i n g S o a r i n g L i s t <− p a r a l l e l : : mclapply (X = 1 : n . sim , FUN = function (X ) {
38 simTrack <− NULL
39 while ( i s . null ( simTrack ) ) {
40 s t a r t <− s t a r t V e c . 1 2 0 [ sample ( 1 : nrow ( s t a r t V e c . 1 2 0 ) , 1 ) , ]
41 end <− endVec . 1 2 0 [ sample ( 1 : nrow ( endVec . 1 2 0 ) , 1 ) , ]
42 capture . output ( simTrack <− suppressMessages ( sim . cond . 3 d ( sim . l o c s . 1 2 0 , s t a r t = s t a r t , end = end ,
43 a0 = a0 . 1 2 0 , g0 = g0 . 1 2 0 , d e n s i t i e s = D. 1 2 0 ,
44 qProbs = Q. 1 2 0 , e r r o r = TRUE, DEM = dem, BG = thermals ) ) )
45 i f ( ! i s . null ( simTrack ) ) {
46 i n s i d e <− d i s t 2 p o i n t . 3 d ( simTrack , ZRH, groundDistance = FALSE) < maxDist
47 i f ( ! any ( i n s i d e ) ) { simTrack <− NULL} e lse {
48 # S i m u l a t e ’ g l i d i n g&s o a r i n g ’ be tween l o w r e s t r a c k p o i n t s
49 simTrack <− simTrack [ ins ide , ]
50 i f ( nrow ( simTrack ) < 2) { simTrack <− NULL} e lse {
51 g l id ingSoar ing <− simTrack [ 1 , ]
52 for ( i in 1 : ( nrow ( simTrack ) −1) ) {
53 s t a r t <− Reduce ( c , simTrack [ i , 1 : 3 ] )
54 end <− Reduce ( c , simTrack [ i +1 , 1 : 3 ] )
55 a0 <− simTrack $a [ i ]
56 g0 <− simTrack $g [ i ]
57 sim . l o c s <− round ( ( sqr t (sum ( ( end−s t a r t ) ^ 2 ) ) / meanStep2target . g l i d i n g ) )
58 Q <− t a i l ( qGliding , sim . locs −2)
59 count <− 0
60 part <− NULL
61 while ( i s . null ( par t ) & count < l i m i t ) {
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62 capture . output ( part <− suppressMessages ( sim . g l id ingSoar ing . 3 d (MODE = modeZRH,
63 dGliding = D_ gl iding , dSoaring = D_ soaring ,
64 qGliding = Q, s t a r t = s t a r t , end = end ,
65 a0 = a0 , g0 = g0 , e r r o r = TRUE,
66 smoothTransit ion = TRUE,
67 g l i d e R a t i o = gl ideRat io ,
68 DEM = demZRH, BG = NULL) ) )
69 count <− count + 1
70 }
71 i f ( i s . null ( par t ) ) { simTrack <− NULL; g l id ingSoar ing <− NULL; break } e lse {
72 g l id ingSoar ing <− rbind ( g l idingSoar ing , par t [ 2 : nrow ( par t ) , ] )
73 }
74 }
75 simTrack <− gl id ingSoar ing
76 }
77 }
78 }
79 }
80 return ( simTrack )
81 } , mc . cores = nCores )
82 Sys . time ()− t
83
84 # Save s i m u l a t e d t r a c k s
85 fName <− paste ( " r e s u l t s / simTracks _n" , n . sim , " _ s " , seed , " . RData " , sep = " " )
86 save ( g l i d i n g S o a r i n g L i s t , f i l e = fName )
87 c a t ( " ’ " , fName , " ’ c rea ted\n" , sep = " " )

LISTING A.19: HPC cluster: Logs of completed simulation batch jobs
1 Simulat ion of 1000 t r a c k s on 64 Cores , with seed = 7569187
2 Time d i f f e r e n c e of 4 .050283 hours
3 ’ r e s u l t s /simTracks_n1000_s7569187 . RData ’ crea ted
4
5 Simulat ion of 1000 t r a c k s on 64 Cores , with seed = 9693961
6 Time d i f f e r e n c e of 4 .267797 hours
7 ’ r e s u l t s /simTracks_n1000_s9693961 . RData ’ crea ted
8
9 Simulat ion of 1000 t r a c k s on 64 Cores , with seed = 4771287

10 Time d i f f e r e n c e of 4 .152869 hours
11 ’ r e s u l t s /simTracks_n1000_s4771287 . RData ’ crea ted
12
13 Simulat ion of 1000 t r a c k s on 64 Cores , with seed = 9732833
14 Time d i f f e r e n c e of 4 .172582 hours
15 ’ r e s u l t s /simTracks_n1000_s9732833 . RData ’ crea ted
16
17 Simulat ion of 1000 t r a c k s on 64 Cores , with seed = 6179125
18 Time d i f f e r e n c e of 4 .007906 hours
19 ’ r e s u l t s /simTracks_n1000_s6179125 . RData ’ crea ted
20
21 Simulat ion of 1000 t r a c k s on 64 Cores , with seed = 3786342
22 Time d i f f e r e n c e of 3 .926022 hours
23 ’ r e s u l t s /simTracks_n1000_s3786342 . RData ’ crea ted
24
25 Simulat ion of 1000 t r a c k s on 64 Cores , with seed = 4964122
26 Time d i f f e r e n c e of 3 .819284 hours
27 ’ r e s u l t s /simTracks_n1000_s4964122 . RData ’ crea ted
28
29 Simulat ion of 1000 t r a c k s on 64 Cores , with seed = 2811817
30 Time d i f f e r e n c e of 4 .271228 hours
31 ’ r e s u l t s /simTracks_n1000_s2811817 . RData ’ crea ted
32
33 Simulat ion of 1000 t r a c k s on 64 Cores , with seed = 6374207
34 Time d i f f e r e n c e of 3 .81878 hours
35 ’ r e s u l t s /simTracks_n1000_s6374207 . RData ’ crea ted
36
37 Simulat ion of 1000 t r a c k s on 64 Cores , with seed = 8481337
38 Time d i f f e r e n c e of 3 .951675 hours
39 ’ r e s u l t s /simTracks_n1000_s8481337 . RData ’ crea ted
40
41 Simulat ion of 1000 t r a c k s on 64 Cores , with seed = 7450931
42 Time d i f f e r e n c e of 4 .03747 hours
43 ’ r e s u l t s /simTracks_n1000_s7450931 . RData ’ crea ted
44
45 Simulat ion of 1000 t r a c k s on 64 Cores , with seed = 4131877
46 Time d i f f e r e n c e of 4 .062701 hours
47 ’ r e s u l t s /simTracks_n1000_s4131877 . RData ’ crea ted
48
49 Simulat ion of 1000 t r a c k s on 64 Cores , with seed = 3940392
50 Time d i f f e r e n c e of 4 .409196 hours
51 ’ r e s u l t s /simTracks_n1000_s3940392 . RData ’ crea ted
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Appendix B

Software

Software Description, area of application

Affinity Photo 1.76 Professional image editing software; used to edit raster-
based figures

Blender 2.79 Professional, free and open-source 3-D computer graph-
ics software toolset; used for 3-D rendering the voxel
data of the UDs and collision probability

Final Cut Pro X 10.3.3 Professional non-linear video editing application; used
to create an animation of the 3-D rendering with title and
legend (Figure 5.21)

git 2.14.3 Free and open source distributed version control system;
used for source code (.R) management of the R package
and to keep track of changes in the scripts (.Rmd) and
the final thesis (.tex)

LaTeX 3.04 High-quality typesetting system; used to render the doc-
umentation of the eRTG3D and the thesis itself

LaTeXDraw 3.3.9 Vector drawing editor for LaTeX; used to create vector-
based figures in the thesis

macOS 10.12.6 Graphical operating system for Mac; used as operating
system for most tasks during the work on the thesis

MATLAB 9.3 Multi-paradigm numerical computing environment and
proprietary programming language; used to create
graphics

Mendeley 1.19 Free reference manager; used to manage the literature

PostGIS Provides spatial objects for the PostgreSQL database;
used to enable support of the spatial data types in the
database
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Software Description, area of application

PostgreSQL 9.6 Open source object-relational database system that uses
and extends the SQL language; used to access and filter
the flight trails of airplanes at Zurich Airport

Postico 1.3.2 Modern PostgreSQL client for macOS; used to gain a
first overview of the database

QGIS 3.0.3 Free and open source GIS; used to visually check spatial
data sets prior to their actual use

R 3.5.0 Language and environment for statistical computing
and graphics; used for the implementation of the
eRTG3D, data preprocessing, further analyses and the
visualization of results

RStudio 1.1.453 Free and open-source IDE for R; used as the main devel-
opment environment for the package and further scripts

Slurm 17.11 Free and open-source job scheduler for Linux and Unix-
like kernels; used to submit the simulation jobs to the
Draco HPC of the Max Planck Society

texmaker 5.0.2 Free cross-platform LaTeX editor; used to write the
thesis

TextMate 2.0-rc.4 General-purpose GUI text editor for macOS; used to edit
various types of text files

TABLE B.1: Software used in this thesis.
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Appendix C

Additional Results

test turning angle lift angle step length auto turn auto lift auto step

KS 0.179 0.396 0.003 0.383 0.536 0.17
T 0.913 0.935 0.022

TABLE C.1: p-values of reproduced gliding CERWs tested against the
original gliding section.

test turning angle lift angle step length auto turn auto lift auto step

KS 0.112 0.717 0.002 0.17 0.705 0.17
T 0.958 0.916 0.001

TABLE C.2: p-values of reproduced soaring CERWs tested against the
original soaring section.

test turning angle lift angle step length auto turn auto lift auto step

KS 0 0 0 0 0 0
T 0.73 0.066 0.002

TABLE C.3: p-values of 1 000 reproduced gliding and soaring CERWs
tested against the original trajectory of Wibi 2.
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