

Hauptbibliothek

Data Entry and Manipulation

GEO 802 Fall 2020, Data Information Literacy

Anna C. Véron, Dr. sc. nat.

Learning Objectives

- Recognize inconsistencies that can make a **dataset difficult to understand** and/or manipulate
- Identify data entry tools
- Identify validation measures that can be performed as data is entered
- Describe the basic components of a **relational database**

- \rightarrow The best way to record your data varies from discipline to discipline.
- \rightarrow You decide what is best for your data!

Lesson 3: Data Entry and Manipulation

\rightarrow How to structure your data: Best practices

- Quality of research data
- Data entry tools
- Databases
- Data Analysis

Collecting data: everyone does it a «little different»? – Better not!

Create datasets that are valid and structured.

Enter your data into spreadsheets or a database, especially when collaboratively working on a dataset.

Structured vs. Unstructured data

Structured data

- Highly organized, usually text-only
- Pre-defined data models
- easy to access, search and analyze scientifically
- (usually) machine-readable

Sources of Structured Data:

- SQL databases, spreadsheets, XML, tables
- Sensors, measurement instruments
- Medical devices
- Online forms
- People who enter data into spreadsheets and databases

			Simulated point		Incre	ment	Point 1	60 - XA	
#	Cumul. A	Cumul. B	x4	y4	x	y	x	Y	z
1	1	1	-48.96857561	-88.92247299	20.12165499	-22.25126963	-176.8471003	-180.7261138	0.429938731
2	1	2	-28.84692062	-111.1737426	20.12165499	-22.25126963	-180.416679	-178.3224113	0.428719544
3	1	3	-8.725265627	-133.4250123	20.12165499	-22.25126963	-178.377803	-179.1528689	0.432975761
4	2	3.01	-8.725265627	-133.4250123	20.12165499	-22.25126963	-178.377803	-179.1528689	0.433911389
5	3	3.02	-8.725265627	-133.4250123	20.12165499	-22.25126963	-178.377803	-179.1528689	0.419149607
6	4	3.03	-8.725265627	-133.4250123	20.12165499	-22.25126963	-178.377803	-179.1528689	0.430769882
7	5	3.04	-8.725265627	-133.4250123	20.12165499	-22.25126963	-178.377803	-179.1528689	0.427405851
8	6	3.05	-8.725265627	-133.4250123	20.12165499	-22.25126963	-178.377803	-179.1528689	0.424734403
9	7	3.06	-8.725265627	-133,4250123	20.12165499	-22.25126963	-178.377803	-179.1528689	0.429885351
10	8	3.07	-8.725265627	-133.4250123	20.12165499	-22.25126963	-178.377803	-179.1528689	0.426223233
11	1	3.08	-8.725265627	-133.4250123	20.12165499	-22.25126963	-177.6078439	-179.2270861	0.429484511
12	2	1	-48.96857561	-88.92247299	-9.954786026	-28.30021617	-177.6078439	-179.2270861	0.428228138
13	1	2	-58.92336164	-117.2226892	-9.954786026	-28.30021617	-177.4066796	-181.1923002	0.431774233
14	1	3	-68.87814767	-145.5229053	-9.954786026	-28.30021617	-180.3109657	-181.7169901	0.426197736
15	1	1	-48.96857561	-88.92247299	24.41505801	17.4328696	-177.0324913	-179.8231079	0.432145588
16	1	2	-24.5535176	-71.4896034	24.41505801	17.4328696	-177.7507558	-181.2133952	0.428179871
17	2	2.01	-24.5535176	-71.4896034	24.41505801	17.4328696	-177.7507558	-181.2133952	0.426421341
18	3	2.02	-24.5535176	-71.4896034	24.41505801	17.4328696	-177.7507558	-181.2133952	0.43475605
19	4	2.03	-24.5535176	-71.4896034	24.41505801	17.4328696	-177.7507558	-181.2133952	0.425340353
20	5	2.04	-24.5535176	-71.4896034	24.41505801	17.4328696	-177.7507558	-181.2133952	0.42824593
21	6	2.05	-24.5535176	-71.4896034	24.41505801	17.4328696	-177.7507558	-181.2133952	0.423622879
22	1	3.05	-0.138459593	-54.0567338	24.41505801	17.4328696	-180.1497591	-181.4987625	0.431200562
23	2	3.06	-0.138459593	-54.0567338	24.41505801	17.4328696	-180.1497591	-181.4987625	0.43230486
24	3	3.07	-0.138459593	-54.0567338	24.41505801	17.4328696	-180.1497591	-181.4987625	0.433827593
25	1	1	-48.96857561	-88.92247299	3.861494803	29.75044299	-179.322055	-179.5693388	0.429716649
26	1	2	-45.10708081	-59.17203001	3.861494803	29.75044299	-179.0094004	-181.8436293	0.428368005
27	1	3	-41,24558601	-29.42158702	3,861494803	29,75044299	-180.0286419	-179,9453601	0.429970598
20	2	2.01	41 34559601	20.42159702	3.961404902	20 75044200	190 0396410	178 045 2601	0.421322223
20		1	49.06857561	-23.42130702	25 72151806	15 44032088	178 4041007	-191 0364802	0.429030041
20		1	-21 24705756	-73 49215211	25.72151806	15 44032088	-177 4690714	-181.0204692	0.4285330041
21	2	2.01	-23 24705756	.72 49215211	25.72151806	15 44032088	-177 4690714	-181.9669631	0.428332004
32	3	2.02	-23 24705756	.73 48215211	25.72151806	15 44032088	-177 4690714	-181 9669631	0.431070306
33	1	3.02	2 474460499	-58.04183123	25.72151806	15.44032088	-178.8681913	-179.026806	0.422824409
34	2	3.03	2 474460499	-58 04183123	25 72151806	15 44032088	178 8681913	-179 026806	0.430316917
35	1	1	.48.96857561	-88 97247299	-3.963374105	29 73704198	-178 2764223	-178.097076	0.424043132
36	1	2	-52,93194972	-59,18543101	-3.963374105	29,73704198	-179.2248868	-179.8045895	0.427878904
37	1	3	-56.89532382	-29.44838903	-3.963374105	29,73704198	-179,198373	-181.6456497	0.423258944
38	1	1	-48.95857561	.88 02247200	-7 212259271	29.12015200	-180 345 3268	-181 1142549	0.429798104
20		-	£6 19092490	50.9022100	7 212259271	20 12015309	170 1004014	179 6100013	0.420476309
33	1	2	-50.18083489	-59.8025199	-7.212259271	29.12015309	-1/9.1554914	-178.0158812	0.450470308
40	1	3	-03.39309410	-30.08210081	-7.2122592/1	29.12015309	-1/9.8509424	-1/8.1088236	0.425200900
41	1	1	-48.90857501	103 40333370	26.80049534	13.48085492	-1/0./511238	191 756135	0.423891424
42	2	2 3.01	22.10808027	102.4033279	26.80049534	13.48085492	180.0191219	181.750130	0.430987081
43	2	2.01	A 633415074	1102.4033279	26.80049534	13.48085492	178 2299254	177 9665 904	0.434615919
44	1	3.01	4.032415074	-113.0041028	0.670847104	-13.48085492	177 1922100	190 2042142	0.429021793
45		1	58 63047277	117 2200715	0.670847104	28.39849849	190 1610107	190 1764/38	0.423132276
40	1	2	-50.03942272	-145 71947	0.670847104	-28.39949849	-180.1019107	-180.6057679	0.436353335
47	1	1	48 06857561	-99 02247200	14 40371697	26.35645049	179 7042655	-170 5670160	0.42010451
40	1	2	-34 47485874	62 65501305	14.49371687	26 26655004	177 5131010	179.5070109	0.431231355
50	1	3	-10 08114187	-36 38035311	14 49371697	26 26655004	-178 7031793	-181 5638231	0.438455872
50	+		13.30114101	-30/303333311	1-1-1-12212001	AN.200333994	A10.1033103	101.0030331	2.4304330/2

Borges, C., Palma, C. & da Silva, R. B.. Optimization of River Sampling: Application to Nutrients Distribution in Tagus River Estuary (2019). https://doi.org/10.1021/acs.analchem.8b05781.s001

- etc.

Structured vs. Unstructured data

Unstructured data

- No pre-defined data model
- Difficult to search
- Not «machine-readable», but can be analyzed with text mining, data mining and AI techniques (time-consuming)
- More than 80% of data generated in the world

Sources of Unstructured Data:

- Text files, presentations, emails, websites, diaries
- Social media, text messages, chat
- image, audio and video files
- Examples from Science: satellite imagery, microscope images, space exploration, seismic imagery, atmospheric data, surveillance photos / videos, sensor data

Petroccia, A.. Structural and geomorphological framework of the upper Maira Valley (Western Alps, Italy): the case study of the Gollone Landslide (2020). https://doi.org/10.6084/m9.figshare.12854354.v1

Structured vs. Unstructured data

Whenever possible, create structured data!

Devin Pickell, G2 Learning Hub, Structured vs. Unstructured Data – What's the Difference? https://learn.g2.com/structured-vs-unstructured-data; accessed Aug 26th 2020

Example: unstructured data entry

From a small mammal trapping study

🔊 d	ata.xls														
	A	В	C	D	E	F	G	Н		I	J	K	L	M	N 🔒
1	Site	Date	Plot	Species	Weight	Acult		Rodent Trap	pping	3/15/2010					
2	DeepWell	2/13/2010	1	DIPO	12.1	j		Site	Ī	Plot	Adult	RodentSp	Weight		
3	Deep Wel	Feb-10	2	Pero	13.22	j		DW		1	у	Pero	12		
4	rioSalado	2/13/2010	1a	pero	16	N		RS		2	j	PERO	escaped <15		
5	rioSlado	н	1+	CleGap	18.92	gut away		RS		3	ri 🛛	Clegap	91		
6		\square		Mean1	15.06										
7															
8															
9															
10															
11															
12	Rodent Tra	ipping	MJK & ALN	10-Apr-10					nco	nsiste	ncv bet	ween da	ata collecti	on eve	nts
13	Site	Plot	Adult	Species	grams	Comments									
14	deep well	1	у	woodrat	13					— Lo	ocation	of Date	informatio	on	
15	riosalado	2	у	PERO	24.5					Les	consist	topt Dat	o format		
16	riosalado	3	у 🕻	Clegap	91							tent Dat	e iornat		
17										— C	olumn	names			
18															
19										- 0	rder of	column	IS		
	→ → \She	et1/													

Example: unstructured data entry

From a small mammal trapping study

	lata ula														
	laca.xis														
	A	B	C		E	F	G	<u> </u>		J	K	L	M	N	
1	Site	Date	Plot	Species	Weight	Acult		Rodent Trapping	g 3/15/2010	0					
2	DeepWel	2/13/2010	1 1	DIPO	12.1	j		Site	Plot	Adult	RodentSp	Weight			
3	Deep Wel	Feb-10	1 2	Pero	13.22	j		DW	1	l y	Pero	12			
4	rioSalado	2/13/2010	l 1a	pero	16	N		RS	2	2 j	PERO	escaped <15			
5	rioSlado	"	1+	CleGap	18.92	gut away		RS	3	3 ri	Clegap	91			
6				Mean1	15.06										
7															
8															
9															
10															
11															
12	Rodent Tra	apping	MJK & ALN	10-Apr-10				Inconsis	tency	betwee	en data	a collectio	n ever	nts	
13	Site	Plot	Adult	Species	grams	Comments	;	г	lifforo	nt aita	onollir	an anit			
14	deep well	1	У	woodrat	13			- L	Jiffere	nt site	spenn	igs, capita	alizatio	on, spa	aces
15	riosalado	2	y y	PERO	24.5			ii	n site I	names	—harc	to filter			
16	riosalado	3	i y	Clegap	91					upped f		nomes fo		a data	b
17								- 0	oaes	usea t	or site	names to	or some	e data	, bu
18								S	pelled	l out fo	or othe	rs			
19										value		laight acl	1 100 10		
		et1						— N	lean1	value	IS IN W	reight coll	inn		
J. P.		cu/									Le a se a la la		1		

 Text and numbers in same column – what is the mean of 12, "escaped < 15", and 91?

The same data entry can be structured into one table

a Maria	lata.xls															×			
	A	В	C	D	E	F	G	Н		I	J	J K	L	M	N ¹				
1	Site	Date	Plot	Species	Weight	Acult		Rodent Tra	apping	3/15/2010						-			
2	DeepWell	2/13/2010	1	I DIPO	12.1	j		Site		Plot	Adult	Rodent3	Sp Weight						
3	Deep Well	Feb-10	2	2 Pero	13.22	j		DW		1	у	Pero		12					
4	rioSalado	2/13/2010	1a	pero	16	N		RS		2	j	PERO	escaped <	15					
5	rioSlado	"	1+	CleGap	18.92	gol away		RS		3	ri 🛛	Clegap		91					
6				Mean1	15.06				parts _					-					1-1-1
7									<u>뭼</u> 5	E¥_Small	Mam	nmalData_	v.5.25.2010	l.xls					
8										A		В	С	D	E	F	G	Н	-
9									1	Date	ß	Site	Plot	Species	Weight	Adult	Comments		
11									2	2/5/201	10 D	eep Well	1	DIPO	13.2	Y			
12	Rodent Tra	pping	MJK & ALN	10-Apr-10					3	2/4/201	10 D) eep Well	1	CLEGAP	11.6	i			
13	Site	Plot	Adult	Species	grams	Comments				2/5/201	10 8	io Salado	1	DIPO	14.2				
14	deep well	1	У	woodrat	13					2/5/20		No Oalado			14.2	у 			
15	riosalado	2	у	PERO	24.5				5	2/5/20	IU R	lio Salado	2	PERU	10.1	У			
16	riosalado	3	у	Clegap	91				6	3/15/201	10 D)eep Well	1	DIPO	15.2	у	plot burned		
17									7	3/15/201	10 D)eep Well	2	DIPO	21.7	у	pregnant		
10									8	3/15/201	10 R	lio Salado	1	CLEGAP	16.2	j			
200		ot1 /							9							-			
р м , ,	A N NI(SHE	<u> </u>							10										
	-		~						11										
	• Cc	olumi	ns of (data a	are co	onsist	tent:		12										

I ← ← ► ► ► SmallMammalTrapping (Sheet3 /

- Columns of data are consistent: only numbers, dates, or text
- Consistent Names, Codes, Formats (date) used in each column
- **Data are all in one table**, which is much easier for a statistical program to work with than multiple small tables which each require human intervention

Anna's Excel-Tipps #1

- Always use the first line (A1, B1, C1, etc.) for the **column titles** and start entering data in cell A2.
- Do not create empty «interruptions lines»
- Do not start a new table on the same sheet.

	А	В	С	D	E
1					
2					
3					
4	Anna's exar	nple for a bad	excel sheet.		
5	Remember t	hat Excel is not	Word or Powe	rpoint.	
6	Don't use it t	o write tons of	text or create	"presentatio	ns".
7					
8	Reaction 1				
9	Sample	Temperature	Time[hh:mm]	Yield	
10	8986	87°C	16:00	14%	
11	8987	87°C	20:00	20%	
12	8988	90°C	16:00	23%	
13	8989	90°C	20:00	49%	
14	8990	93°C	16:00	25%	
15	8991	93°C	20:00	28%	
16	8992	93°C	23:00	3%	
17					
18					
19	Reaction 2				
20	Sample	Temperature	Time[hh:mm]	Yield	
21	5671	40°C	16:00	18%	
22	5672	40°C	20:00	29%	
23	5673	53°C	16:00	22%	
24	5674	53°C	20:00	20%	
25	5675	53°C	16:00	19%	
26	5676	66°C	20:00	18%	
27	5677	66°C	23:00	15%	
28					

Best practices for tables and spreadsheets

- Create descriptive column headers
- Careful with special characters!
 - → Use UTF-8 character encoding when exporting or importing data if you use special characters!
- Units: Specify them in the column header or in a separate line under the header (some programs also have a dedicated line for the units).
- Avoid empty spaces, many programs have problems to read them.
 → Underlines are the solution: «length m» → «length_m»
- Use uniform abbreviations and naming conventions throughout the spreadsheet
- Missing data: Leave field empty or create an abbreviation that indicates missing data. (depends on the software you use and how it handles empty fields)

Your turn: Spot the faux pas!

Exercise 3.1: Spot the six problems

	A	B	C	D	E	F	G	Н	I	J	K	L	M	N
1 M	lutant													
2						average	stddev			:				
3 Sic	c18	4059	6415	5938		5471	1246	23%						
4 1-2	273	5004	3486	5870		4787	1207	25%						T
5 1-2	225	3212	3218	2129		2853	627	22%						
6 21	10-264	2091	2317	1947		2118	187	9%						
7 21	15-264	1141	3053	2873		2356	1056	45%						
8 22	21-264	3626	3006	4824		3819	924	24%	т					
9 22	26-264	2038	2090	2176		2101	70	3%		т				
10 Sic	c18	6947	5823	11405		8058	2952	37%		_		-		T
11									T				_	
12						average	stddev			- T		т		
13 Sic	c18	4059	6255	5561		5292	1123	21%		1			_	
14 1-2	273	5004	3377	5458		4952	1094	22%				1		
15 1-2	225	3212	3050	1994		3683	661	18%						
16														
17 21	10-264	2091	6415	1824		3443	2577	75%						
18 21	15-264	1141	3463	2691		2938	1183	40%						
19 22	21-264	3626	3128	4518		3095	704	23%						
20 22	26-264	2038	2038	2038		2898	0	0%						
21 Sic	c18	6947	5678	12622		5227	3698	71%						
22														
23						average	stddev							
24 Sic	c18	4066	6248	5562		5292	1116	21%		Ì				
25 1-2	273	5011	3372	5459		4953	1099	22%						
26 1-2	225	3222	3044	1989		3683	666	18%						
27 21	10-264	2099	6407	1823		3443	2571	75%						
28 21	15-264		3457	2694		3296	540	16%						
29 SIG	C1221-264-3XHA	3630	3123	4513		3483	703	20%						
30 22	26-264	2042	2033	2037		2896	5	0%						
31 Sic	c18	6951	5674			3747	903	24%						
32										1				

Exercise 3.1: Six problems

Exercise 3.2: Spot the two problems

	A	В	С	D	E	ŀ
		Amount Used				
		for Rin2D	Fabric	Total Price		
1	Fabric	(yds.)	Price/Yd.	Paid		
2	RK Kona Cotton Artichoke	1.4	3.99	5.59		
3	RK Kona Cotton Cactus	1.2	3.99	4.79		
4	RK Kona Cotton Celery	1.65	3.99	6.58		
5	RK Kona Cotton Grass Green	1.7	3.99	6.78		
6	RK Kona Cotton Lime	1.65	3.99	6.58		
7	RK Kona Cotton Olive	1.8	3.99	7.18		
8	RK Fusions 5573 Leaf	0.17	7.4	1.26		
	Andover Dimples P0260-1867-G27					
9	Light Green	0.17	7.02	1.19		
	Blank Textiles Tribeca BTR4783					
10	Moss	0.17	7.4	1.26		
11	RK Kona Cotton Jade	8	4.19	33.52		
12	Aurifil Thread for piecing	2 bobbins				
	Melodee Wade - quilting service					
13	(includes batting)			200.00		
14	Labor (hours) - TOTAL	24.25		485.00	@ \$20/1	"
15	wash & iron fabric	2				
16	assembling top	11.75				
17	trim threads/final press	0.75				
18	assembling back & cutting	1.25				
19	making and attaching binding	4.5				
20	hand sewing binding to back	4				
21						

Exercise 3.2: Two problems

Summary: Structure your data!

- Are your data as structured as possible?
- Integrate as much data as possible into tables / spreadsheets
- Combine tables / spreadsheets whenever possible

But I work with images / audio / video data. What can I do?

That's ok. Research can also rely on unstructured data. Lesson 6 «Data Documentation and Metadata» will be very important for the management of your data.

Lesson 3: Data Entry and Manipulation

- ✓ How to structure your data: Best practices
- \rightarrow Quality of research data
- Data entry tools
- Databases
- Data Analysis

Types of «bad research data»

- Inconsistent / unreliable data
- Invalid / Inaccurate data
- Incomplete data
- Nonintegrated data

Research data quality characteristics

Reliability ~ Consistency ~ Reproducibility

The extent to which **the results can be reproduced** when the research is repeated under the same conditions.

Assessed by checking the consistency of results across time, across different observers, and across parts of the test itself.

A reliable measurement is not always valid: the results might be reproducible, but they're not necessarily correct.

Validity ~ Accuracy

The extent to which the results **really measure what they are supposed to measure.**

Assessed by checking how well the results correspond to established theories and other measures of the same concept.

A valid measurement is generally reliable: if a test produces accurate results, they should be reproducible.

Scribbr. Reliability vs Validity in Research | Differences, Types and Examples. https://www.scribbr.com/methodology/reliability-vs-validity/ accessed: Aug 26th 2020

Research data quality characteristics

Completeness

While extrapolation is often useful, it might not always get you accurate results... So **make sure your datasets are as complete as possible!**

Research data quality characteristics

Data integration = process of combining data from different sources into a single unified view

Typically required for

- Business intelligence
- Big Data analyses

What is Data Integration? | Talend https://www.talend.com/resources/what-is-data-integration/

- when reusing research data

Lesson 3: Data Entry and Manipulation

✓ How to structure your data: Best practices

- ✓ Quality of research data
- \rightarrow Data entry tools
- Databases
- Data Analysis

Data entry tools

For Spreadsheets

MS Excel

Apple Numbers


```
Google Sheets
```


OpenOffice Calc

LibreOffice Calc

Data entry tools

For Surveys

LimeSurvey

Scientific online survey tool Campus licence available for all UZH members https://www.uzh.ch/zi/cl/umfragen/index.php/ad min/authentication/sa/login

Google Forms

Google forms: Not only for surveys!

- Enter data through a form
- Can be directly fed into a Google spreadsheet
- Pros:
 - Predefined answer possibilities («controlled vocabulary») → Data validation
 - Easier to receive a well-structured spreadsheet
- Cons:
 - Doesn't work well with validation of numerical values (e.g. numbers only in a certain range)

	Questions	Responses	G
Data entry form			
Date * Day, month, year			
Site * 1. Deep Well 2. Rio Salado 3. Cerro Montosa			
Plot * N S W E			

Zoho Sheets

- Similar to Google sheets, but much more functionality
- Data validation
- Data entry through forms
- Analysis tools,e.g. Pivot tables

Anna's Excel-Tipps #2

Demo data validation:

How to predefine answer possibilities in Excel

- Data \rightarrow Data validation

Lesson 3: Data Entry and Manipulation

✓ How to structure your data: Best practices

- ✓ Quality of research data
- ✓ Data entry tools
- \rightarrow Databases
- Data Analysis

What's wrong with a Single Table?

IN S	FIN (ILI	ITE LS								
١	Nł	nať	s wr	ong	g wit	h a	Sin	gle	Tabl	е
		ID	First Name		Surname	Child	d Name	Child DOI	3	
		1	Fred		Elliott	Mar	У	5/23/200	0	
		2	Mary		Jones	Sid		6/25/199	8	
		3	Oliver		Tonny	Jam	es	12/25/20	01	
	ID	First Nam	e Surname	Child Name	Child DOB	Child2	Child2 DOB	Child3	Child3 DOB	
	1	Fred	Elliott	Mary	5/23/2000	Jimmy	12/9/200 3	Harry	5/21/1999	
	2	Mary	Jones	Sid	6/25/1998					
	3	Oliver	Tonny	James	12/25/2001					
	2:16 / 8:08		_						Interi	
Tutorial Rela 6 Aufrufe • 08.05	ational D i.2014	atabases and	d Key Terms Expla	ained				565 9 2	0 🥕 TEILEN 🗏	=+ SPEICHERN
O'Reilly - Vic 137.000 Abo	leo Trainin nnenten	g								ABONNI

https://youtu.be/h8IWmmxlyS0?t=83

What is a relational database?

- Contains more than one table
- Relationships between the tables
- Parent tables and child tables
- Are searched with a declarative programming language: SQL = structured query language

Spreadsheets vs. databases

Want to give databases a try?

- MySQL (open-source, aquired in 2010 by Oracle)
- MariaDB (fork of MySQL)
 - community developed
 - Intended to remain free and open-source under GNU GPL

MariaDB°

- Tutorials to get started: <u>https://mariadb.com/get-started-with-mariadb/</u>
- Geographic & Geometric Features in MariaDB: <u>https://mariadb.com/kb/en/geographic-geometric-features/</u>

Lesson 3: Data Entry and Manipulation

✓ How to structure your data: Best practices

- ✓ Quality of research data
- ✓ Data entry tools
- ✓ Databases
- \rightarrow Data Analysis

Think of reproducibility when analysing data!

- **Document** your data analysis process
- «Metadata»: data about data
 - Process metadata: data documenting the process used to create, manipulate, and analyze data
- \rightarrow Lesson 6: Data documentation & Metadata

Sep/8/2020 GEO 802, Data Information Literacy

Data provenance

- Description of the origins of data
- Ability to follow data throughout the entire life cycle
 - Replication / reproducibility
 - Detection of potential defects, logical or statistical errors, limitations
 - Evaluation of hypotheses
- Especially important for making data **reusable**

Tools for documenting scientific workflows

kepler-project.org/

- Open-source, free, cross-platform
- Drag-and-drop interface for workflow construction
- Possible applications
 - Theoretical models or observational analyses
 - Hierarchical modeling
 - Can have nested workflows
 - Can access data from web-based sources (e.g. databases)

Summary of Lesson 3

Create **structured** data whenever possible

When using data from different sources: Make sure your data is well **integrated**.

Make sure your data is **consistent**, **reproducible**, **accurate** and **complete**.

Choose a data entry method that allows for the **validation** of data as it is entered.

Consider investing time in learning how to use a **relational database** if datasets are large or complex. Remember to **document** your data analysis and manipulation to ensure **reusability** and **reproducibility**.