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Abstract

Recently deployed technologies, such as laser scanning or SAR interferome-
try, can be applied to generate digital terrain models of high spatial resolu-
tion. Due to the increasing resolution, approximation techniques for digital
terrain models are needed. Surface simplifications are necessary to meet the
requirements of traditional applications developed for meso-scale data. Fur-
thermore, scale problems are a very important issue for process modelling.
They also need to be dealt with by a representation consisting of multiple
resolutions.

The proposed generalisation method consists of a semantic information re-
duction in a first step and a statistical data reduction in a second step.
This investigation is primarily concerned with the controlled reduction of
information based on the occurrence of significant landscape structures of a
given scale. A mesh filter is subsequently employed for data reduction.

The information reduction is undertaken in the wavelet domain. Space and
frequency localisation is a major advantage of a wavelet representation over
Fourier or Fuclidean bases. The stationary wavelet transform is applied to
localise significant landforms of a chosen scale in the digital terrain model.
The implemented wavelet coefficient filter is adaptable to the thus detected
landscape features at a scale of interest. The resulting approximation pre-
serves significant structures, whereas areas of little relevance for the chosen
scale are considerably smoothed. This method is believed to include more
semantic information than purely statistical methods such as TIN filters.
However, further research is needed in order to develop a comprehensive
framework for wavelet-based generalisation of digital terrain models. Fur-
thermore, it is concluded that a landscape feature and its classification into
a certain scale is fuzzy. A wavelet-based approach combined with a fuzzy
logic approach could probably capture the specific issues of a generalisation
based on landform recognition more appropriately.
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Chapter 1

Introduction

1.1 A Changing Perspective

The last few decades have witnessed a variety of rapidly changing tech-
nologies for generating digital elevation data. As a consequence the spatial
resolution of digital terrain models has increased considerably. The most
recent high resolution models derived from laser altimetry contrast starkly
with the data sets generated fifteen years ago. As a result a great many new
options and applications have become possible. Resolutions of less than
two metres with very high vertical accuracy allow to tackle sophisticated
problems, such as flood modelling in flat areas, or timber volume estimation
in forests. However, more traditional applications may also require digital
terrain models with much lower resolutions. Hydrological models, as an ex-
ample, cannot possibly deal with the vast number of sample points provided
by high resolution terrain models. Moreover, handling very large data sets of
several hundreds of megabytes is still a problem for most computers. Hence,
data reduction, filtering and generalisation is an increasingly important is-
sue.

Any physical process and landform feature is associated with a specific scale
and resolution (see Figure 4.2). The advent of very high resolution data
is a further challenge for modellers. Such high resolution data needs to be
transformed to the required scale, which is largely dependent on the purpose
of the model. For multi-purpose terrain models, a representation at multi-
ple scales is desirable. This can be approached by means of multiresolution
theory.

Generating a digital terrain model traditionally implied the application of
an adequate interpolation method in order to create a continuous surface
from often sparse sample points, breaklines and contours. Exact interpola-
tion techniques, such as inverse distance weighting, bivariate cubic or quintic
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interpolation, Kriging or B-Splines have been widely used to generate con-
tinuous surfaces. The focus has predominantly been on the estimation of a
surface from scarce information. The often redundant information of high
resolution models, in contrast, needs to be simplified in order to obtain mod-
els of suitable resolution for conventional applications originally designed for
medium or low resolution models. Exact interpolation as a traditionally im-
portant step in digital terrain model generation needs to be replaced by the
application of a surface approximation containing less information than the
raw data. Surface approximations are also referred to as non-exact interpo-
lation. The main objective of both exact and non-exact interpolation is the
generation of a continuous surface.

1.2 Research Objective

The objective of this thesis is the recognition of significant structures and the
controlled reduction of information in digital terrain models. The primary
focus of this thesis is the filtering of high resolution data in the wavelet
domain using scale-adaptive and locally adaptive thresholds. The major
preservation criterion of the filtering process will be to retain significant
landscape forms of a given scale. Fine-scale structures shall be retained,
provided they are part of a significant large-scale form. Edge smoothing of
relevant large-scale structures is to be avoided, whereas the elimination of
noise and small-scale structures in smooth areas shall be permitted. It is
thus necessary to detect the predominant features or at least their spatial
extent for a given scale.

Instead of detecting significant features, a method shall be found to include
known features of importance, such as shorelines or hydrological networks,
directly into the set of well-preserved landforms. For instance, shorelines
(e.g., of lakes) are often not associated with coarse features but are neverthe-
less important and should not be simplified too much. Such complementary
a priori knowledge will be included similarly to important features detected
by wavelets.

The statistical data reduction will be performed by the TIN filter which

selects important points of the resulting terrain model. The points close
enough to the approximated surface will be rejected.

1.3 Wavelets in Terrain Modelling

One of the first fields to employ wavelets was geophysics. In the early
1980s, Morlet (in Hubbard (1996)), working for an oil prospection company,
adapted the Fourier transform in order to better analyse seismic signals.

J—
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They were rediscovered in geophysics in the early 1990s as a means to aid
atmospheric and hydraulic turbulence exploration and de-noising of SAR-
images in particular (Foufoula-Georgiou and Kumar (1994)). Wavelets are
now successfully applied to many disciplines, from financial mathematics to
technical and medical engineering.

The characteristics that make wavelets very attractive for analysing non-
stationary or transient signals are time-frequency localisation or scale-space
analysis, orthogonality and multiresolution representation. These concepts
are explained in chapter 2. These apparent advantages have not been widely
exploited by digital terrain modellers so far. Gerstner and Hannappel (2000),
Gross et al. (1996), Luca et al. (1996), Gallant and Hutchinson (1996) are
notable exceptions.

The wavelet perspective has been adopted to a much greater extent by im-
age processing and image compression researchers. They have extended
the wavelet transform successfully to two-dimensional images. Nevertheless,
fundamental differences between image processing and terrain modelling re-
strain the direct transfer of approximation techniques that have been devel-
oped for images. Particularly the higher regularity of digital terrain models
and the importance of extrema are issues of special emphasis in terrain mod-
elling. In images the occurrence of black pixels next to white pixels is very
common, whereas such singularities in a terrain would signify the highest
point being a neighbour of the lowest point, for example, on a cliff, which is
not often the case.

In this thesis wavelets are used for surface approximation on the one hand
and for the estimation of the importance of prevailing landforms on the
other hand. The principal focus is on the estimation of significant forms as
an approximation criterion rather than on smooth approximation proper-
ties. Only orthogonal wavelets of varying support are applied. For visually
attractive approximations, bi-orthogonal scaling functions such as splines
could be considered. They are described by Stollnitz et al. (1995a), among
others. However, the filter proposed in chapter 4 is seen as a preprocessing
step for a traditional mesh filter introduced in chapter 3. A conventional
mesh filter eliminates redundant points in the grid and possible wavelet-
induced artefacts.

1.4 Thesis Organisation

The second chapter will provide the theoretical background to the wavelet
transform. For completeness, the mathematical formulations will be given
in section 2.2.2. In chapter 3 a few theoretical notions on modelling, its
constraints and possible social implications will be considered. Moreover,
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cartographic generalisation and some types of surface simplification algo-
rithms will be reviewed. Chapter 4 will introduce the conceptual framework
of the proposed scale-adaptive wavelet filter, including some thoughts on
the perception of landscape features belonging to a specific scale. In chap-
ter 5 the various thresholding options and the applied mesh filter will be
discussed. Various types of evaluations will be attempted in chapter 6.
Chapter 7 gives a short overview of possible extensions and measures for
tackling the encountered deficiencies.




Chapter 2

‘Theoretical Background

2.1 Interpolation and Approximation

Conventional digital terrain models (DTMs) are derived from points, struc-
ture lines and contours. For a more detailed definition see section 3.1.2.
As stated in the introduction, terrain modelling implies the application of
an adequate interpolation method in order to obtain a continuous surface
from the often sparse raw data. High resolution terrain models, in contrast,
consist of a vast number of grid points as a result of their small sampling
interval. Thus, a problem that is converse to classical precise interpolation
has to be tackled. Plausible approximations, also called non-exact interpo-
lations have to be found. This is necessary not only to store and process
these data sets efficiently, but also to reduce undesireable detail information
for a given scale. Approximation, or non-exact interpolation algorithms will
therefore become increasingly important to terrain modellers. This is less
revolutionary than it may appear since interpolation and approximation are
intimately related. Both methods are applied for the generation of contin-
uous surfaces from incomplete surface representations. The mathematical
connections between the two concepts are discussed in detail by Cohen et al.
(2000b) and Mallat (1999). Exact interpolators yield surfaces honouring all
original data points, whereas a non-exact interpolation (or approximation)
does not nessecarily pass through all original points (Laurini and Thompson
(1992)).

Mitas and Mitasova (1999) (p. 481) define interpolation in a two-dimensional
space as a bivariate function F(r) which passes through all N given points

Ty = (xi,yi), ’i=1,2,...,N (2.1)

such that
F(r;) = z, 1=1,2,...,N (2.2)
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with z; being the sample values. Approximation functions (or non-precise
interpolations) do not fit the original points exactly but find trend surfaces
disregarding local variations (Jones (1997), p. 203). Moving averages are
typical examples for non-exact interpolators (Laurini and Thompson (1992),
p. 263). They work similarly to scaling functions used to derive approxima-
tions by the wavelet transform. In this thesis wavelets and the respective
scaling functions are applied to derive a simplified surface from the original
DTM. The concept of wavelets is shortly reviewed in the following section.

2.2 A Brief Introduction to Wavelets

In this chapter a short explanation of the wavelet transform will be given. At
first the focus will be on a qualitative understanding rather than on mathe-
matical details. The more formal section 2.2.2 will complete the theoretical
understanding.

The general introduction to wavelets by Hubbard (1996), also available in
German (Hubbard (1997)), is highly suggested for people with little mathe-
matical knowledge. On the undergraduate level Nievergelt (1999), Stollnitz
et al. (1995a), Triebfiirst and Saurer (1999) and Frazier (1999) are a good
base to start with. Detailed mathematical discussions are provided by Blat-
ter (1998), Hernandez and Weiss (1996) or Mallat (1999), the latter being
a very important exponent of the wavelet community. Another protagonist
in the development of wavelets is Daubechies (1992). The considerations in
the following section refer to Hubbard (1996) if not stated otherwise.

2.2.1 General Properties of the Wavelet Transform

Fourier transform versus wavelet transform. As Nievergelt (1999)
points out, wavelets extend the Fourier analysis. The Fourier transform de-
composes a signal into a linear combination of harmonic cosine functions.
Predominant frequencies in a signal can thus be extracted and analysed.
Looking at a signal from a frequency perspective has a number of advantages
over the ordinary representation in the spatial domain which is known from
Cartesian co-ordinate systems using the Euclidean basis. Unnecessary or
perturbing frequencies can be suppressed in the Fourier domain, which is an
important property for many applications such as signal compression, signal
transmission or de-noising. Yet, it is not possible to localise the frequen-
cies extracted by Fourier transform because cosine functions have infinite
support. They are therefore space-invariant or time-invariant, depending on
whether the investigated features appear in space or over time. Considering
spatial or temporal distributions of frequencies is equivalent. For analysing
non-stationary or transient phenomena with the occurrence of signal changes
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at a particular location, such as a terrain, the space-invariant Fourier trans-
form is not suitable.

Instead of infinite sinusoidal waves Morlet and Daubechies used a short
waveform expressed by a function with compact support (Hubbard (1996)).
Compact support of a wavelet basis means that it is zero everywhere outside
a certain interval, for example between -1 and 2 (see Figure 2.1). Daubechies
(1992) developed a recursively defined wavelet shown in Figure 2.1. Such a
wavelet basis is spatially localised, due to its local support (Mallat (1999),
p. 4, Hubbard (1996), p. 45). The Fourier basis vectors are able to detect a
narrow range of frequencies in a signal but cannot detect their spatial loca-
tion. The Euclidean basis vectors used in the Cartesian co-ordinate system,
on the other hand, give the exact location of an object in space but no infor-
mation about its wavelength (Frazier (1999), p. 167). Wavelets have both
compact spatial support and also an oscillation. Due to these characteristics
they form a basis which is localised both in the spatial and the frequency
domain.

1y
T

Figure 2.1: The recursively defined Daubechies wavelet applied in this
thesis. From: Nievergelt (1999)

Uncertainty principle. The Heisenberg.uncertainty principle imposes a
limit to any signal representation: it cannot have a precise location and a
precise frequency at the same time. Mathematically spoken the product of
the uncertainty in space and the uncertainty of the frequency must exceed a
minimal value. This also applies to the wavelet transform and expresses the
trade-off between localisation in the spatial domain and localisation in the
frequency domain (Hubbard (1996), p.49). The localisation in time/space
and frequency /scale is best visualised by so-called Heisenberg boxes or time-
frequency boxes introduced by Mallat (1999) (see Figure 2.3). To each
wavelet coeflicient a box in Figure 2.3 is assigned.
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Fast wavelet transform. In order to examine a signal at different fre-
quencies or scales it is analysed with dilated (stretched) versions of the
original mother wavelet. The fast wavelet transform progressively drains
the signal of its detail information using orthogonal wavelets of increasing
support. Very small details are subtracted first and the remaining approxi-
mation is subject to detail extraction of the next coarser scale by the next
larger wavelet. For the next coarser scale the wavelet is stretched by a fac-
tor of 2 and the information content of the approximation is halved. The
approximation of each scale can also be computed directly using orthogonal
scaling functions (‘father’ wavelets) instead of subtracting the details ob-
tained by (mother) wavelets (see Figure 2.2). By using orthogonal wavelets
(defined in section 2.2.2) the original signal can be split into redundancy-
free detail coefficients. This implies that the sum of all levels of detail can
reconstruct’ the original signal. The fast wavelet decomposition is concise
which means that the original signal can be only reconstructed by using all
coeflicients.

Orthogonality between different levels of detail is also a principle feature of
multiresolution analysis. It will be further discussed in section 2.3.

(a) (b)

Figure 2.2: Coiflet (according to R. Coifman): a) Wavelet function
(mother wavelet), b) Scaling function (‘father’ wavelet).
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Figure 2.3: Heisenberg boxes. Each box representing a wavelet coef-
ficient has a temporal/spatial (t) uncertainty and an uncertainty of fre-
quency (w). The more dilated the wavelet, such as ¥ ;41 ,,(¢) the higher
the temporal/spatial uncertainty and the better the frequency localisation.
From: Mallat (1999)

2.2.2 Mathematical Foundation
General Formulations

As shown in Figure 2.4, the wavelet function %, which must have zero mean,
is dilated by a scale parameter j and translated by wu:

1 T —U .
¢u,j(x)=m¢< j ) u,j € R. (2.3)

7 is responsible for the normalisation of the wavelet transform. This
j

means that the inner product equals 1 for all 1:

/ Yuj(z)de =1,  Vu,j. (2.4)

The wavelet transform W, ; is obtained by the inner product between the
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Figure 2.4: A Haar wavelet is dilated by scaling factor j and translated
by u. From: Werschlein (1996)

signal f(z) and the dilated and translated wavelet function:

Was = [ 1@ @) da, (25)

which can be interpreted as the correlation or similarity of the two func-
tions (Nievergelt (1999) p.124). The greater a wavelet coefficient the closer
the wavelet resembles the signal. This characteristic is useful to recognise
structures in the signal with forms similar to the wavelet used.

In the case of a discrete signal representation, which is necessary for digital
terrain models (DTMs), the discrete wavelet transform is applicable. The
standard inner product of two vectors of discrete signal points, such as rows
in digital elevation models or discrete wavelets, is defined as

(f, 9) = Z fuu, Vu. (2.6)

The discrete wavelet coefficients are obtained by (Triebfiirst and Saurer
(1999)): _
wi, = (f, Pu,j) - - (2.7)
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The signal to be transformed, f(z), can be a cross-section of the DTM (e.g.,
a row or column of the DTM).

Fast Wavelet Transform

The fast wavelet transform uses (bi-)orthogonal basis functions. This is a
powerful method to split the entire information directly into scale-dependent
detail subspaces and approximation subspaces. It is the most frequently used
wavelet transform in signal compression and transmission. Two vectors 1)
and ¢ are orthogonal to one another if:

<¢a¢) =0, (28)

in analogy to planar geometry using the dot product.
A transformation into concise wavelet coefficients requires wavelet bases
which are orthogonal to one another:

¢U,j L ¢U,j7 VU,U. (29)

In order to conform with the condition of orthogonality, the fast wavelet
transform employs the same mother wavelet 9 as used in equation 2.3,
with the difference that it is translated and dilated by defined steps (Mallat
(1999)):

z —2u

Yui(z) = \/1557#( : ) duen (2.10)

The details of a particular scale j are extracted by the wavelet 4, ; as
in 2.7, which works as a high-pass filter. At the same time the signal is
convolved with a so-called scaling function ¢; working as a low-pass filter
and thus extracting an approximation assigned to scale j (Triebfiirst and
Saurer (1999)):

al, = (f,bu) - (2.11)

The vector of all a; is then subjected to both high-pass and low-pass filters
at the next coarser scale, j + 1. This cascading filter process is depicted in
Figure 2.5.

The scaling function, which also can be referred to as father wavelet, must
be orthogonal to the wavelet. In an often cited capricious essay Strichartz
(1993) expresses his utmost dislike for the label father wavelet: ‘this shows a
scandalous misunderstanding of human reproduction; in fact the generation
of wavelets more closely resembles the reproductive life style of an amoeba.
Orthogonality is a very important property of the fast wavelet transform
and of multiresolution analysis. Orthogonal vectors allow, as stated in the
previous section, not only a loss-less reconstruction of the original signal
but also its representation without redundancy. It is therefore a concise
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Y
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Figure 2.5: Cascading filter process of the fast wavelet transform. The
signal a; is analysed by a wavelet 1;,1, which extracts detail coefficients
dj41 of scale 7 + 1, and by a scaling function ¢;,1, which extracts the
approximation a;1q for scale j + 1. The approximation a;y1 is then
subjected to the same procedure at the next coarser scale.

representation. Orthogonality of all ¢ and ¢ to one another guarantees the
reconstruction of the original signal by a simple linear combination. The
sum of all detail levels and the approximation of the coarsest scale J exactly
reconstructs the original:

J
F= 5 Swive;+> albuy. (2.12)

j:—-oo U U

Two-dimensional Wavelet Transform

Several types of wavelet transforms have been developed in order to deal
with two-dimensional data. This investigation is based on the tensor prod-
uct wavelet transform. The two-dimensional decomposition using a tensor
product wavelet requires the following tensor products between the one-




J

Zm)

2.2. A BRIEF INTRODUCTION TO WAVELETS 13

-1

~1

o

Figure 2.6: Tensor product Haar wavelet. Top left: scaling function; Top
right: vertical detail extraction; Bottom left: horizontal detail extraction;
Bottom right: diagonal detail extraction. From: Nievergelt (1999).

dimensional wavelet and the one-dimensional scaling function (Nievergelt
(1999)):

P=9®¢, T"=¢0y, V=94 V=9 (2.13)

For each scale an approximative data set and three detail extraction matri-
ces are generated, each of which being one quarter of the size of the coarser
approximation. WP extracts horizontal changes in the data, ¥V vertical de-
tails and ¥9 diagonal details respectively. This is shown in Figure 2.6.
For a two-dimensional wavelet transform the resulting wavelet coeflicients
now require two translational parameters, u and » in order to identify the
coefficient at location (u,v). Additionally, for each scale a matrix of hori-
zontal, vertical and diagonal wavelet coefficients are computed, equivalent
to equation 2.7 for the one-dimensional case:

W) = (£9), wll) = (£ 0), Wl = (£90). (219

The fast tensor product wavelet transform is implemented by alternating ap-
plications of the one-dimensional transform to each row of the two-dimensional
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data and subsequently to all of the obtained columns. This is equivalent to
using the two-dimensional tensor product wavelets, such as those from Fig-
ure 2.6.

2.2.3 Stationary Wavelet Transform

The stationary wavelet transform introduced by Nason and Silverman (1995)
is very similar to the standard discrete wavelet transform. The wavelets are
not translated by 27u as for the fast wavelet transform but by intervals equal
to the sampling distance:

hsl0) = 7=b (T5%), duen (2.15)
In contrast to the fast wavelet transform the information is not halved with
each approximation step. The result is a highly redundant representation of
the original signal. For every point in the original signal a stationary wavelet
coeflicient is computed. For data compression this is not feasible. However,
for certain applications, such as feature recognition, the ability of analysing
the signal on a point by point basis proves to be very useful. The analysis of
signals requires wavelet coefficients which are independent of the choice of
the origin. This is the case for the stationary wavelet transform, whereas the
fast wavelet transform results in different coeflicients if a different starting
point in the signal is chosen. The analysis of a chirp signal using both fast
and stationary wavelet transform is illustrated in Figure 2.7.

The measurement of gradient, curvature, or some higher order derivatives
can be obtained directly from wavelet coefficients. This is a beneficial prop-
erty of wavelets with specific support described by Beyer and Meier (2001)
(see appendix). The stationary wavelet transform applied in chapter 5.3.3
can derive such information for each point of the terrain which results in a
more coherent picture.

2.2.4 Extensions

Lounsbery et al. (1997) have developed an extension to the two-dimensional
wavelet transform, applying wavelets to surfaces of arbitrary topological
type. Feng and Jiaoying (1997) further extend this algorithm to allow the
application of multiresolution analysis. Jawerth and Sweldens (1994) also
sketch an expansion of wavelets to more than two dimensions.

The fast wavelet transform described in this chapter is limited to equally
spaced, regular data. It is often applied in practice. Handling irregularly
spaced data is addressed by the continuous wavelet transform. Sardy et al.
(1999) propose four different techniques to deal with irregularly spaced data

JE—
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Figure 2.7: Comparison of the fast wavelet transform (decimated coef-
ficients) with the stationary wavelet transform (one coefficient for each
signal point). From: Nason and Silverman (1995).
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whereas Kovac and Silverman (2000) suggest to interpolate the unequally
distributed points to a regular grid of a suitable size. An informative paper
by Bonneau (1998) introduces the combination of irregular surface meshes
represented by hierarchical Delaunay triangulation with a wavelet-like de-
composition. Such algorithms could be applied directly to triangulated ir-
regular networks (TINs).

2.3 Multiresolution Theory

The concept of multiresolution has a number of advantages for surface mod-
elling. It is gaining increasing importance not only for computer graphics
researchers but also for the GIS community and terrain modellers (De Flori-
ani and Magillo (1999)). Multiresolution analysis offers inherent scalability
and simple access to the data at various scales. Scale problems are tackled
in a more sophisticated way than just by means of re-sampling the model at
arbitrary resolutions. Furthermore, it is often used as a result of computa-
tional considerations, for example, for image transmission. In a multiresolu-
tion data structure the transition from one approximation step to the next
finer one is straight forward. This is a particularly helpful property, for ex-
ample, for image transmission over the Internet. This allows the resolution
of a transmitted picture to be progressively refined.

The fast wavelet transform perfectly complies with multiresolution. Thus,
the advantages of multiresolution analysis can be easily exploited by a
wavelet transformed model. The structure of a signal, for example a terrain,
can be assessed at various scales. This is very important for the analysis of
a digital terrain model. It can be used to detect and extract high frequency
areas, such as forests, or as a basis for terrain generalisation.

Burt (1984) had described a wavelet-like multiresolution pyramid before the
term wavelet was actually known. He applied a Gaussian pyramid as a
low-pass filter, equivalent to the scaling function, and a Laplacian pyramid
as a high-pass filter in analogy to the wavelet. He could thus detect edges
belonging to various scales in a picture. Multiresolution analysis is not only
applicable to wavelet transforms but also to hierarchical terrain models con-
sisting of data structures such as quadtrees, which will be introduced in
section 3.3.2.

For completeness the mathematical conditions to satisfy the requirements
of multiresolution analysis are listed below. For a more detailed, qualitative
explanation with simple examples see Hubbard (1996) and for a mathemat-
ical definition refer to Mallat (1999).

The space Vj can be viewed as the space which is generated by the scaling
function at scale § = 0 together with all its translations. As the scale j
increases, the resolution of functions in V; decreases. A sequence {V;} ez of

—
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closed subspaces of L2(RR) is a multiresolution approximation if the following
conditions are satisfied (Mallat (1999), p. 221; Hubbard (1996), p. 145):

V(j,u) € Z2, f(z) € V; & f(z — 2u) € V; (Translation), (2.16)
Vj €7, Viy1 CV; (Nested subspaces), (2.17)

Vi€ Z, f(z) €V f(f”z—) € Vip1 (Scaling function),  (2.18)

b V= () =0}, (219

j—r—+o0 .
j=—00

j——o0

Jj=—00

lim V; = ( UO Vj> =L*R).  (2.20)

2.19 means that when the scaling function is stretched sufficiently, at infinite
resolution, there is no detail information left. The last condition implies that
any original signal in L2(IR) can be reconstructed exactly.
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Chapter 3

Methods for Surface
Representation and
Simplification

In this chapter some fundamental theoretical notions and methodological
constraints of surface modelling are considered. The often underrated is-
sue of ethical and socio-structural implications of GIS is discussed (see sec-
tion 3.1.1). Some basic representations and approximation techniques of
digital surfaces are then reviewed. The main focus will be on so-called ‘2.5-
dimensional’ digital terrain models rather than on general three-dimensional
surfaces investigated by computer graphics researchers. Abundant literature
on the topic of surface simplification is available. However, some specific is-
sues only applicable to digital terrain models tend not to be taken into
account by most methods of computer graphics research.

3.1 Models of Landscapes

Kemp (1996) reviews the importance and several definitions of the term
‘data model’ in detail. A short definition based on Peuquet and Marble
(1990) is given in McDonnell and Kemp (1995): ‘In a general sense a data
model is an abstraction of the real world which incorporates only those
properties thought to be relevant to the application at hand.” The model
does mimic reality in order to make it conceivable to the user.

19
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3.1.1 Limitations and Ethical Considerations

If a. model is used to represent reality it is inevitable that there are important
limitations. To understand the ethical concerns expressed by exponents such
as Curry (1998) or Pickles (1995) the controversial idea of complete knowl-
edge and complete control over spatial information by the users of a future
global GIS are considered:

Mirror Worlds?

What are they?

They are software models of some chunk of reality, some piece of

the real world going on outside your window. .. A Mirror World is
some huge institution’s moving, true-to-life mirror image trapped
inside a computer — here you can see and grasp it whole...

The picture on your screen represents a real physical layout. . . Now
you see inside a school, courthouse, hospital, or City Hall. . . Eavesdrop
on decision-making in progress. . .

(Gelernter: Mirror Worlds: Or the day software puts the uni-
verse in a shoebox: How it will happen and what it will mean.
In: Curry (1998))

To some affluent sections of society this might look like a bright future of
simple knowledge transfer and discovery in geographical data mining. Al-
ternatively, it can be seen as a vision of a development towards a horrific
‘brave new world’, where individuals interact with computer models rather
than with the real world. Orwell’s ‘1984’ also springs to mind where humans
are watched and controlled permanently. Gelernter was one of the victims
of Theodore Kaczynski, the Unabomber.

Two issues are felt to be important and have to be taken into account.
Firstly, the transformation of parts of the world into information limits the
model’s ability to express the many elements and activities of reality (Curry
(1998)). Roberts and Schein (1995) view all representations of space as arti-
ficial abstractions within constructed rules determined by our interpretation
of the socio-spatial world. They thus depend on the ideas the scientist has
of the world:

‘In essence, a data model captures the choices made by scientists
and others in creating digital representations of phenomena, and
thus constrains later analysis, modeling and interpretation’

(Goodchild et al. (1995), p. 10) in Kemp (1996).
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It might look as if a model is nothing more than a poor juxtaposition to
the real world. In fact it is very important to assess any model-induced
constraint and its consequences. The abstraction from reality is the only
way to understand reality scientifically. However, any human perception
implies some sort of abstraction. The awareness of the deficiencies of the
model is seen as a very important aspect of modelling reality. Assuming
that a terrain can be represented by a sum of wavelet-shaped components
is one has to consider that this might be inadequate. A wavelet which does
not resemble a natural terrain is likely to infer artefacts such as structures
looking like the wavelet rather than the actual terrain. These effects are
visualised in Figure 5.5.

Secondly, we must consider the notion of power being inherent to a represen-
tation of space trying to capture reality in the computer. GIS has not only
been traditionally affiliated with military institutions (Curry (1998) p.174)
but also with geodemographics and geomarketing. They are often seen as
an assault on individual privacy (Curry (1998) p.120). Roberts and Schein
(1995) suggest that by using GIS and ‘by the view from above we establish
our own superiority and domination of the scene’. Such considerations must

-not be underrated. For example, if surface models are used to detect forested
areas and control subsidised farming areas one must be aware of issues such

as offending the sensibilities of local farmers. Notions such as ‘otherisation
of the invisible’ are concepts discussed by Hooks (1992) and Jackson (1992).
They offer a theoretical framework to approach the subject-object dualism
and other such social implications.

‘After this digression we are now going to focus on more specific issues of

modelling terrain surfaces.

3.1.2 Data Models for Digital Terrain Models

Digital Elevation Models (DEMs) are representations of the elevation of land
surfaces. They are represented as two-dimensional fields, meaning that for
each (z,y)-location there exists only one z-value. This is considered ade-
quate for most cases because the exceptions, such as overhangs, caves and
natural bridges, are relatively small and rare (Martinoni (2001)). Digital
Terrain Models (DTMs), representing the ground surface, can also include
topological data (McDonnell and Kemp (1995)). According to Schneider
(1998), a digital terrain model is based on sampling points, their connec-
tions, an interpolation function and additional semantic information. Jones
(1997) describes a rough classification of surface representations that is ap-
plicable to terrain models. The major classes are incomplete representa-
tions such as point samples (e.g. grids or irregular points) or line samples
(e.g. contours and structure lines) and complete representations consisting
of contiguous zones such as discontinuous (e.g. raster cells) or continuous
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(e.g. TINs or splines) surface patches. The most widely used models are
based on grids or on triangulated irregular networks (TINs). For a detailed
overview of tessellations please refer to Laurini and Thompson (1992).

As stated by Goodchild et al. (1995) all models have their specific constraints
and artefacts. Incomplete grids imply anisotropic behaviour along the sam-
pling directions and are prone to under- or oversampling. TINs, in contrast,
have no implicit neighbourhood properties but are usually better adaptable
to the original data points. A highly variable surface can be represented by
a high number of points in a TIN, whereas a flat terrain is also sufficiently
approximated using sparse points.

The applied data model needs to be chosen according to the purpose of the
terrain model. As the tensor product wavelet transform is based on regularly
distributed points the grid is seen as the most appropriate data structure for
this research. In section 4.5.1 a special representation of wavelet coefficients
is proposed according to their local relevance. This is useful to assess the
local coincidence of various levels of detail.

3.2 Filtering and Generalisation of DTMs

Weibel (1992) identifies two types of generalisations: cartographic generali-
sation for the purpose of visual enhancement and statistical generalisation
which reduces data according to a form of statistical control. Other authors
(as well as Weibel in more recent publications, e.g. Weibel (1995)) term this
model generalisation or database gemeralisation. Both methods are impor-
tant in GIS. Moreover, he states that the principle idea of generalisation is
to be both structure- and purpose-dependent. Local terrain structure recog-
nition is thus seen as an integral part of generalisation. A conceptualisation
similar to cartographic generalisation has been given by McMaster and Shea
(1992) (in Weibel and Dutton (1999)) termed ‘spatial and attribute trans-
formations’.

The cartographic generalisation processes for terrain generalisation outlined
in Weibel (1992) are selection/elimination, simplification, combination, dis-
placement and emphasis. He proposes a heuristic generalisation method
which operates according to all these five processes. Global filtering, as it is
used in image processing, and so-called selective filtering, such as the TIN
filters described in section 3.3.1, cannot satisfy more than one of these gen-
eralisation processes. '

Fully automated cartographic generalisation has not yet been achieved by
algorithmic approaches. The approximation techniques reviewed in the fol-
lowing sections mainly refer to model generalisation. However, it is believed
that some cartographic generalisation processes can be simulated by the fil-
tering in the wavelet domain.
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The wavelet-based filter presented in chapter 4 is not thought to be able to
mimic all aspects of cartographic generalisation. However, in combination
with a subsequently applied TIN filter, such as the one proposed by Heller
(1990), a procedure more closely related to cartographic generalisation can
be achieved. In particular, the processes of selection/elimination and em-
phasis of selected landforms are modelled in a more elaborate way than by
simply applying a global maximum error.

Analogies between wavelets and vision are described in detail by Hubbard
(1996). Similarities are apparent as the visual system also needs to identify
both localisation of spatial features and frequencies. A more human-related
perception of two-dimensional pictures and landscapes could possibly be
helpful to better imitate processes performed by human labour. Operations,
such as combination or displacement of features, can take place unintention-
ally when applying linear filters to a wavelet transform (see section 4.1). An
example of the combination of two adjacent peaks is given by Watson and
Jones (1993) who report on the occurrence of phantom peaks between two
neighbouring maxima. This was a result of the correlation with a low fre-
quency positive wavelet pulse.

3.3 Surface Simplification Methods

A vast amount of literature on the topic of surface simplification is available.
The most efficient algorithms prevail not only in digital terrain modelling but
also in the fields of computer vision, computer graphics and computational
geometry. In this chapter only a very short review is given of the most
significant developments concerning terrain modelling. A good survey of the
evolution of surface simplification methods in different research communities
has been conducted by Heckbert and Garland (1997) and Garland (1999).

3.3.1 Data Reduction
Selective Refinement

Fowler and Little (1979) affirm that a grid must be adjusted to the roughest
terrain in the model and is therefore highly redundant in smoother parts.
This reflects what Weibel (1992) terms structure dependence. Furthermore,
they state the very important principle that various purposes demand var-
ious resolutions, which is also termed purpose dependence. This issue is of
increasing importance due to higher resolutions of present day DTMs, as
stated in the introduction.

Fowler’s and Little’s automatic TIN extraction algorithm includes points
into an initial set of structurally important points in order to reduce the
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maximum error between the grid and the TIN. This procedure is repeated
until a specified maximum tolerance is not exceeded anymore. This principle
is also referred to as the hierarchy method (Lee (1991)) or more commonly
refinement method (Heckbert and Garland (1997)).

Heller (1990) uses highly efficient algorithms to compute an adaptive trian-
gular mesh filter (ATM) based on such a maximum distance criterion. He
also shows that the inclusion of breaklines and discontinuities can be realised
by forcing triangle edges to pass along such breaklines. Moreover, the initial
set of points is chosen more appropriately than it is done by Fowler and
Little (1979) and the Delaunay criterion can be maintained.

The starting points of the ATM are significant extrema of cross-sections of
the DTM. For example, a local minimum is considered significant, if it is a
global minimum in a basin of a given depth. To this initial set the point with
the highest vertical distance is included and, if necessary, the triangle edges
are swapped in order to conform with the Delaunay criterion. This steps are
also compiled in Weibel (1997). By these constraints, Heller’s (1990) ATM
filter is able to reduce redundancy in DTMs very efficiently. It is therefore
applied in this study for data reduction, subsequent to the wavelet filter.

Decimation

Lee (1991) presents the opposite solution to the same problem: instead of
starting with an initially minimal set of points his drop heuristic method
begins with the entire terrain model and excludes the least important point.
This point dropping algorithm is repeated until an optimal representation
of the terrain at a predefined error tolerance or at a given number of points
is achieved. Furthermore, Lee (1991) uses an interesting evaluation method
based both on statistical and structural comparisons to assess the quality
of the drop heuristic method. The drop heuristic method not only has a
smaller standard deviation to the original than refinement methods (exclud-
ing Heller’s), but is also able to represent structural features such as peaks,
pits or passes slightly better. The structural features are extracted by a lo-
cal operator on a next-neighbourhood basis. The drawback of this method,
however, -is that it cannot guarantee that the predefined error tolerance is
nowhere exceeded (van Kreveld (1997)).

Decimation methods has received more attention in the computer graph-
ics and visualisation community than in terrain modelling (Heckbert and
Garland (1997)). For example Schroeder et al. (1992) applied a decimation
algorithm to three-dimensional data.
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3.3.2 Multiscale Data Structures
Multiresolution TINs

De Floriani et al. (1996) introduce the idea of multiresolution to terrain
simplification using hierarchical subdivisions of TINs. Most multiresolution
models are based on hierarchical models. They consist of a nested subdi-
vision of the terrain model. Traditionally, reqular hierarchical models were
used, such as quadtrees or quaternary triangulations, as they are shown in
Figure 3.1 (De Floriani and Magillo (1999)). Their major problems are the
discontinuities between refined and unrefined subdivisions. These are also
termed cracks or hanging nodes (Gerstner and Hannappel (2000), Gross
et al. (1996)), which will be discussed in the following section.
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Figure 3.1: Hierarchical models: Quadtree, quaternary triangulation and
hierarchical TIN. From: De Floriani and Magillo (1999)

More recently, De Floriani et al. (1998) have proposed the use of multi-
triangulations based on refinement or decimation algorithms as a general
multiresolution model for TINs. A collection of local updates tackles the
problem of various possible re-triangulations. The surface simplification
process can be represented by a directed acyclic graph. Each fragment of the
TIN is connected to its locally updated versions, which solves the problem
of spatial interference between adjacent subdivisions (non-matching edges)
(see Figure 3.2). Using such local updates a locally -higher accuracy can
be achieved. This is an interesting property as in many applications some
locally higher level of detail in specific locations is requested. For example
areas closer to the observer usually need to be represented more accurately
than background information (Magillo et al. (2000)).
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Figure 3.2: A graph representing a multi-triangulation: Each fragment
is connected to its local update. From: De Floriani and Magillo (1999)

Regular Hierarchical Models

The vital advantage of hierarchical models is that they satisfy the condi-
tions of multiresolution. The hierarchical subdivisions are typically charac-
terised by a tree structure (Figure 3.1). Irregular hierarchical models are
based on TINs whereas regular hierarchical models can be structures such
as quadtrees or quaternary triangulations (see Figure 3.1). Regular hier-
archical models are recursive partitions of simple geometric forms such as
squares or regular triangles. They all require special attention to deal with
the problem of discontinuities, so-called cracks between refined and unre-
fined subdivisions. These phenomena occur when new vertices are inserted
on edges belonging to unrefined subdivisions. This issue is often approached
by a restriction of the refinement in such a way that adjacent partitions must
not differ by more than one level in the refinement operation. The problem-
atic vertices, where cracks appear, are then easily re-triangulated according
to a few distinct patterns (Gross et al. (1996), De Floriani et al. (1996)).

Regular hierarchical models are considered to yield approximations of poorer
quality than irregular triangulations, yet they are widely used due to their
simple handling and their multiresolution characteristics (Heckbert and Gar-
land (1997)). Brigger et al. (1999) developed an improved type of quadtree
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for approximation called centered pyramid.

Irrespective of the approximation quality they can achieve, quadtrees fos-
ter data models which are not only highly efficient but also analogous to
the structure of the fast wavelet transform. They thus offer an appropriate
tool to tackle the problem of fast information extraction from wavelet coefli-
cients. For example Gerstner and Hannappel (2000) and Gross et al. (1996)
use wavelets as a refinement criterion for surface approximation. The next
section will focus on their investigations.

3.4 Wavelet-based Approximations

Gerstner and Hannappel (2000) implemented a regular hierarchical trian-
gulation using a binary tree based on isosceles triangles with a right angle
at each vertex akin to a quadtree with squares. Each refinement vertex is
formed when bisecting a triangle and an error indicator is assigned. By
choosing a sufficiently small error threshold ¢, a crack exceeding € forces the
adjacent triangle to a further refinement and the discontinuity can thus be
eliminated. The fast wavelet transform using pyramidal hat functions coin-
cides very well with the binary tree data structure. A wavelet coeflicient can
be assigned to each refinement vertex. The wavelet coefficients are set to
zero at all vertices where the corresponding error indicator does not exceed
€. An approximation is achieved which is bound by a maximum difference
to the original. Due to the simple wavelet basis the error can be derived
directly from the wavelet coefficients.

An interesting concept is the locally increased level of detail at peaks, pits
and passes. Gerstner and Hannappel (2000) term this ‘topography preserva-
tion’. This is realised by setting the error indicator at these topographically
crucial points to infinity. They claim that by retaining these points accu-
rately the drainage geometry can be preserved. This idea is referred to in
section 5.4.

Gross et al. (1996) use a quadtree as underlying data structure of their
model. They first apply a non-linear filter (cf. section 4.1) to the wavelet-
transformed terrain. Subsequently a quadtree meshing is employed. This
also takes advantage of the similarity between quadtrees and fast wavelet
transforms. The most important criterion for vertex removal is again the
difference to the original surface which can be computed by a single-step
inverse wavelet transform.

Similar to Gerstner and Hannappel (2000) they propose a method to lo-
cally ‘zoom’ to a higher resolution, called the level-of-detail filtering in the
wavelet domain. The basic idea is to generate a locally higher detail level by
weighting the wavelet coefficients in the region of interest by some weight-
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ing function. This is possible as a result of the localisation properties of
wavelets. In the successive non-linear filtering step the coefficients associ-
ated with a large weighting factor gain an advantage over the ones outside
the region of interest and are retained by a higher probability. This results
in a locally more accurate representation of the terrain. This effect is de-
scribed as a ‘magnifying glass’.

A similar concept will be applied in this investigation. However, the region
of interest will correspond to terrain features of interest, rather than to the
areas close to the observer which is usually the focus in terrain visualisation.

Gallant and Hutchinson (1996) apply the positive wavelet analysis intro-
duced by Watson and Jones (1993) to a digital terrain model. It can thus
be subdivided into terrain features of various scales. The analysing wavelet
is an elliptical feature with the parameters location, length, width, orien-
tation and height. The thus derived landforms are not only useful for the
analysis of scale dependence in topography, but they can also be superim-
posed to yield an approximated terrain model. The results look promising,
yet it is suspected that analysing a more rugged terrain than the smooth
rolling hills of the presented example would exhibit the limitations of the
proposed method. It has been found that the approximations tend to reflect
the form of the wavelet. A wavelet with similar properties as the terrain
will also yield good visual results.

The positive wavelet analysis seems to be an appropriate tool for geophysics.
Due to the many parameters, however, the implementation is complicated
and consequently computationally costly. It also places higher demands on
the user and user interface, due to the many parameters.




Chapter 4

A Conceptual Framework for
Scale-Dependent Wavelet
Filtering

In the first section of this chapter, two common approximation types used for
data reduction will be reviewed. They will provide a starting point for the
more semantically based information reduction of adaptive filtering. A vital
advantatage of wavelets is that they can be localised in the terrain model.
Thus, it is possible to detect waveforms of various size in the terrain. Their
importance can be assessed by the respective wavelet coefficients which rep-
resent the amplitude of the waveforms. Due to the localisation properties
waveforms of various scales can be associated with each other. A filtering
procedure, which is locally adaptive to significant features of a chosen scale,
is described in the following sections.

4.1 Linear and Non-linear Approximation

Significance of wavelet coefficients. As mentioned in section 2.3 mul-
tiresolution analysis offers a representation of the terrain at a variety of
scales. The fast wavelet transform decomposes a surface into wavelet-shaped
components of different wavelengths and amplitudes. Therefore the choice
of wavelet has an effect on the quality of the approximation. The scale of
the coefficients gives an estimate of the wavelength of the landscape com-
ponents in the respective scale. It depends on the support of the mother
wavelet and the resolution of the DTM. Table 4.1 identifies the approximate
size of the principal landforms in the scale classification used here. However,

29
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the considerations in section 4.3 suggest that the scales of such landforms
can only be represented in a fuzzy way. Thus, table 4.1 can only be used as
a rough guideline.

I Feature size (Daubechies 10) Feature size (Daubechies 4) |

Scale 1 10m 4m

Scale 2 20m’ 8m

Scale 3 40m 16m
Scale 4 80m 32m
Scale 5 160m 64m
Scale 6 320m 128m
Scale 7 640m 256m
Scale 8 1280m 512m

Table 4.1: Rough size estimate of landscape features associated with the
scales of the wavelet coefficients computed for this investigation.

Linear approximation. Say a signal f is represented in an orthonormal
basis B = {gm }men. A linear approximation considers only M basis vectors
which are chosen a priori (Mallat (1999)):

M-1

=Y (. 9m) gm. (4.1)

m=0

If using wavelet bases and scaling functions as an orthonormal basis, usually
the wavelet functions associated with high frequencies are neglected. The
high frequency features are disregarded, even if they are significant. This
results in uniformly smooth approximations of a fixed resolution (see Figure
4.1). The error equals the sum of the squared inner product of the rejected
detail levels, which is fast and simple to compute (Mallat (1999), p. 12).

Non-linear approximation. In contrast to the linear approximation, the
non-linear approximation consists of the coefficients with the highest impact.
The coefficients are ‘re-ordered’ according to their significance (Cohen et al.
(2000a)) to minimise the deviation from the original. Using the notation of
B = {gm }men as orthonormal basis the non-linear approximation is:

fu= Y {f,9m) gm. (4.2)

méelps

———
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Iy is the set of basis vectors chosen a posteriori with the largest inner
product amplitude |(f, gm)| (Mallat (1999)). Figure 4.1 illustrates that fea-
tures of any frequency are preserved, provided they have a large amplitude.
Both Mallat (1999) and Cohen et al. (2000a) state that for data compres-
sion non-linear approximations are superior to linear approximations. Even
functions with isolated singularities are well approximated with non-linear
schemes. In practice, the filter usually applies a threshold to the wavelet
coefficients. Say fy is a fixed value for each scale, such as the mean value of
the coefficients of the respective scale, the wavelet coeflicients with a higher
magnitude than t; are retained. Wavelet coefficients smaller than ¢; are set
to 0 in the resulting matrix of coefficients B*:

k k
E_ppky_ ) Wyy o Wyy > 123
B" = {bw} = { 0 : otherwise ° (4.3)

The reconstruction from the resulting coefficients b%, stored in the matrix
B yields the non-linear approximation illustrated by Figure 4.1. When
using the tensor product wavelet transform (see section 2.2.3) this process is
applied to the matrices of horizontal (B¥®), vertical (B*®)) and diagonal

(B¥(@) detail coefficients for each scale.

4.2 Objective of Scale-dependent Approximation

In order to enhance and combine the characteristics of linear and non-linear
filters the concept of adaptation to local features of the scale of interest is
proposed. As mentioned in section 4.1, linear filters smooth the terrain due
to the preservation of solely long waves, whereas non-linear approximations
represent the surface using all waves exceeding a chosen threshold ampli-
tude. This results in a somewhat irregular landscape where not only large
peaks and troughs are well-preserved but also small-scale features.

The aim of adaptive filtering is not data compression as in linear and non-
linear approximations, but controlled reduction of information. The objec-
tive of the suggested adaptive filter is to retain both form and sharpness
of features belonging to the scale of interest. In this investigation a coarse
scale of interest has been chosen, such as scale 6 or 7 (see table 4.1). Coarse-
scale peaks, valleys and ridges are to be reconstructed with high accuracy.
Especially extrema and structure lines that are hydrologically important
should not differ much from the original model. However, areas of lesser
importance in the chosen scale, such as steady slopes and flat areas, can
be smoothed considerably without losing vital information. Dikau (1989)
proposes a set of hierarchically ordered components consisting of geometric
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Figure 4.1: Comparison of linear and non-linear approximation. Terrain
data: Bundesamt fiir Landestopographie (© (2000) (DV002247).
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features which are categorised in terms of differing size and complexity (see
Figure 4.2). These features are classified into macro- meso- and micro-scale.
If such components are transferred to the wavelet theory they can be seen
as the detail information of the varying scales. In such a system, a signifi-
cant coarse-scale component could trigger the preservation of the finer scale
features occurring ‘on top’ of the coarse-scale components. In terms of gen-
eralisation this process is referred to as selection and elimination.

Main type of size order Type of size order
W(m) A(m2) | H/D(m) | W(m) A(m2) | H/D(m)
MEGARELIEF | >108 | »1012 >108 | >1012 Canadien shield
106 4— 10124 |— 106 4— 1072
B >103 >103
Mountain area, the Alps,
MACRORELIEF1— — 105{— 1010 the Rhine Graben P
A
104 ——108 —— 108 41— 10%——108 - 10°
B
Valley, moraine, hills,
MESORELIEF 1— —108 ——106 +— 102 cuesi’a scarps
A
102 | 104 10" —1024—1044—10?
B
Gully, ice-wedge, doline,
MICRORELIEF 4~ 101 =~ 102 —— 100 dun: terrace ‘
A ,
10° —1—10° ——10-1—— 10° —— 10°—— 10~
NANORELIEF Karren, tafoni, erosion rills
107241074~ <10~ [~ 10-2-~ 1044 <10~
PICORELIEF <1072 | <104 <1072 | <1074 Glacial striations
W = width of unit A = area of unit H/D = height/depth of unit

Figure 4.2: Orders of magnitude for various landforms. From: Dikau
(1989).

Scale as such is thus introduced as a major feature in the selection process of
relevant information in a digital terrain model. Fine-scale forms are retained
to complete the landscape features in the scale of interest. They would be
smoothed considerably by global filtering in the spatial domain. By using the
proposed adaptive filter, in a local region of interest the level of detail can be
very high, similar to the method proposed by Gross et al. (1996). However,
the region of interest is not specified by the proximity to the observer, as it
is in Gross et al. (1996), but by significant landforms.

Filtering in the wavelet domain is predetermined as a means to approach this
problem. The often mentioned wavelet characteristics of both localisation
in space and in the frequency domain allow the detection of relevant fine-
scale details in areas where significant features of the coarser scale of interest
occur.
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4.3 Multiresolution Feature Detection

Weibel (1992) states that methods more closely related to the manual gen-
eralisation process than global or selective filtering do necessarily imply the
previous detection of important features. Cartographic generalisation selects
and emphasises such features. He developed a heuristic approach based on
structure lines. Feature detection has thus been an important issue in digital
terrain modelling. Local operators, feature classification, surface graphs or
concave and convex properties are all prominent examples of feature extrac-
tion methods (Martinoni (1997), Hofstetter (2001), Bréndli (1997)). Linear
features such as drainage and ridge networks derived by surface graphs often
are of high significance. The inclusion of such features will be dealt with in
section 5.4.

Feature recognition and generalisation seem to be closely related. Because
of this, the multiscale representation of the D'T'M requires a feature detec-
tion at multiple scales. The following two issues are of principal relevance
for this research, despite their trivial appearance.

Firstly, feature detection is scale-dependent. An important peak of a certain
scale can be very insignificant in another. A river appears to have the size of
a creek if observed from a large distance. As figure 4.3 suggests, the peak of
a distinctive mountain can appear very smooth if observed more closely. It
is thus necessary to choose a scale or a range of scales of interest depending
on the size (wavelength) of the surface features of interest. For a generalised
model only the features of the actual scale of interest are selected whereas
smaller forms are eliminated.

Figure 4.3: The significance of a landscape object is dependent on the
scale of observation.

Secondly, the classification of landscape objects is fuzzy. Important for this
thesis is mainly the fuzziness of a classification in accordance to scale. On
the one hand, the terminology of geomorphological objects is fuzzy and on
the other hand it is difficult to assign an exact size to an extended object,
such as a mountain. From a signal processing point of view, it is impossible
to exactly localise frequencies associated with particular landscape features,
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nor can one specific wavelength for local objects be found. Watson and
Jones (1993) state that most features occur not only over a certain spatial
extent but also in a frequency band. Most edges of importance, such as ridge
lines of large mountains or river lines in major valleys, correspond to var-
ious scales indicated by high wavelet coeflicients at adjacent levels. Fuzzy
classification of terrain attributes derived from a DTM is mentioned by Wil-
son and Burrough (1999) as a means to classify landforms. MacMillan and
Pettapiece (2000) use a number of derivatives of a D'TM as basis for fuzzy
landform classification. They thus achieve better results than with a set of
Boolean rules. Fuzzy classification in physical geography traditionally refers
to spatially overlapping objects with continuously varying attributes such
as soil types. Landscape features occurring at various scales could be ap-
proached using similar techniques. The algorithms described in section 5.3.3
try to accommodate the issue of fuzzy classification. Further research could
adapt the fuzzy landform classification algorithms suggested by MacMillan
and Pettapiece (2000) in order to deal with fuzzy scale assignment.

Computer vision researchers have found that sharp transitions in images
can belong either to edges or to texture. For example, when looking at a
brick wall, one may perceive the contours of the wall as edges whereas the
" bricks define a texture. Alternatively, one may include the contours of each
brick in the set of edges and consider the irregular surface of each brick as
* a texture. Mallat (1999) defines an edge as a sharp variation at a coarse
scale of interest whereas texture refers to high variations of finer scales. The
discrimination between edges and texture is clearly dependent on the scale
of analysis. Edge detection at multiple scales is important for image pattern
recognition. It is a prerequisite to distinguish between structures belonging
to the scale of interest and (fine-scale) texture. Nievergelt (1999) states that
edges are lines which correspond to high wavelet coefficients.

For this investigation edges in the DTM have been defined as structure lines
identified by a high curvature. For the structure line detection a wavelet
which is proportional to the second derivative has been applied (see section
4.4). The arithmetic mean of the horizontal and the vertical wavelet co-
efficients is used to detect structurally important areas. Thus, regions of
high convexity can be discriminated from regions of high concavity. This is
shown in figure 4.4.

As mentioned in section 2.2.3, the stationary wavelet transform, as opposed
to the fast wavelet transform, calculates a wavelet coefficient for each signal
point. It thus provides each point with a measure of relevance of the land-
form it is associated with. Relevance, being equivalent to curvature in this
investigation (see next section), can be assessed on a series of scales. The
stationary wavelet transform is therefore an appropriate tool to support the
decision whether a region should be reconstructed with high or low accuracy.
The implementation of this technique will be specified in section 5.3.3.
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4.4 Curvature as Selection Criterion

Curvature as a criterion for feature detection. Curvature is a more
conceivable property of the terrain and has supposedly more significance
than other derivatives. Peucker and Douglas (1975), Chen and Guevara
(1987) (in Scarlatos (1993)) not only account pits, peaks and passes as
surface-specific points but also regard other points of high curvature as very
important to terrain representation. These are referred to as break points
or break lines, respectively.

Curvature has been repeatedly used as a criterion to select important points

for surface simplification (Heckbert and Garland (1997), Absolo et al. (2000)).

In the method presented in this thesis curvature supports the decision pro-
cess not at the smallest scale, but also at various, selectable scales. Thus, a
better informed decision on the significance of various regions for the desired
scale is expected to be achieved. Significant regions could then be retained
with high accuracy. Wood (1996) suggested a multiscale feature classifi-
cation based on various resampling steps and calculation of the respective
curvatures. To determine curvature at various scales directly from wavelet
coefficients, however, is a more efficient method.

Using Wavelets for Curvature measurement Partial derivatives of a
signal can be obtained by a wavelet transform with the Daubechies wavelet
with twice the support of the desired order derivative (Beyer and Meier
(2001)). The ‘curvature wavelet’, having a support interval of 4 points, is
well-localised in the spatial domain. It has two vanishing moments and is
proportional to the second derivative. The wavelet coefficient of a certain
scale at a given point simply gives an estimate of the curvature at this
particular scale. The stationary wavelet transform is not only capable of
extracting points of high curvature on a next-neighbour basis as traditional
algorithms do, but can also derive structure lines of larger scales.

The curvature of different scales is displayed as elevation values in Figure
5.8. High positive curvatures occur in valleys and are thus represented as
peaks. Conversely, low (negative) curvatures correspond to convex forms
(i.e. ridges), represented here as valleys. Additionally, a hypsometric shad-
ing is applied. The stationary wavelet transform has only been used to
derive partial curvatures in the north-south and east-west direction. The
simple sum of the two values can give an estimate of the mean curvature
according to Mitasova (1992) (in Wood (1996)), illustrated in' Figures 4.4
and 5.8.

)
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(b) Curvature of scale 7

Figure 4.4: Curvature of scales 5 (features of approximately 60m) and 7
(features of approximately 260m) plotted onto the shaded terrain. Terrain
data: Bundesamt fiir Landestopographie (© (2000) (DV002247).
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4.5 Localisation of Wavelet Coefficients in the Spa-
tial Domain

In the following section a different representation termed ‘stationary wavelet
representation’ of the fast wavelet coefficients is proposed. With such a
representation scale-dependent filtering and the comparison with stationary
wavelet coefficients, which are computed for each point, is possible. Section
4.5.2 discusses the problem of precisely localising the region of influence of
a wavelet coefficient.

4.5.1 Coefficient Representation Model

With each convolution in the decomposition of a signal the number of detail
coefficients is halved. This is illustrated in Figure 2.3 where the number of
Heisenberg boxes, relating to coeflicients, is clearly dependent on the scale
w. The number of wavelet coefficients representing a two-dimensional signal
at scale k shrinks to (s/2%)%, where s denotes the length of the lateral edges
of the original terrain.

The coefficient matrices of various scales cannot be directly compared due
to their different size, nor can the coefficients of the stationary and the
fast wavelet transform. A new representation of wavelet coeflicients related
to their localisation in space domain has to be found. This is necessary
because wavelet coefficients of small scales have to be filtered according to
the presence of significant large-scale coefficients at the respective location.
The decimated wavelet coefficients are spread out to the entire size of the
original DTM. They thus exhibit the spatial range which they affect most.
A simple expansion of the length of the coefficient vector by factor 2% brings
it back to the original length of the signal. This representation can be seen
as the two-dimensional equivalent of the Heisenberg boxes introduced in
section 2.2.1 and Figure 2.3 for the one-dimensional case. Figure 4.5 depicts
a series of scales. The elevation of the boxes corresponds to the energy of
the wavelet coefficients at the respective scale. -

This expansion process is implemented by a separate inverse transform of
the wavelet coefficients of each scale with a type of ‘neutral wavelet’ [1 0].
The reconstruction of a signal can be written as a matrix multiplication of
the wavelet with the vector of coefficients (Stollnitz et al. (1995b), Beyer and
Meier (2001)). The neutral element of matrix multiplication, the identity
matrix, is simulated by the ‘wavelet’ [1 0]. Hence, the coefficients remain
the same but are placed at the location where they in fact have an impact
on the reconstructed signal. This is referred to as the stationary wavelet
representation. However, for the precise localisation in the spatial domain,
a small ‘phase shift’ has to be considered (cf. next section).

PE——
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Figure 4.5: Two-dimensional equivalent to the Heisenberg boxes intro-
duced in Figure 2.3. Each square represents a wavelet coefficient. Terrain
data: Bundesamt fiir Landestopographie (© (2000) (DV002247).
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4.5.2 Precise Localisation of the Region of Influence

The area which is influenced by a wavelet coefficient is not symmetrical to
the point in space where it has been placed by the algorithm described in the
previous section. When using the stationary wavelet transform to extract
derivatives directly from wavelet coefficients, a translation in the spatial do-
main or 'phase shift’ according to Beyer and Meier (2001) has to be taken
into account (see appendix). However, when a fast wavelet transformation
is used and expanded to a stationary wavelet representation, as descirbed in
the last section, it has been found that the correction differs slightly. The
formulae proposed by Beyer and Meier (2001) were adapted to this proce-
dure.

The Heisenberg uncertainty principle proclaims the dichotomy between lo-
calisation in space and localisation in the frequency domain. Thus, a wavelet
has a spatial extent, as all waves. In order to identify the region of influ-
ence of a wavelet coeflicient a square around its assigned location in the
space domain is evaluated. The square of size 2 by 2% (where k denotes the
scale) around the calculated point can be interpreted as the area where the
wavelet coefficient most affects the reconstructed signal. However, as Figure
4.6 shows, wavelets of a higher order regularity and bigger support, extend
to a much larger area than such a square. Particularly at coarse scales the
neighbouring wavelets are overlapping considerably.

Hence, one has to take into account that several wavelet coefficients need
to be considered for exact reconstruction of the elevation at a specific point.
Gross et al. (1996) consider the wavelet coefficients in a so-called four-
neighbourhood. The bigger the support of the wavelet the less precisely
it can be localised in space and the smoother the approximation.

Two methods have been examined for transforming the ‘stationary repre-
sentation’ back to the regular wavelet répresentation. In a first method,
only the most central coefficient of the region of influence is taken into ac-
count. Other overlapping wavelets are disregarded. However, the highest
deviations of the reconstructed model from the original terrain model occur
at crucial locations such as ridges and valleys which are vital to the terrain
structure. - .

For wavelets of small support the igsue of overlapping regions of influence is
of little importance. But since mainly Daubechies wavelets with a support
interval of 10 raster points are used here, the effect of overlapping wavelets
needs to be considered. The problem is solved by the second method of
transforming the ‘stationary representation’ back to the regular wavelet rep-
resentation. After the filtering, which will be introduced in sections 5.3.2
and 5.3.3, a fast wavelet coefficient at a certain point is rejected only if all
coefficients in a 2 by 2% neighbourhood have been rejected by the filtering
method. Thus more coeflicients are retained and the vital areas, such as
local extrema, can be preserved much more accurately.
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Figure 4.6: Localisation of a wavelet. Red: localisation according to sec-
tion 4.5.1. Blue: the cell for which the 5. order derivative is proportional
to the wavelet coefficient. It is computed according to the algorithms by
Beyer and Meier (2001).

4.6 Filtering Procedure

In this section the single steps of the proposed filtering procedure are com-
piled. Generally speaking, the wavelet filter serves for simplification of the
terrain structure using frequency information as a criterion. Subsequently,
the ATM Filter, as described in section 3.3.1, is applied for data reduction.

The localisation in both spatial and frequency domain is a principal ad-
vantage of a signal representation in the wavelet domain. It is also a vital
prerequisite for scale-dependent feature detection in a DTM. The terrain
generalisation in this research is based on the detection of important fea-
tures at a chosen scale. The scale-dependent filter is designed for controlled
information reduction. However, the number of grid points after the inverse
wavelet transform remains the same. The simplified surface is represented
with the same grid resolution. Since the surface has been smoothed, it is
an even more redundant representation than the initial terrain model. The
actual data reduction is thus achieved by the ATM filter proposed by Heller
(1990). With the application of a very small vertical tolerance, such as 10cm,
the information content can be preserved, whereas the amount of data is re-
duced considerably. Redundant points are eliminated by such an ATM filter.
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The proposed adaptive filtering procedure in the wavelet domain consists of
the following sequential steps:

1.

Wavelet transform of the DTM. The representation in the wavelet
domain allows to exploit the beneficial property of localisation in both
the spatial and the frequency domain.

Transformation of the regular wavelet representation to the stationary
wavelet representation. This is necessary in order to compare the
coefficients of different scales at the same location (see section 4.5.1).
Additionally, the regular coefficients can be weighted by curvature
(represented by stationary wavelet coefficients), as described in section
5.3.3.

Thresholding of the wavelet coefficients according to section 5.3.

Transformation of the resulting matrices back to the representation of
the regular wavelet transform.

The inverse wavelet transformation results in a simplified DTM of the
same size as the original data set.

The data reduction is performed in the space domain using Heller’s
(1990) ATM filter.

Point removal due to small wavelet coefficients (Gross et al. (1996)) has not
been implemented. Wavelet coefficients are valid for a region rather than
just for a single point. Due to their overlap wavelets can also extinguish each
other in a way that no significant structure in the spatial domain is apparent.
They are thus not seen as a feasible filter criterion for data reduction. The
mentioned problems are avoided by filtering in the spatial domain.




Chapter 5

Implementation

5.1 Test Data Sets and Technical Environment

5.1.1 SAR Interferometry and Laser Altimetry Data

In this investigation a high resolution DTM with 2m grid resolution is used.
The test site in the Emmental (Switzerland) has been recorded on behalf of
the Swiss Federal Office of Topography, L+T. It has a size of approximately
18km by 5km. A partition of 1024 by 1024 raster points has been chosen,
which represents a 2048m by 2048m square. However, due to a distortion of
the wavelet coefficients on the margins as a result of edge effects, only 600
by 600 points are displayed.

Three types of digital elevation models were provided by the Federal Office
of Topography. _

First, a digital surface model (DSM, including vegetation and houses) gen-
erated by synthetic aperture radar (SAR) interferometry has been assessed.
A slight noise is remarkable in Figure 5.1. Its magnitude, however, is too
small to affect the detection of significant landscape features and it could
be eliminated by disregarding the first few scales of a wavelet transform. In
forested areas only very few points of the SAR-derived surface model be-
long to the actual terrain. It is therefore difficult to give an estimate of the
digital terrain model by analysing the surface model generated by SAR in-
terferometry. The model has not been investigated further because the main
focus of this research is the generalisation of DTMs according to important
geomorphological terrain features.

Second, a surface model produced with laser altimetry has been considered
(upper picture in Figure 5.2). Thanks to a smaller aperture angle a consid-
erable amount of sampling points in forested regions belong to the ground
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Figure 5.1: Digital surface model generated by SAR interferometry. Ter-
rain data: Bundesamt fiir Landestopographie (©) (2000) (DV002247).

(Kraus and Pfeifer (1998)). Only in very dense forest the laser beam cannot
penetrate the canopy.

The third model is the digital terrain model (DTM, without vegetation and
houses) derived from the laser altimetry surface model. The extraction of
the terrain model from the surface model is performed by assigning to each
point a probability that it belongs to the vegetation or to the ground, re-
spectively. The points with high negative deviation from an average trend
surface are more likely to belong to the terrain, whereas the points which
are higher than the average are more likely to be part of the vegetation
(Kraus and Pfeifer (1998)). The terrain model is subsequently derived by
interpolation between the points with a high probability of belonging to the
ground. In this case this has been conducted by linear interpolation over
triangles resulting in visible irregularities (lower picture of Figure 5.2). The
thus derived terrain model is, in ‘previously forested’ areas, not as smooth
as in other areas. Such triangular artefacts can be an impediment to the
structural analysis by local operators, as described in chapter 6. This model
has been used most in this investigation. The statistical measures of all
three models are displayed in table 5.1
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(b) Digital terrain model

Figure 5.2: Digital surface (a) and terrain (b) model generated by laser
altimetry.. Terrain data: Bundesamt fiir Landestopographie © (2000)

(DV002247).
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| DTM min. height max height range mean std. dev. |
SAR 675.93 985.21 309.28 803.269  58.2031
Laser-DSM 676.33 984.44 308.11  802.6972 57.5617
Laser-DTM 676.17 961.15 284.98 796.7896  55.3456

Table 5.1: Statistical measures of the three models. All units are [m].

5.1.2 Terrain Identification and Artefact Elimination Using
Wavelets

Terrain Identification. - A wavelet transform could support ground point
extraction methods due to the decomposition of the signal into orthogonal,
complementary frequencies. The discrimination between frequencies asso-
ciated with the forest and frequencies associated with the average trend
surface has been attempted using wavelets. A high-frequency part and a
low-frequency part, which represents the trend surface, can be identified by
dividing the signal into its major frequency fractions. The summed frequen-
cies from scale one to four (see table 4.1) correspond to the oscillation of
the forest, whereas the scales higher than four represent the smooth aver-
age corresponding to the large geomorphological forms. However, forested
breaklines of a terrain are difficult to extract from a surface model, because
the locally higher curvature is partly reflected by the coefficients at finer
scales. At such locations the high frequencies are also part of the terrain.
Figure 5.3 shows an early attempt of ground point extraction with wavelets.

Artefacts. Directional artefacts of fine scale and magnitude looking like
ripple marks are noticeable in Figure 5.2. Such fine-scale structures pose
considerable difficulties to traditional data reduction methods, such as ATM
filtering with a small vertical tolerance (see section 3.3.1). These difficulties
are reflected by the fact that the filtering of the original data set with 10
cm tolerance produces a TIN with 31% of all points. The problem can be
approached by a tensor product wavelet transform and selective elimination
of only the horizontal details at scale one and two with the amplitude of this
regular, horizontal variation. By such a procedure the model was smoothed
to an extent that the subsequent TIN filtering with 10 cm only yielded 18% of
the original amount of points. A slight additional smoothing of the vertical
and diagonal details even reduced the extracted points to 12% (Figure 5.4).

ey
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Figure 5.3: Extraction of the terrain model from the surface model.

(a) (b)

Figure 5.4: Elimination of the directional artefact as a preprocessing step
for the ATM filter: a) Original DTM, b) smoothed DTM. Terrain data:
Bundesamt fiir Landestopographie (© (2000) (DV002247).

5.1.3 Technical Environment

This investigation is largely based on ©MATLAB, version 5.3.11. Matrix
operations are remarkably fast in ©MATLAB, which is very important for
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computationally complex algorithms such as the wavelet transform. More-
over a vast number of mathematical functions are available, among which
also a complete wavelet package with various types of transforms. According
to the ©MATLAB function reference on the Internet, even the stationary
wavelet transform will beémcluded in the newest © MATLAB version. For
this research it has been 1mp1emented using Daria Martinoni’s fast tensor
product wavelet tra,nsform as a basis (Martinoni (2001))

A further advantage ;of ©MATLAB is the capability of 'visualising meshes
and surfaces in a sunple way. The surface v1sua11sat10{18 shown in this thesis
were mostly generated using ©MATLAB. 1‘1 |

It

5.2 Selectién of a Wavelet

As already mentioned in section 1.3, wavelets are used for two different
purposes in this investigation. On the one hand, they are employed for
detecting significant landscape structures at different scales with the sta-
tionary wavelet transform, as described in section 5.3.3. On the other hand,
for the actual approximation, the decomposition of the terrain into wavelet
coefficients is realised by the fast wavelet transform.

Wavelets with good approximation characteristics must first of all be smooth
meaning that they ought to have a sufficiently high order of regularity. The
order of regularity is equivalent to the number of continuous derivatives, and
also to the number of vanishing moments of the wavelet. The Daubechies
wavelet of twice the support of the desired regularity provides coefficients
being proportional to the respective derivative (see appendix). This is an
important property for curvature estimation, described in section 4.4 and
applied in section 5.3.3.

Symmetry, orthogonality, compact support and smoothness are the major
requirements for approximation. They cannot all be met at the same time
by a wavelet. In particular, a compromise has to be found between smooth-
ness/regularity and compact support. Figure 5.5 displays a series of non-
linear approximations using Daubechies wavelets with increasing support.
The root mean square error has been the smallest for the approximation
with a Daubechies wavelet of support interval of 10 raster points (5 vanish-
ing moments). A further increase of the support results in a very smoothly
undulating landscape. Flat areas tend to be influenced by neighbouring
peaks. Very smooth wavelets with a support interval higher than 12 exag-
gerate the dominating forms to an extent that artificial hills appear next to
~ distinct valleys.

The above stated reasons lead to the choice of a Daubechies wavelet with
support interval of 10 points for the surface approximation. Nevertheless,
a more adequate wavelet may offer some potential for improving the sur-
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face representation. This could be achieved by using bi-orthogonal splines,
described by Stollnitz et al. (1995b), or a bi-orthogonal pseudo coiflet, also
called Mexican hat wavelet, proposed by Reissell (1996). Also continuous
wavelet transforms with two-dimensional wavelets, as applied by Gallant
and Hutchinson (1996), deserve further attention.

For detecting significant structures a Daubechies wavelet of support 4 is
used. The main advantage of this wavelet is its order of regularity of two,
which allows to measure curvature directly from the stationary wavelet co-
efficients. This is discussed in section 4.4.

Haar Wavelet Daubechies 4

Daubechies 8 Daubechies 10

Figure 5.5: Non-linear approximations using Daubechies wavelets hav-
ing support interval 2 (equivalent to the Haar wavelet), 4, 8, and 10.
The smooth wavelet with support 10 is used for the terrain approxima-
tion. Wavelets generally produce approximation with properties similar to
the applied wavelet. Terrain data: Bundesamt fiir Landestopographie (©
(2000) (DV002247).
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5.3 Thresholding Wavelet Coeflicients

5.3.1 Introductory Remarks

There are many options and combinations of thresholding algorithms. Sev-
eral possibilities have been tested and some will be reviewed here. In section
5.3.2, a cascade frequency preservation algorithm, depending on all scales,
will be compared to the dependence on the mere arbitrative scale. In section
5.3.3, the idea of weighting fine-scale coefficients by coarse-scale stationary
wavelet coefficients will be introduced as a fuzzy decision concept taking
into account the influence of more than just one parameter.

In this chapter the term arbitrative scale will be used repeatedly. It denotes
the scales at which significant features determine the representation of de-
tails belonging to such significant structures.

The term significant structure refers to a landform which is represented by
a high wavelet coefficient. This is equivalent to a feature with a large ampli-
tude at the wavelength examined by the respective wavelet. The threshold
between significant and insignificant is, in this investigation, the simple mean
of all wavelet coefficients disregarding the extreme values on the margin of
the coefficient matrix.

5.3.2 Cascading Scale-adaptive Thresholding

First, a threshold is applied directly to the wavelet coefficients of the fast
wavelet transform. This is the standard procedure of the non-linear wavelet
coefficient filter introduced in chapter 4.1 (equation 4.3).

Subsequently, an arbitrative scale, which can be freely chosen, is identified
according to the desired level of generalisation. Significant structures at
the arbitrative scale are identified by the remaining coefficients (b%, # 0 in
equation 4.3). The finer scale coefficients at the locations of the significant
structures are subjected to further filtering. The noticeable, large rectangu-
lar yellow areas in the upper picture of Figure 5.6 represent the significant
areas at scale 6 (see table 4.1), which, in this case, is a valley. Outside
these areas, a regular linear approximation is employed, retaining only the
coefficients between the largest scale and the scale of interest. Within the
significant region two different procedures are implemented.

Method 1. The first method simply filters non-linearly at all scales lower
(finer) than the arbitrative scale a, but only in significant regions. The
significance of a coefficient is identified by threshold ¢, in the arbitrative
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scale a:

k
{d” } { 0 : OtheI‘WlSG ’ (5.1)

where ¢, denotes the threshold at scale k. In practice, the appliance of a
range of arbitrative scales has been implemented. If a feature that is rele-
vant to at least one of the arbitrative scales is detected, the significant finer
scale coefficients at the respective location are retained.

Method 2. - The second option, using scale dependency for more than just
the chosen arbitrative scale has been found to be more closely related to
multiresolution analysis. Each finer scale coefficient is recursively depen-
dent on the coeflicients of the next coarser scale. If a feature is significant at
all scales it will be reconstructed very accurately using coefficients of every
scale. However, if some landscape form does not pertain to all scales, the co-
efficients at its location are blocked on the finer scales. Insignificant medium
scale coefficients can prevent small structures from being preserved. This
happens for example with large, rolling hills without considerable edges or,
as can be seen in the lower picture of Figure 5.6, at planar slopes of valleys.
Only in the actual channel line were all coefficients used for the reconstruc-
tion. The recursive assessment of the coefficients is performed by a cascade
algorithm stepping from one scale to the next finer one. At each step the
coeflicient is only retained if the corresponding coefficient at the same loca-
tion on the next coarser scale has also been retained. Otherwise it is set to
zero. Using b{-“j as the notation for the previously non-linearly filtered matrix
of wavelet coefficients located at (7,j) (equation 4.3) the cascade algorithm
processes the coefficient matrices from the coarsest arbltratlve scale K down
to the finest scale: o

= {ef;} = {bk b #0, (5.2)

otherwise,

for k = K,K —1,...,1. The result is a notably generalised terrain model
with edges of importance on all scales finer than K being retained. Figure 5.7
shows an example using scale 6 and 7 (corresponding to wavelengths around
320 to 640 metres) as the arbitrative frequencies. The channel line of the
valley has been reconstructed, by visual assessment, to a reasonable extent,

Results. Three major difficulties constrain the quality of approximations
obtained by the described methods. First, at crucial locations, such as ex-
trema and breaklines, the difference to the original is small compared to
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Figure 5.6: Cascading scale-adaptive filtering according to two different
methods. The retained wavelet coefficients are yellow. Terrain data:
Bundesamt fiir Landestopographie (© (2000) (DV002247).



5.3. THRESHOLDING WAVELET COEFFICIENTS

1000

900

0 100 200 300 400 500 600 700 800 900 1000

(a) Cascading adaptive filter

0 100 200 300 400 500 600 700 800 900 1000

(b) Original

Figure 5.7: Reconstruction of the cascading scale-adaptive filter accord-
ing to method 2 compared with the original. Terrain data: Bundesamt
fiir Landestopographie © (2000) (DV002247).
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other locations, but it is not zero. This difference occurs due to the spatial
extent of the Daubechies wavelet with a support interval of 10 points, which
is used for reasons of smoothness. A wavelet coefficient can still influence a
point in the valley line although its coeflicient is located at a distance of up
to 10% (with k denoting the scale) raster.points. This problem is partially
solved in the next section by weighting the coefficients with a wavelet that
has a more compact support and by retaining all coefficients which can pos-
sibly affect the respective location. .

Second, a further obstruction to exact reconstruction in crucial areas are
small medium scale coefficients preventing the preservation of small struc-
tures even if they are part of an important large scale form. Equation 5.2
defines a crisp condition which allows no fine scale feature to survive if any
coefficient at an intermediate scale does not meet the threshold requirement.
This is, for instance, the case if a creek has carved a small notch or ravine
into a large U-shaped glacially induced valley. Such problems can also be
avoided by the weighting concept introduced in the next section.

Third, the transitions between smoothed and precisely reconstructed areas
are somewhat abrupt, which reduces the visual quality of the picture. The
sudden change on the boundaries between the precise and approximated re-
gions is illustrated in Figure 5.7. The ATM filter by Heller (1990), being
applied subsequently to the filtering process in the frequency domain, can
reduce this effect to some extent. However, this issue is also approached by
weighting with stationary wavelet coefficients, as described in the following
section.

5.3.3 Weighting by Curvature Values

Better results have been achieved by weighting the wavelet coefficients by
curvature values than by applying a rigid threshold as discussed in the last
section. The gradual change of the curvature at coarser scales depicted in
Figure 4.4 leads to a seamless transition between exactly reconstructed and
approximated areas. '

Curvature can be measured directly from stationary wavelet coefficients us-
ing the Daubechies wavelet with support 4 (see chapters 2.2.3 and 4.4 and
appendix). The stationary wavelet transform can give curvature estimates
at various scales, which is an important characteristic if the scale-related
importance of a feature needs to be determined. The basic idea is that cur-
vatures of one or several predefined arbitrative scales are used for weighting
all finer scale coefficients. At all locations (%, j) a threshold is then imposed
on the product of the curvature cf; at arbitrative scale o and the wavelet
coeflicient 'wi-“j at scale k. The arithmetic mean ¢; of the weighted wavelet
coefficients |c§‘jfwfj| has been chosen as a threshold whereby the coeflicients

FUSE,
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on the edge of the D'T'M have been disregarded. Hence, the distortion of the
mean by the high marginal coefficients can be avoided. The threshold ¢ is
applied, in accordance to equation 4.3:

kv ) ok o cEuwk >t

{oig} = { (J) ~: o’ghel?wise t (53)
As mentioned in section 4.3 the scale or frequency of a feature cannot be
clearly identified. Any terrain object occurs over a range of scales and
likewise over a spatial range. It is therefore advisable to predetermine a
range of scales of interest rather than just a single scale. The product of the
curvature values at the chosen arbitrative scales is used as a weight instead of
a single curvature. The fuzzy classification of features can be dealt with by
combining their significance in several scales. Wilson and Burrough (1999)
advocate the application of fuzzy classification to digital elevation models
for forest mapping. The combination of various parameter values can give
a better estimate of a class membership than using crisp criteria to assign
an object to a certain class. Figure 5.8 depicts the weight matrices referring
to curvature values of scale 4 and 6, which corresponds to a feature size of
32m and 128m, and figure 5.9 the product of scale 5, 6, and 7, respectively.
The representation of curvatures as a height field might appear somewhat
unusual but the well-localised extrema suggest that applying a threshold
to identify significant areas might prove to be a reasonable method. In
significant areas all but the very small coefficients exceed the threshold value.
The reconstruction in significant areas is therefore almost identical to the
original.

The stationary representation of wavelet coefficients, as introduced in chap-
ter 4.5, allows to perform weighting and thresholding by fast matrix oper-
ations. Yet, this representation needs to be converted back to the regular
notation of wavelet coefficients in order to apply the inverse wavelet trans-
form. Two different methods have been tested to deal with the problem of
overlapping wavelets. The best results have been obtained by retaining all
coefficients that could possibly affect the features of interest. For a detailed
discussion of this problem refer to section 4.5.

The results of the presented method are visualised in Figures 6.2, 6.3 and
6.4. The vertical deviation from the original data is illustrated by the colour
plotted onto the approximated terrain. Features in the desired scale of in-
terest are reconstructed with particular accuracy whereas smaller forms are
smoothed out unless they are part of a form at the scale of interest. Singular
arbitrative scales have been used to demonstrate the gradually changing size
of the precisely reconstructed features. At scale 3 even small channels and
ridges are well-preserved and only the irregular structures originating from
the initially forested areas are smoothed. At scale 7, for comparison, small




96 CHAPTER 5. IMPLEMENTATION

Concave Forms

0 200 400 600 800 1000 1200 Gonvex Forms

(a) Curvature at scale 4
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(b) Curvature at scale 6

Figure 5.8: Curvature at scales 4 (28m) and 6 (128m) plotted as eleva-
tion and as colour information. Terrain data: Bundesamt fiir Landesto-
pographie (© (2000) (DV002247).
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Figure 5.9: Combination of scales 5, 6 and 7: only the landforms which
are significant at all three scales appear. Terrain data: Bundesamt fiir
Landestopographie (© (2000) (DV002247).

creeks and edges are considerably less prominent and the approximation dif-
fers up to 3 metres from the original.

5.4 Inclusion of Known Structures

In this section the inclusion of a priori knowledge about significant features,
for example hydrological networks or shorelines, is discussed. In order to
preserve the drainage properties of a DTM Gerstner and Hannappel (2000)
suggest including all critical points such as pits, peaks and passes into the
generalised model. To assure that these points are retained in the final
approximation they set their error indicators (see section 3.4) to infinity.
The error thus exceeds the applied threshold and these critical points are
represented accurately. This is equivalent to a local level of detail control
suggested by Gross et al. (1996) or a ‘local query of a multi-triangulation’
according to Magillo et al. (2000). For surface visualisation, the area close
to the observer needs to be represented to a higher level of detail. In digital
terrain modelling, however, a local level of detail control is more useful to
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preserve important geomorphological features, such as hydrological networks
or coastlines, which otherwise would be smoothed. Beyer (2000) proposes
to transform known structure lines into the wavelet domain together with
the regular grid model. The result is a hybrid DTM. Thus, the structure
line information and the regular grid model can be generalised individually
to the desired extent. The breaklines can thus be protected from being
smoothed by the wavelet-based compression algorithm.

Gerstner’s and Hannappel’s concept can be applied to the matrix of wavelet
coefficients in the stationary wavelet representation by assigning a very high
weight to those coefficients located at such hydrologically significant points.
The significant points, such as peaks, pits and passes, have been derived by
a local operator. A matrix H of peaks, passes and pits is computed, where
the structurally important points are set to one in an initial matrix of zeros.
The wavelet coefficients w{-“j (in the stationary representation) are set to very
high values at structurally important points,
kv _ wf’ i Hiyy=0

in order to exceed the subsequently applied threshold. In the high resolu-
tion DTM used in this study, local operators employed for the recognition of
peaks, passes and pits described by Brandli (1997) detect many points with
little importance to a meso scale (features larger than 40m) drainage net-
work. Most of the extracted points lie in areas where the terrain model has
been derived from the surface model by elimination of forests and houses.
They can therefore be interpreted as artefacts. If the hydrological network
is available as a priori knowledge or if it ' was previously extracted by more
robust algorithms, it can be included directly in the same way as the pits,
peaks and passes. By such a procedure it is ensured that the hydrological
network is identical to the one in the original model. Furthermore, flat ar-
eas, such as known lakes or sea surfaces, which are often not represented
very well by a wavelet approximation, can be represented with a high level
of detail in order to protect the original form. Wavelet induced artefacts
such as oscillations on the water surface can thus be avoided and the sub-
sequent ATM filter (cf. section 5.5) can be applied using a very small error
tolerance. Furthermore, shorelines, which are often a problem for approxi-
mations (Bonneau (1998)), can be preserved accurately.

(5.4)

With this method hydrological correctness can be introduced to the desired
degree of generalisation. However, in many cases the adaptive non-linear
wavelet filler produces near approximations since significant channels are
often accompanied by significant landscape features such as a network of
interlocking valleys and ridges, according to Werner (1988). The inclusion
of these drainage properties, as mentioned above, is more important for flat
areas with important rivers.
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5.5 Data Reduction

Gross et al. (1996) use the information of the wavelet coefficients, among
other criteria, to decide whether a vertex of a DTM shall be retained in
the final mesh. Using such an approach several constraints need to be con-
sidered. A major problem is that the wavelet coefficients cannot be exactly
localised at a specific vertex. They have an influence on several points which
implies that for the removal of a vertex several coefficients have to be taken
into account. In order to avoid such problems, a TIN filter in the spatial
domain has been chosen for reducing the number of points in the filtered
DTM. The two-stage approach consisting of information reduction in the
wavelet domain and data reduction in the spatial domain is described in
section 4.6.

The adaptive triangular mesh (ATM) filter introduced by Heller (1990) is a
very efficient algorithm designed for retaining significant points of a DTM. A
vertical tolerance is used as the criterion, whether a point shall be included
in the final mesh or not (see section 3.3.1). The applied ATM filter selects
important extrema, which is a major objective of statistical generalisation.
However, when using a small vertical tolerance the result can be affected by
noisy raw data and small irregularities of the surface. Particularly in regions
where the terrain model was extracted from the surface model, the prevailing
artefacts exceed the filter tolerance. A preprocessing in the wavelet domain
eliminates such fine-scale artefacts to a degree that the number of points
selected by the ATM filtering are considerably reduced (see section 5.1.2).

The scale-adaptive wavelet filter creates very smooth surfaces outside signif-
icant regions. Thus, only few points need to be preserved in smoothed areas,
whereas many vertices are needed to represent the precisely reconstructed
significant landforms. The number of points retained by the ATM filter
proposed by Heller (1990) is shown in table 5.2. They can be used as an es-
timate of the size of the smoothed area. However, it is also dependent on the
occurrence of the above described artefacts. But the fact that the number
of retained points decreases with increasing arbitrative scale suggests that
coarse arbitrative scales result in a higher degree of generalisation. The re-
sult of the ATM filter with 10 cm vertical tolerance is illustrated in Figure
5.10
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Arbitrative Scale TIN points [%]
Scale 3 15.3
Scale 4 12.7
Scale 5 11.9
Scale 6 11.2
Scale 7 11.0
Scale 8 10.7

Table 5.2: Percentage of remaining points after the application of Heller's
(1990) ATM filter with 10 cm vertical tolerance.

0 200m

Figure 5.10: ATM filter for scale 5. The filter tolerance is 10 cm. Terrain
data: Bundesamt fiir Landestopographie (©) (2000) (DV002247).



Chapter 6

Evaluation

The two-step approach of information reduction by wavelet filtering and
subsequent data reduction by ATM filtering requires a separate evaluation of
the two steps. As the main focus of this research is on filtering in the wavelet
domain the principal emphasis will be on the evaluation of the wavelet filter.
Various types of TIN filters are evaluated by Heckbert and Garland (1997),
including the ATM filter by Heller (1990).

Root mean square error. For the evaluation of approximations most
often a simple root mean square error (RMSE) is calculated as a measure of
deviation from the original model (Gross et al. (1996), Lee (1991)). However,
as generalisation naturally implies a simplification of the original surface, the
RMSE cannot assess the quality of the approximation. In this investigation
it is used to give a global estimate for the degree of generalisation. For a
series of approximations of increasing degree of generalisation the RMSE
is also expected to increase. Table 6.1 shows the root mean square errors
for the approximation series depicted in Figures 6.3 and 6.4. The coarser
the arbitrative scale, the higher the error, due to the elimination of the
landforms smaller than the significant structures at the arbitrative scale.
The maximum error also increases steadily, as indicated in table 6.1.

Structural analysis. The root mean square error is a global and purely
statistical measure and cannot capture many aspects of the approximative
quality. Lee (1991) suggests a structural analysis of both the original and
the approximated terrain comparing the number of peaks, pits and passes
before and after applying the approximation algorithm. This is a valuable
assessment of a digital terrain model simplification. The issue of hydrolog-
ical consistency is approached by such a comparison of structural features.
However, it is difficult to determine which structure points are significant to
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| Arbitrative Scale RMS Error [m] Maximum Error [m]
Scale 3 0.0498 0.5200
Scale 4 0.0614 0.9565
Scale b 0.0787 1.3814
Scale 6 0.1107 2.4978
Scale 7 0.1318 3.1847
Scale 8 0.2839 5.1929

Table 6.1: Accuracy estimation of the wavelet filter by root mean square
error and maximum error.

the coarse-scale catchment area. Particularly in high resolution DTMs the
occurrence of very small peaks and pits is likely. In the employed DTM, the
feature extraction algorithm suggested by Lee (1991) results in an exces-
sive amount of peaks, pits-and passes due to noise and irregularities. This
is an artefact of the DTM data described in section 5.1.1. Such artificial
structures reduce the significance of the quality assessment using structural
analysis. Table 6.2 shows that the number of structure points does not de-
crease monotonously. This happens as a result of the uneven distribution of
the artefacts. Particularly the significant structures of scale 7 and 8 seem to
be covered by such small irregularities. Therefore the artefacts are especially
well preserved in an approximation using scale 7 or'8 as the arbitrative scale.
This is reflected by the high number of structure points for the arbitrative
scales 7 and 8 in table 6.2. The amount of suitably restructed areas also
depends on the proportion of the surface which is associated with significant
landforms of the respective scale.

Arbitrative Scale ' Peaks Pits Passes |
Original 3690 2509 17873
Scale 3 © 1008 919 5882
Scale 4 663 632 3579
Scale 5 - 553 560 2979
Scale 6 510 526 2793
Scale 7 586 601 3317
Scale 8 608 563 3334

Table 6.2: Comparison of the number of peaks, pits and passes of a
section of 600 x 600 points.

In order to adapt the structural analysis to the issue of scale-dependent
approximation, the structure points of high relevance in the scale of interest
must be detected. The comparison of peaks, pits and passes in the scale of
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interest has a higher significance for the filter quality. For example, Heller
(1990) proposed an algorithm to detect significant maxima of a certain size.

Comparison of hydrological networks. A method to ensure that im-
portant catchment areas and the respective channel lines are preserved has
been discussed in section 5.4. Such linear features can also be used to pro-
vide a quality estimation if they are not used for the approximation in the
first place. Figure 6.1 shows the channel lines with a flow accumulation
according to Jenson and Domingue (1988) of the runoff generated by more
than 300 cells, The catchment areas are largely preserved at both arbitrative
scales. In the northerly flat area dominated by artificial triangles a changing
runoff is not very surprising.

Point selection by the ATM filter. The number of remaining points
after the ATM filter can also be used as a means to evaluate the previously
applied wavelet filter. A higher degree of generalisation should also yield
smoother areas and larger parts of the model being smoothed. Therefore
less points exceed the threshold of the ATM filter and a higher proportion
of points is discarded. The relation between retained points and arbitrative
scale is shown in table 5.2. A vertical tolerance of 10 cm has been applied to
all scales which is less adequate for larger scales but shows that the number
of points is monotonously decreasing from one approximation to the next
coarser. When using an increasing tolerance for approximations with larger
arbitrative scales, the reduction intervals are expected to be more regular.

Visual assessment. Nevertheless, it is believed that visual evaluation of
the results of a generalisation process is the most adequate approach. A
visualisation technique has been developed whereby the vertical deviation
from the original model is plotted as colour information onto the shaded
terrain. Hence, the differences can be regarded in correspondence to the
surface forms where they occur. Figures 6.3 and 6.4 show a series of approx-
imations using scale 3 to 8 as arbitrative scales. The coarser scales exhibit
a limitation of the tensor product wavelet transform. Along diagonal struc-
ture lines the favoured directions appear. Such artefacts are concealed by
contour plots. A visual assessment using hillshading information is believed
to give the best impression of the quality of the approximation.
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(b) Arbitrative scale 8

Figure 6.1: Comparison of flow accumulations of a) the original (blue)
and the generalised model (red) with arbitrative scale 4 (features of ap-
proximately 80m wavlelength), b) the original (blue) and the generalised
model (red) with arbitrative scale 8 (features of approximately 900m
wavlelength). Terrain data: Bundesamt fiir Landestopographie (© (2000)
(DV002247).
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(b) Arbitrative scale 4

Figure 6.2: Comparison of approximated models with arbitrative scales
3 and 4. The colour information illustrates the deviation to the original.
The unit is [m]. Terrain data: Bundesamt fiir Landestopographie ©

(2000) (DV002247).

65



66

CHAPTER 6. EVALUATION

800

(b) Arbitrative scale 6

Figure 6.3: Comparison of approximated models with arbitrative scales
5 and 6. The colour information illustrates the deviation to the original.
The unit is [m]. Terrain data: Bundesamt fiir Landestopographie (©

(2000) (DV002247).
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(b) Arbitrative scale 8

Figure 6.4: Comparison of approximated models with arbitrative scales
7 and 8. The colour information illustrates the deviation to the original.
The unit is [m]. Terrain data: Bundesamt fiir Landestopographie ©
(2000) (DV002247).
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Chapter 7

Conclusion

7.1 Summary

To approach the increasing importance of surface generalisation for high-
resolution DTMs, a framework consisting of two steps is suggested. The first
step involves the reduction of information in the wavelet domain whereas the
second one reduces the number of points in order to obtain a TIN. A wavelet
coeflicient filter, which is adaptive to locally significant features, expressed

_ by curvature values at different scales, has been implemented. Features of

a scale of interest are detected by the stationary wavelet transform or they
can be assumed to exist as a priori knowledge. Such significant regions are
retained with high accuracy. Other areas are smoothely represented by the
approximation at the scale of interest. The results have been assessed mainly
by visual comparison of the approximations and their local deviation from
the original. A structural analysis according to Lee (1991) and a comparison
of the hydrological networks has also been performed. The data reduction
is conducted by a so-called ATM filter by Heller (1990) using a vertical
tolerance as a filter criterion. The result is believed to be more closely related
to the generalisation processes of selection/elimination and emphasis than
methods filtering only in the spatial domain.

7.2 Future Research

The results of this thesis and the experiences made suggest that the wavelet
transform is an adequate tool for analysing and generalising digital terrain
models.

However, in order to find an appropriate representation of a terrain surface
by wavelets further investigation is needed. First of all, the search of suit-
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able wavelets is a primary focus. Bi-orthogonal wavelets, such as corpactly
supported pseudo-coiflets proposed by Reissell (1996) have been considered
to have good approximation properties for the types of surfaces used here
(i.e. terrain).

A more suitable representation could also be achieved by introducing an
additional degree of freedom. A rotational parameter could help to detect
features more accurately than wavelets restricted to horizontal, vertical and
diagonal directions. The positive wavelet transform applied by Gallant and
Hutchinson (1996) yielded promising results. A wavelet looking like a proper
terrain feature with the parameters location, length, width, orientation and
height can obviously represent a landscape better than a tensor product
wavelet with an inherent directional bias. In this study, such directional
artefacts were eliminated by the subsequent application of a traditional spa-
tial domain TIN filter. Nevertheless, it is strongly believed that the wavelet
should be similar to the transformed terrain in order to minimise the gener-
ation of artefacts. These artefacts often lead to a poor performance of the
ATM filter.

Representing a terrain by components of some specific form, such as wavelets,
is an abstraction from reality. It is very important to take into account any
constraints and deficiencies of the applied model. This is also applicable for
modelling terrain using wavelets. For example the tensor product wavelet
with favoured directions can barely reflect the full complexity of landforms.

The thresholding algorithm applied to detect significant structures has been
based on the mean value of the coefficients at the respective scale. The
threshold could also be set to specific values corresponding to an absolute
amplitude or energy of features. This yields a result independent of the fea-
ture size distribution in the analysed terrain. However, for demonstration
purposes, a mean threshold is more reasonable in order to achieve approxi-
mations of various intensities in the same terrain model.

The recognition of landscape features is a further field where wavelets can
contribute to finding better solutions. Especially the issue of scale is ap-
proached by the very nature of wavelets. Dikau (1989) proposes a synthesis
of landform components of different size and complexity. The suggested
landform components are defined quantitatively as logical combinations of
geometrical measures, such as gradient, curvature, distance to drainage di-
vide or distance to channel divide. The underlying principle of wavelets
is very similar: A signal is transformed to simple components and recon-
structed by their re-combination. However, a wavelet transform cannot as-
sign real-world landforms to one specific scale. The Heisenberg uncertainty
principle suggests that any classification of local features referring to wave-
length must be fuzzy. It might be an option to subsume various levels of the
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wavelet transform to ‘super-classes’ of different orders of magnitude. Dikau
(1990) used a ‘hierarchy of size orders’ discriminating between classes span-
ning two orders of magnitude. Nevertheless, it is believed that assigning
a range of scales to a landform or a fuzzy classification could address the
problem more adequately. Further research could adapt the fuzzy landform
classification of Wilson and Burrough (1999) or MacMillan and Pettapiece
(2000) to accommodate also the issue of fuzzy scale membership of these
landforms. Arrell et al. (2001) advocate a fuzzy landform classification cor-
responding to various resolutions. Such a combination of multiresolution
and fuzzy logic techniques is considered to be promising for landform recog-
nition.

The second derivative is believed to have a high relevance to assess the
importance of many landscape features. However, for proper feature extrac-
tion a more sophisticated curvature assessment than the one suggested in
section 4.4 is advisable. In addition to the east-west and north-south direc-
tion diagonal cross-sections from the original model could be transformed
as one-dimensional profiles. Gradient values, which are necessary to obtain
slope and contour direction, can be obtained by Haar wavelets equivalent to
curvature detection (Beyer and Meier (2001)).

The actual feature extraction has been of secondary interest in this thesis.
Nevertheless, the illustrations of Figures 4.4 and 5.8 strongly suggest mak-
ing use of multiscale curvature information to extract significant structures.

Much research needs to be done in order to achieve approximations more
closely related to generalisation based on semantic information rather than
purely geometric and statistical measures. The wavelet concept, being some-
how related to human vision (see section 3.2), could contribute significantly
to such a task. A major problem is the detailed understanding of generalisa-
tion processes (Weibel (1992)). A formalisation of generalisation techniques
is necessary in order to design algorithms for generalisation processes.
However, the desired type of generalisation is very much dependent on the
application of the model. Generalisation is a problem that needs to be
solved repeatedly, according to the type of simplification and the degree of
abstraction required to be able to model a complex reality.
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Appendix A

Curvature from Wavelet
Coefficients

In an informative paper, Beyer and Meier (2001) describe how to obtain
derivatives by a stationary wavelet transform. Gradient, curvature and
higher order derivatives can be obtained directly from stationary wavelet
coefficients without prior inverse wavelet transform into the spatial domain.
This is particularly useful due to the multiscale properties of wavelets. The
derivative addressed by the wavelet is equivalent to the number of vanish-
ing moments. All wavelets have zero mean (0. moment). A wavelet with
an additionally vanishing first moment is proportional to the second order
derivative. Say v(j),5 = 1,2,...,s is a discrete wavelet where s denotes its
support interval. The first moment is defined as:

= 3 4007, (A1)
j=1

This is zero for a Daubechies wavelet with support interval 4. Hence, the 2.
moment is:

my =Y j*v(j). (A.2)
J=1
Let us define: )
g = > §°0(j). (A.3)
j=1

In order to derive the curvature from a wavelet coefficient two types of
adjustments need to be considered.

Scaling. Firstly, a scaling, also termed ‘amplitude correction’ has to be
performed. For the second derivative, the wavelet coefficients have to be
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weighted by:
. 2

- ma(Az)2’

Az denotes the sampling interval. It depends on the sampling interval of the
original data set Axy and on the scale k of the respective wavelet coefficient.

(A.4)

a2

Az = Azg2F1, k=1,2,...,K. (A.5)

K is the coarsest scale regarded by the wavelet transform.

Phase shift. Secondly, a phase shift x4 or spatial translation has to be
taken into account. According to Beyer and Meier (2001), this is for the
second derivative:

LAYV
Ty = (nc2 3 YAz, (A.6)

where 7, denotes the length of the mother wavelet. The actual significance
in terms of curvature of the stationary wavelet coefficient w(f; z;) at location
x; is: : o

(@i — g) = aw(f;z;). (A7)




