Internationally coordinated glacier monitoring - a timeline since 1894

Fluctuations of Glaciers (FoG)
Front variations
Regular observations of horizontal changes
in the position of the glacier terminus have
been reported and pubblished since e the end
of the 19th century. Today, more than
45,00 length change observations from
about 2,500 glacierg are available through-
out the world. Reconstructions of glacier
front variations extend the observational
record back to the 16th century.

Fluctuations of Glaciers (FoG) Mass balance

Glacier-wide mass balance measure-
ments have been carried out since the ments have been carried out since the
1940s. Today, mass balance data is available from about 400 glaciers worldwide. There are 40 mass balance programmes with continuous
tion series since 1976 or earlier.

Fluctuations of Glaciers (FoG) Geodetic changes

Geodetic thickness or volume changes,
as derived from terrestrial or remote as derived from terrestrial or remote
sensing methods, are available for 460 sensing merthods,
glaciers worldwide.

World Glacier Inventory
A first approach to compile a World
Glacier Glacier Inventory (WGI) was
completed in 1989 (updated in 2012), mainly based on aerial photographs and maps, resulted in a dataset of
point locations and attributes for over 130,000 glaciers with an overall area of $240,000 \mathrm{~km}^{2}$, and preliminary
estimates for the remaining ice cover.

GLIMS database 8 Randolph Glacier Inventory The Global Land Ice Measurements
from Space (GLIMS) initiative was launched to continue the inventorying task with space-borne sensors storing glacier outlines (multi-temporal),
attributes and provenance. At present, atlicieves inventory data are available fo
grenance. Anesent about 180,000 glaciers through th GLIMS database and the Randolph

Glacier Photograph Collection (GPC) The Glacier Photograph Collection
(GPC) contains more than 15,000 photographs from some 500 glaciers;
photographs mostly from land and air; photographs mostly from land and air;
some repeat-photography. Those some repeat-photography. Those
pictures, some of them dating back to the late 19 th century, constitute an
important historical record and important historical record and
valuable meta-data to the other scientific datasets.

Glacier Thickness Database (GlaThiDa)

The Fluctuations of Glaciers (FoG) database is completed by specific data, or special events including glacier surge events and glacier lake outburst floods (GLOFs),

19821986

200920152016
Global Terrestrial Network for Glaciers (GTN-G) $\quad \mathrm{Wgms}+\underset{+}{\text { (}}$

Commission Internationale des Glaciers (CIG), , 8994-1927 International Commission on Snow and Ice (ICSI), 1927-2007

From the beginning.. Changes in glaciers and ice caps
provide some of the clearest evidence of climate change and have impacts on global sea-level fluctuations, regiona
hydrological cycles and local natural hyazard situations.
hat

Internationally coordinated collection and distribution of standardized
information about the state and change of glaciers and ice caps was initiated in 1894, with the periodic publication of compiled information on glacier
fuctuations one year later (by F.A. fluctuatio
Forel).

to a worldwide scientific collaboration network...

As a contribution to the Global Terrestria//Climate Observing System (GTOS, GCOS), the Division of Early Warning and Assessment and the Programme of UNESCO, the World Glacier Monitoring Service (WGMS) Programme of UNESCO, the World Glacier Monitoring Service (WGMS)
collects and publishes worldwide standardized glacier data. Thereto, the WGMS maintains a network of local investigators and National Correspon-
dents in all countries involved in lacier monitoring dents in all countries involved in glacier monitoring.
The WGMS is a service of the International Association of the Cryospheric Sciences of the International Union of Geodesy and Geophysics (IACS, IUGG) as well as of the World Data System of the International Council for
Science (WDS, ICSU) and works under the auspices of the United Nations Environment Programme (UNEP), the United Nations Educational Scientific and Cultural Organization (UNESCO), and the World Meteoro-
\square
. to coordination through GTN-G
The Global Terrestrial Network for Glaciers (GTN-G) is jointly run by three operational bodies: the World Glacier
Monitoring Service (WGMS), the US National Snow and Ice Monitoring Service (WGMS), the US National Snow and Ice
Data Center (NSIDC), and the Global Land Ice Measure-Data Center (NSIDC), and the Global Land Ice Measure-
ments from Space (GLIMS) initiative. Since 2009, a GTN-G Steering Committee coordinates, supports and advices the operational bodies responsible for the international glacier monitoring.
Consistency and interoperability of the different glacier
databases (FoG, WGI, GLIMS, GPC) are elaborated by databases (FoG, WGI, GLIMS, GPC) are elaborated by Thereby, different historical develorments and methodlogical contexts of the datasets are major challenges for linking individual glaciers throughout the databases.

GTN-G Global Glacier Browser
http://www.gtn-g.org/

Data access

All glacier fluctuation datasets are digitally available through the GTN-G website. All data and information is freely available for
scientific and educational purposes under requirement of correct scientific and educational purposes under requirement of correct
citation of the database or data source.

