Abstract Details

Session title: C01c - Glacier Monitoring from In-Situ and Remotely Sensed Observations, including Aspects of the History of Cryospheric Sciences

Session type: IACS (Cryosphere)

Symposium: C01

Presentation number: IUGG19-0689

★ Abstract title:

Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016

M. Zemp¹, M. Huss^{2,3}, E. Thibert⁴, <u>N. Eckert⁴</u>, R. McNabb⁵, J. Huber¹, M. Barandun³, H. Machguth^{1,3}, S. Nussbaumer^{1,3}, I. Gärtner-Roer¹, L. Thomson⁶, F. Paul¹, F. Maussion⁷, S. Kutuzov⁸, G. Cogley⁹.
¹University of Zurich, Department of Geography, Zurich, Switzerland.
²ETH, Laboratory of Hydraulics- Hydrology and Glaciology, Zurich, Switzerland.
³University of Fribourg, Department of Geosciences, Fribourg, Switzerland.
⁴Université Grenoble Alpes- Irstea, UR Etna, Saint Martin d'Hères, France.
⁵Unversity of Oslo, Department of Geosciences, Oslo, Norway.
⁶Queen's University, Department of Geography and Planning, Kingston, Canada.
⁷University of Innsbruck, Department of Atmospheric and Cryospheric Sciences, Innsbruck, Austria.
⁸Russian Academy of Sciences, Institute of Geography, Moscow, Russian Federation.
⁹Trent University, Department of Geography, Peterborough, Canada.

Glaciers distinct from the Greenland and Antarctic Ice Sheets cover an area of approximately 706,000 km² globally with an estimated total volume of 170,000 km³, or 0.4 m of potential sea-level rise equivalent. For the previous IPCC reports, mass-change estimates were based on the multiplication of averaged or interpolated results from available observations of a few hundred glaciers with regional glacier areas. These past approaches were challenged by the small number and heterogeneous spatio-temporal distribution of *in situ* measurement series and their often unknown representativeness for the respective mountain range. Here we show that glaciers have lost more mass than previously reported on a global scale. Our new approach, based solely on glaciological and geodetic observations, suggests that glaciers contributed 27 \pm 22 mm to global mean sea-level rise from 1961 to 2016. Regional specific mass-change rates for 2006-2016 range between -0.1 and -1.2 m water equivalent (w.e.) per year, resulting in a global sea-level contribution of the Greenland Ice Sheet, clearly exceeds the loss from the Antarctic Ice Sheet, and accounts for 25 to 30% of the total observed sea-level rise. Current mass loss rates indicate that glaciers could virtually disappear in some mountain ranges in this century while heavily glacierised regions will contributing to sea-level rise beyond 2100.