
Chapter 4

Spatialization

André Skupin and Sara I. Fabrikant

Researchers engaged in geographic information science are generally concerned with
conceptualizing, analyzing, modeling, and depicting geographic phenomena and pro-
cesses in relation to geographic space. GI scientists consider spatial concepts, such
as a phenomenon’s absolute location on the Earth’s surface, its distance to other
phenomena, the scale at which it operates and therefore should be represented and
studied, and the structure and shape of emerging spatial patterns. Geographic loca-
tion is indeed a core concept and research focus of GI Science, and this is well reflected
throughout the many chapters of this volume. In recent years, however, it has become
apparent that the methods and approaches geographers have been using for hundreds
of years to model and visualize geographic phenomena could be applied to the 
representation of any object, phenomenon, or process exhibiting spatial charac-
teristics and spatial behavior in intangible or abstract worlds (Couclelis 1998). This
applies, for example, to the Internet, in which text, images, and even voice messages
exist in a framework called cyberspace. Other examples include medical records that
have body space as a frame of reference, or molecular data structures that build up
the human genome. These abstract information worlds are contained in massive
databases, where billions of records need to be stored, managed, and analyzed. Core
geographic concepts such as location, distance, pattern, or scale have gained import-
ance as vehicles to understand and analyze the hard-to-grasp and volatile content
of rapidly accumulating databases, from real-time stock market transactions to global
telecommunication flows. This chapter is devoted to the use of spatial metaphors to
represent data that may not be inherently spatial for knowledge discovery in massive,
complex, and multi-dimensional databases. It discusses concepts and methods that
are collectively referred to as spatialization.

What Is Spatialization?

In very general terms, spatialization can refer to the use of spatial metaphors to
make sense of an abstract concept. Such spatialization is frequently used in everyday
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language (Lakoff and Johnson 1980). For example, the phrase “Life is a Journey”
facilitates the understanding of an abstract concept (“human existence”) by mapping
from a non-spatial linguistic source domain (“life”) to a tangible target domain 
(“journey”) that one may have actually experienced in the real world. The desk-
top metaphor used in human–computer interfaces is another example for a spatial
metaphor.

The role of spatial metaphors, including geographic metaphors, is also central to
the more narrow definition of spatialization developed in the GI Science literature
since the 19990s (Kuhn and Blumenthal 1996, Skupin and Buttenfield 1997, Skupin,
Fabrikant, and Couclelis 2002), which is the basis for this chapter. Spatialization
is here defined as the systematic transformation of high-dimensional data sets into
lower-dimensional, spatial representations for facilitating data exploration and know-
ledge construction (after Skupin, Fabrikant, and Couclelis 2002).

The rising interest in spatialization is related to the increasing difficulty of organ-
izing and using large, complex data repositories generated in all parts of society.
Spatialization corresponds to a new, visual paradigm for constructing knowledge
from such data. In the geographic domain, interest in spatialization stems largely from
the growing availability of multi-dimensional attribute data originating from such
sources as multi-temporal population counts, hyperspectral imagery, and sensor net-
works. New forms of data, still largely untapped by geographic analysis include
vast collections of text, multimedia, and hypermedia documents, including billions
of Web pages. A number of examples are discussed in this chapter highlighting the
role of spatialization in this context.

The focus on spatial metaphors hints at a fundamental relationship between 
spatialization efforts and GI Science, with relevance beyond the geographic domain.
Many spatio-temporal techniques developed and applied in GI Science are applicable
in spatialization, and the ontological, especially cognitive, foundations underlying
the conceptualization and representation of space can inform spatialization research.
That is particularly true for a group of spatializations collectively referred to as
“map-like” (Skupin 2002b), which are discussed and illustrated in some detail later
in this chapter.

Spatializations are typically part of systems involving people exploring highly 
interactive data displays with sophisticated information technology. Most current
spatialization research is directed at defining and refining various parameters of 
such interactive systems. However, the result of a spatialization procedure could
also be a static hardcopy map that engages the viewer(s) in a discussion of depicted
relationships, and triggers new insights (Skupin 2004). For example, one could 
visualize all the scientific papers written by GI scientists in 2006 in the form of a
map printed on a large poster and use this to inspect the structure of the discipline
at that moment in time. This can then encourage and inform the discourse on the
state and future of the discipline much as a neighborhood map facilitates discussion
on zoning ordinance changes during a city-planning forum.

Who Is Working On Spatialization?

The main challenge faced by anyone embarking on the creation of spatializations
is that insights and techniques from numerous, and often disparate, disciplines need
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to be considered. Visualization research is very interdisciplinary and conducted 
by a heterogeneous group of loosely connected academic fields. Scientific visualiza-
tion (McCormick, Defanti, and Brown 1987) and information visualization (Card,
Mackinlay, and Shneiderman 1999) are two strands of particular interest for this
discussion, both drawing heavily on computer science. The former is concerned with
the representation of phenomena with physically extended dimensions (for example,
width, length, height), usually in three dimensions. Typical application examples
are found in such domains as geology (rock formations), climatology (hurricanes),
and chemistry (molecular structures). Scientific visualization has obvious linkages
with geographic visualization (see Chapters 11 and 16 of this volume, by Cartwright
and Gahegan respectively, for two treatments of this topic) whenever the focus is
on depicting phenomena and processes that are referenced to the Earth’s surface. In
contrast, information visualization is concerned with data that do not have inherent
spatial dimensions. Examples include bibliometric data, video collections, monetary
transaction flows, or the content and link structure of Web pages. Most information
visualizations are in essence spatialization displays. Spatialization is thus best inter-
preted in the context of information visualization, which is quickly maturing into
a distinct discipline, including dedicated conferences, scientific journals, textbooks,
and academic degree programs.

Within GI Science, interest in spatialization tends to grow out of the geographic
visualization community, which in turn mostly consists of classically trained carto-
graphers. It is not surprising then that GIScientists involved in spatialization research
draw inspiration from traditional cartographic principles and methods (Skupin 2000).
On the other hand, ongoing developments in geographic visualization have also led to
interactive, dynamic approaches that go beyond the static, 2D map (see Chapter 17
by Batty, in this volume, for some additional discussion and examples of this type)
and within which spatialization tools can be integrated.

Data mining and knowledge discovery share many of the computational techniques
employed in spatialization (see Chapter 19 by Miller, this volume, for some addi-
tional discussion of geographic data mining and knowledge discovery), for example
artificial neural networks. Many preprocessing steps are similar, such as the trans-
formation of source data into a multidimensional, quantitative form (Fabrikant 2001),
even if these data sources are non-numeric.

Ultimately, spatialization is driven by the need to overcome the limited capacity
of the human cognitive system to make sense of a highly complex, multidimensional
world. That is why psychology and especially cognitive science have become influ-
ential disciplines in this research area. In this context it should be pointed out that
while this chapter focuses on visual depictions, spatializations could include multi-
modal representations involving other senses such as sound, touch, smell, etc. In fact,
the term spatialization first became known in the context of methods for producing
3D sound and detecting 3D spatial relationships from sound.

Computer science is still the dominant academic home to most spatialization 
efforts and has led the development of fundamental principles and novel tech-
niques, especially in the human–computer interaction (HCI) field (Card, Mackinlay,
and Shneiderman 1999). Few areas of scientific work have devoted as much effort 
to spatialization as information and library science, particularly when it comes to
the analysis of text and hypermedia documents (Börner, Chen, and Boyack 2002,
Chen 2003).
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What Kinds Of Data Can Be Used For Spatialization?

Spatialization methodologies can be applied to many different types of data. One
possible division of these would focus on the degree to which they are structured,
leading to a distinction between structured, semi-structured, and unstructured data
(Skupin and Fabrikant 2003). This is useful in terms of highlighting basic data trans-
formation difficulties often encountered in spatialization. For example, unstructured
text data may lack a clear indication of where one data item ends and another begins
and can have dimensions numbering in the hundreds or thousands, as contrasted
with multidimensional data typically used in geospatial analysis, where one rarely
encounters more than a few dozen dimensions. However, given the focus of this
volume on GI Science, this chapter considers two broad data categories. First, we
discuss geographically referenced data, which are of obvious relevance to GI sci-
entists. Then, much attention is given to data that are not referenced to geographic
space or even related to geographic phenomena.

Geospatially referenced data

Why would one want to apply spatialization to geographically referenced data if
cartographic depictions have proven useful for over 5,000 years and continue to
be at the heart of current geovisualization research? Consider one very common
example, the geographic visualization of demographic change. One almost always
finds either juxtaposed maps of individual time slices or change condensed into com-
posite variables (for example, relative percentage of growth). This may be sufficient
for the visual detection of change as such, but does not easily support detection of
temporal patterns of change. While location is what vision experts and cognitive
psychologists call “pre-attentive” (MacEachren 1995, Ware 2000), this is basically
taken out of play when geographically fixed objects, such as counties, are visualized
in geographic space in this manner. Spatialization can eliminate that constraint by
creating a new, low-dimensional representation from high-dimensional attributes. For
example, one could take multi-temporal, multi-dimensional, demographic data 
for counties, map each county as a point and, with defined temporal intervals, link
those points to form trajectories through attribute space (Skupin and Hagelman
2005). Thus, change becomes visualized more explicitly (Figure 4.1). One can then
proceed to look for visual manifestations of common verbal descriptions of demo-
graphic change, such as “parallel” or “diverging” development (Figure 4.2). Tradi-
tional cartographic visualization in geographic space may also fail to reveal patterns
and relationships that do not conform to basic assumptions about geographic space,
such as those expressed by Tobler’s First Law of Geography (Tobler 1970). With
spatialization one can take geographic location out (or control for it) while focusing
on patterns formed in n-dimensional attribute space.

In practice, spatializations derived from geographically referenced data will tend to
be used not in isolation but in conjunction with more traditional geographic depic-
tions. Due to their predominantly two-dimensional form, geometric data structures
and formats used in GI Systems (GIS) are applicable to spatializations. They can
be displayed and interacted with in commercial off-the-shelf GIS. Most examples

THO_C04  20/03/2007  14:52  Page 64



SPATIALIZATION 65

shown in this chapter were in fact created in ArcGIS (Environmental Systems Research
Institute, Redlands, California). Spatializations can also be juxtaposed to geographic
maps, linked via common feature identifiers, and explored in tandem.

Many types of geographic data are suitable for spatialization. Population census
data, for example, have traditionally been subjected to a number of multivariate
statistics and visualization techniques, sometimes combined to support exploratory
data analysis. Scatter plots and parallel coordinate plots (PCP) are established visual
tools in the analytical arsenal. The spatialization methods discussed here do not
replace these, but add an alternative view of multivariate data. In this context, it
helps to consider how coordinate axes in visualizations are derived. In the case of
the popular scatter plot method, each axis is unequivocally associated with an input
variable. This is only feasible for a very limited number of variables, even when
scatter plots are arranged into matrix form (Figure 4.3). Principal coordinate plots
likewise exhibit clear association between axes and variables.

Contrast this with map-like spatializations, in which the relationship between input
variables and display coordinates is far less obvious. Some even refer to the result-
ing axes as “meaningless” (Shneiderman, Feldman D, Rose A, and Grau 2000) and
questions like “What do the axes mean?” are frequently encountered. They are difficult

Fig. 4.1 Census-based visualization of trajectories of Texas counties based on data from 1980,
1990, and 2000 US population census
From Skupin and Hagelman 2005
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Fig. 4.2 Cases of convergence and divergence in a spatialization of Texas county trajectories 
From Skupin and Hagelman 2005
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to answer, since in such techniques as multidimensional scaling or self-organizing
maps all input variables become associated with all output axes. This allows a 
holistic view of relationships between observations (Figure 4.4). Figure 4.4 was derived
by training an artificial neural network, specifically a self-organizing or Kohonen
map (Kohonen 1995), with 32 input variables. Overall similarity of states becomes
expressed visually through 2D point visualization. In addition, some of the input
variables are shown as component planes in the trained Kohonen map to allow an
investigation of relationships between variables.
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Fig. 4.3 Scatter plots derived from demographic data for US states
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Fig. 4.4 Spatializations derived from 32 demographic variables using the self-organizing map
method. Higher values in six (out of 32) component planes expressed as lighter shading
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Data without geographic coordinate reference

Some of the most exciting and evocative developments in the visualization field 
in recent years have been efforts to apply spatial metaphors to non-geographic 
data or, more specifically, data that are not explicitly linked to physical space. Due 
to significant differences in how such data are stored, processed, and ultimately 
visualized, this section discusses a number of data types separately.

There are two broad categories of source data. One involves sources that already
contain explicit links between data items, which in their entirety can be con-
ceptualized as a graph structure. The goal of spatialization for this category is to
convey such structures in an efficient manner in the display space. Hierarchical tree
structures are especially common. A prime example is the directory structure of com-
puter operating systems, like Windows or UNIX. Tree structures are also encountered 
in less expected places. For example, the Yahoo search engine organizes Web pages in
a hierarchical tree of topics. The stock market can also be conceptualized as a tree,
with market sectors and sub-sectors forming branch nodes and individual stocks
as leaf nodes. Apart from such tree structures, data items could also be linked more
freely to form a general network structure. The hypermedia structure of the World
Wide Web is a good example, with Web pages as nodes and hot links between them.
Scientific publications can also be conceptualized as forming a network structure,
with individual publications as nodes and citations as explicit links between, gener-
ally pointing to the past. The exception might be preprints as they do not exist yet
in their defining form. To illustrate this, we collected a few citation links from the
International Journal of Geographical Information Science (IJGIS), starting with a
2003 paper by Stephan Winter and Silvia Nittel entitled “Formal information model-
ling for standardisation in the spatial domain.” The result is an origin–destination
table of “who is citing whom” (Table 4.1). Later in this chapter, a visualization
computed from this citation link structure is shown.

The second major group of non-georeferenced source data treats items as auto-
nomous units that have no explicit connections among each other. Spatialization of
such data relies on uncovering implicit relationships based on quantifiable notions
of distance or similarity. This requires first a chunking or segmentation of individual
data items into smaller units, followed by a computation of high-dimensional rela-
tionships. For example, the spatialization of text documents may involve breaking
up each document into individual words. The following computations are then based
on finding implicit connections between documents based on shared terms (Skupin
and Buttenfield 1996). Similarly, images could be spatialized on the basis of image
segmentation (Zhu, Ramsey, and Chen 2000). Other examples for spatializations
involving disjoint items have included human subject test data derived from user
tracking and elicitation experiments (Mark, Skupin, and Smith 2001).

How Does Spatialization Work?

The types of data to which spatialization can be applied are so heterogeneous that
there really is no single method. As was stressed earlier, spatialization tends to draw
on many different disciplines and integrating these influences can be challenging. For
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Fig. 4.5 Portion of a spatialization of conference abstracts. Five levels of a hierarchical clustering
solution are shown simultaneously
From Skupin 2004
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an example, consider the task of creating a map-like visualization of the thousands
of abstracts that are presented at the annual meeting of the Association of American
Geographers (AAG). This is an example of a knowledge domain visualization and
would be useful in the exploration of major disciplinary structures and relationships
in the geographic knowledge domain (Figure 4.5). Figure 4.6 shows the broad out-
line of a possible methodology for creating such a visualization. In the process, it
also serves to illustrate the range of involved disciplines and influences, which include 

• Information science and library science for creation of a term-document matrix,
similar to most text retrieval systems and Web search engines (Widdows 2004);

• Computer science for the artificial neural network method used here (Kohonen
1995);

• GIS for storage and transformation of spatialized geometry and associated
attributes;

• Cartography for scale dependence, symbolization and other design decisions.

Preprocessing

At the core of most spatialization procedures are techniques for dimensionality reduc-
tion and spatial layout. These tend to be highly computational, with very specific
requirements for how data need to be structured and stored. Preprocessing of source
data aims to provide this. In the case of well-structured, numerical data stored in
standard database formats, preprocessing is fairly straightforward. For example, 
for single-year census data it will often involve only a few processing steps that can
easily be accomplished using spreadsheet software, such as computation of z-scores,
log transformations, or scaling of observations to fit into a 0–1 range.

The data to which spatialization is to be applied are, however, often not in a
form that is amenable to immediate computation. In that case, much effort may
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have to be devoted to reorganizing source data into a more suitable form. This can
already be surprisingly difficult when dealing with multi-temporal, georeferenced
data. Both geographic features and their attributes may be subject to change. For
example, census block boundaries may be redrawn, ethnic categories redefined, and
so forth. However, the resulting difficulties pale in comparison to source data in
which there are no set definitions of what constitutes a feature, how features are
separated from each other, or what the attributes should be that become associated
with a feature.

What one is faced with here is a distinction between structured and unstructured
data. The former is what one almost always encounters in GIS. Unstructured data
present wholly different challenges. Consider the case of thousands of conference
papers that one might have available in text form in a single file (Figure 4.7). There
is no unequivocal separation between different documents nor clear distinction 
between content-bearing elements (title, abstract, keywords) and context elements
(authors, affiliations, email addresses). One could look for certain elements (like
end-of-line characters) useful for parsing, but such a procedure will be uniquely
tailored to this particular data set, may suffer from inconsistencies in the data, and
will require extensive modification to be used for differently organized data.

Semi-structured data are an attempt to address many of these problems by organ-
izing data in accordance with a predefined schema. The extensible markup language

Fig. 4.6 Procedure for deriving a spatialization from AAG conference abstracts 
From Skupin 2004
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(XML) is the most prominent solution to this. Figure 4.8 shows an example, in
which a schema specifically designed for conference abstracts is applied to previously
unstructured data. Such data offer many advantages. This XML file is suitable for
human reading and computer parsing alike. From a software engineering point of
view, this type of hierarchical, unequivocal structure is also very supportive of object-
oriented programming and databases.

Spatialization depends on having data in a form that supports computation of
item-to-item relationships in n-dimensional space. For structure-based methods, such
as those based on citation links (see Table 4.1) or hypertext links, relationships are
already explicitly contained and only have to be extracted to construct network graphs.
For content-based analysis, the initial segmentation – for example the segmentation

Fig. 4.7 Conference abstract as unstructured text

Fig. 4.8 Conference abstract in semi-structured form as part of an XML file
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of a photograph or the identification of individual words within a text document –
is followed by significant transformations (see top row in Figure 4.6). For example,
text data may undergo stop word removal and stemming (Porter 1980, Salton 1989),
as illustrated here:

input: The paper includes a brief discussion of alternatives to the Ralco Dam that could
satisfy energy demand in southern Chile without violating indigenous rights to land and
resources
onput: paper includ brief discuss altern ralco dam satisfi energi demand southern chile 
violat indigen right land resourc

From this, a high-dimensional vector can then be created for each document, with
dimensions corresponding to specific word stems and values expressing the weight
of a term within a document (Skupin and Buttenfield 1996, Salton 1989, Skupin
2002a).

Dimensionality reduction and spatial layout

The core of any spatialization methodology is the transformation of input data into a
low-dimensional, representational space. In the case of data given as distinct features
with a certain number of attributes one can rightfully refer to the corresponding
techniques as dimensionality reduction. Spatial layout techniques are typically used
when dealing with explicitly linked features, as in the case of citation networks.

Two popular dimensionality reduction techniques are multidimensional scaling
(MDS) and the self-organizing map (SOM) method. MDS first requires the com-
putation of a dissimilarity matrix from input features, based on a carefully chosen
dissimilarity measure. Then, the method attempts to preserve high-dimensional dis-
similarities as distances in a low-dimensional geometric configuration of features
(Kruskal and Wish 1978). The popular Themescapes application (Wise, Thomas,
Pennock, et al. 1995) is based on a variant of MDS (Wise 1999). Within GI Science,
spatialization efforts have utilized MDS to create 2D point geometries for sub-
disciplines of geography (Goodchild and Janelle 1988), newspaper articles (Skupin
and Buttenfield 1996, 1997), and online catalog entries (Fabrikant and Buttenfield
2001).

The SOM method is an artificial neural network technique (Kohonen 1995). 
It starts out with a low-dimensional (typically 2D) grid of n-dimensional neuron
vectors. N-dimensional input data are repeatedly presented to these neurons. The
best matching neuron to each observation is found and small adjustments are made
to the vector of that neuron as well as to the vectors of neighboring neurons. Over
time, this leads to a compressed/expanded representation in response to a sparse/
dense distribution of input features. Consequently, major topological relationships
in n-dimensional feature space become preserved in the two-dimensional neuron
grid. One can then map n-dimensional observations onto it (left half of Figure 4.4),
visualize individual neuron vector components (right half of Figure 4.4), or compute
neuron clusters (Figure 4.5). SOMs have, for example, been used to spatialize Usenet
discussion groups, Web pages (Chen, Schuffels, and Orwig 1996), image content
(Zhu, Ramsey, and Chen 2000), conference abstracts (Skupin 2002a, 2004), and even
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a collection of several million patent abstracts (Kohonen, Kaski, Lagus, et al. 1999).
Spring models are another popular category of dimensionality reduction techniques
(Kamada and Kawai 1989, Skupin and Fabrikant 2003).

Pathfinder network scaling (PFN) is a technique used for network visualization,
with a preservation of the most salient links between input features. It is frequently
applied to citation networks (Chen and Paul 2001). To illustrate this, we computed
a PFN solution from the IJGIS citation data shown earlier. The result is a network
structure consisting of links and nodes. When combined with a geometric layout
of nodes derived from a spring model, the citation network can be visualized in
GIS (Figure 4.9). Circle sizes represent the degree of centrality a paper has in this
network, a measure commonly used in social network analysis (Wasserman and
Faust 1999). Note how the centrality of the Takeyama/Couclelis paper derives from
it being frequently cited (see Table 4.1), while the Wu/Webster paper establishes a
central role because it cites a large number of IJGIS papers.

Among spatial layout techniques, the treemap method has become especially pop-
ular in recent years. It takes a hierarchical tree structure as input and lays portions of
it out in a given two-dimensional display space (Johnson and Shneiderman 1991). In
the process, node attributes can also be visually encoded (Figure 4.10). For example,
when visualizing the directory structure of a hard drive, file size could be encoded as
the area size of rectangles. Another important category are graph layout algorithms,
which attempt to untangle networks of nodes and links in such a manner that cross-
ing lines are avoided as much as possible and network topology is preserved.

Rhind (1988)

Brassel & Weibel (1988)

Abler (1987)

Sester (2000)

Winter and Nittel (2003)

Su et al. (1997)
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Fig. 4.9 Spring model layout and pathfinder network scaling applied to a small citation network
formed by papers in the International Journal of Geographical Information Science
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Once dimensionality reduction or spatial layout methods have been applied, 
further transformations are necessary to execute the visual design of a spatializa-
tion. Depending on the character of the base geometry, these transformations may
include the derivation of feature labels, clustering of features, landscape interpola-
tion, and others (Skupin 2002b, Skupin and Fabrikant 2003). When dealing with 2D
geometry, much of this can be accomplished in commercial off-the-shelf (COTS) GIS.
Many aspects of these transformations remain to be investigated in future research,
for instance how scale changes can be implemented as semantic zoom operations
(Figure 4.11).

18 2 10

20 2 18 6

4

20

Fig. 4.10 The tree map method
From Skupin and Fabrikant 2003

Fig. 4.11 Use of GIS in implementing scale-dependent spatialization of several thousand AAG
conference abstracts. Labeling is based on two different k-means cluster solutions
From Skupin 2004
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Spatialization geometry can also be linked to attributes that were not part of the
input data set. For example, demographic change trajectories (Figures 4.1 and 4.2)
could be linked – via symbolization or selection – to voting behavior or public policy
decisions (Skupin and Hagelman 2005).

Usability and Cognitive Perspectives

An extensive set of display techniques has been developed for spatialization, and the
impressive array of visual forms documents the productivity of this young academic
field (Chen 1999). However, few researchers have succeeded in providing empir-
ical evidence to support claims that interactive visual representation tools indeed
amplify people’s cognition (Ware 2000). Generally, non-expert viewers do not know
how spatializations are created and are not told, through legends or traditional 
map marginalia, how to interpret such aspects of spatialized displays as distance,
regionalization, and scale. Of the few existing experimental evaluations in informa-
tion visualization, most evaluate specific depiction methods or types of software (Chen
and Czerwinski 2000, Chen, Czerwinski, and Macredie 2000). While usability 
engineering approaches are good at testing users’ successes in extracting information
from a particular visualization, they do not directly assess the underlying theoretic
assumptions encoded in the displays, the users’ understanding of the semantic map-
ping between data and metaphor, and between metaphor and graphic variables, or
the interaction of graphic variables with perceptual cues.

A fundamental principle in spatialization is the assumption that more similar 
entities represented in a display should be placed closer together because users 
will interpret closer entities as being more similar (Wise, Thomas, Pennock, et al. 
1995, Card, Mackinlay, and Shneiderman 1999). Montello, Fabrikant, Ruocco, 
and Middleton (2003) have coined this principle the distance-similarity metaphor.
For example, according to the distance-similarity metaphor, US states depicted in
Figures 4.3 and 4.4 or conference abstracts shown in Figure 4.5 that are more 
similar to each other in content are placed closer to one another in the display, 
while spatialized items that are less similar in content are placed farther apart. In
essence, this distance-similarity metaphor is the inverse of Tobler’s (1970, p. 236)
first law of geography, because similarity typically determines distance in spatializa-
tions. Thus we have referred to the “first law of cognitive geography” (Montello,
Fabrikant, Ruocco, and Middleton 2003) – people believe that closer features are
more similar than distant features. To the extent that this principle is true, it pro-
vides theoretical justification for the distance-similarity metaphor as a principle of
spatialization design.

In a series of studies relating to point (Fabrikant 2001, Montello, Fabrikant, Ruocco,
and Middleton 2003), network (Fabrikant, Montello, Ruocco, and Middleton 2004),
region (Fabrikant, Montello, and Mark 2006), and surface display spatializations
(Fabrikant 2003) Fabrikant and colleagues have investigated whether the fundamental
assumption that spatialization can be intuitively understood as if they represent 
real-world spaces (Wise, Thomas, Pennock, et al. 1995, Card, Mackinlay, and
Shneiderman 1999) is generally true. These studies provide the first empirical evid-
ence of the cognitive adequacy of the distance-similarity metaphor in spatialization.
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In these studies, participants have rated the similarity between documents depicted as
points in spatialized displays. Four types of spatialization displays have been examined:
(1) point displays (e.g., Figures 4.3 and 4.4), (2) network displays linking the points
(e.g. Figures 4.1, 4.2 and 4.9), (3) black-and-white regions containing the points (e.g.
Figure 4.5), and (4) colored regions containing the points (Figure 4.10). In the point
displays, participants based judgments of the relative similarity of two pairs of docu-
ment points primarily on direct (straight-line or “as the crow flies”) metric distances
between points, but concentrations of points in the display led to the emergence of
visual features in the display, such as lines or clusters, that considerably moderated
the operation of the first law of cognitive geography. In the network displays, par-
ticipants based similarity judgments on metric distances along network links, even
though they also had available direct distances across network links and topological
separations (numbers of nodes or links connecting points). In the region displays,
participants based similarity judgments primarily on region membership so that com-
parison documents within a region were judged as more similar than documents
in different regions, even if the latter were closer in direct distance. Coloring the
regions produced thematically-based judgments of similarity that could strengthen or
weaken regional membership effects, depending on whether region hues matched
or not. In addition, Fabrikant and Montello (2004) also gained explicit information
on how similarity judgments directly compare to default distance and direct distance
judgments. There are no differences between people’s estimates of distance under
default (nonspecified) and direct (straight-line) distance instructions for point, net-
work, and region spatializations. Default distance instructions are interpreted 
as requests for estimates of direct distance in spatializations. They have also found
that well-known optical effects such as the vertical (Gregory 1987) and space-filling
interval illusion (Thorndyke 1981) affect distance judgments in spatializations and
therefore may affect the operation of the first law of cognitive geography.

Without empirical evidence from fundamental cognitive evaluations the identifica-
tion and establishment of solid theoretical foundations in spatialization will remain
one of the major research challenges (Catarci 2000). A solid theoretical scaffold 
is not only necessary for grounding the information visualization field on sound
science, but is also fundamental to deriving valid formalisms for cognitively ade-
quate visualization designs, effective graphical user interface implementations, and
their appropriate usability evaluation (Fabrikant and Skupin 2005).

Where Is Spatialization Going?

Spatialization addresses a need to make sense of the information contained in 
ever-growing digital data collections. There is considerable societal demand for the
types of methods discussed in this paper. This includes such obvious applications
as counter-terrorism work or the development of improved Web search engine 
interfaces. Telecommunications companies attempt to find patterns in millions of
phone calls through spatialization. Private industry also hopes to use spatialization
to detect emerging technological trends from research literature in order to gain 
a competitive advantage. Funding agencies would like to determine which research
grant applications show the most promise. In recent years there have been a growing
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number of events dedicated to the type of research within which spatialization is
prominently featured, organized by the National Academy of Sciences (Shiffrin and
Börner 2004), the National Institutes of Health, the National Security Agency, 
and other public and private entities.

This chapter demonstrates that spatialization may be applicable to both geo-
referenced and non-georeferenced phenomena, whenever n-dimensional data need
to be investigated in a holistic, visually engaging form. The involvement of GI 
scientists in spatialization activities does not have to be a one-way street in terms
of using spatialization within particular applications. GI Science is also beginning
to help answer fundamental questions with regards to how spatializations are con-
structed and used (Skupin, Fabrikant, and Couclelis 2002). Our understanding of
cognitive underpinnings, usability, and usefulness is still quite incomplete. The com-
putational techniques used for spatialization also need further investigation, especially
when it comes to developing methods for integrated treatment of the tri-space formed
by geographic, temporal, and attribute space. In summary, spatialization is an excit-
ing area in which GI Science is challenged to address important issues of theory
and practice for many different data and applications.
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