
Introduction

Geographic visual analytics (GVA) is a
highly interdisciplinary research field,
with tight links to different related

disciplines, and having needs and interests in
synthesizing information and deriving insights
from massive, dynamic, ambiguous, and often
heterogeneous data sources (Keim et al. 2006).
The scientific objective of GVA is to understand
how both individuals and teams carry out ana-
lytical reasoning and decision-making tasks

Marc Kramis, University of Konstanz, Department of Computer
and Information Science, Box V 519, 78457 Konstanz, Germany.
Tel: +49 7531 88-4734; Fax: +49 7531 88-3739. E-mail: <marc.
kramis@uni-konstanz.de>. Cedric Gabathuler, University
of Zurich, Department of Geography, Geographic Information
Visualization & Analysis, Winterthurerstrasse 190, 8057
Zurich, Switzerland. Tel: +41 44 635-5151; Fax: +41 44 635-
6848. E-mail: <cedric@geo.uzh.ch>. Sara Irina Fabrikant,
University of Zurich, Department of Geography, Geographic
Information Visualization & Analysis, Winterthurerstrasse 190,
8057 Zurich, Switzerland. Tel: +41 44 635-5150; Fax: +41 44
635-6848. E-mail: <sara.fabrikant@geo.uzh.ch>. Marcel
Waldvogel, University of Konstanz, Department of Computer
and Information Science, Box V 509, 78457 Konstanz, Germany.
Tel: +49 7531 88-4948; Fax: +49 7531 88-3739. E-mail:
<marcel.waldvogel@uni-konstanz.de>.

An XML-based Infrastructure to Enhance
Collaborative Geographic Visual Analytics

Marc Kramis, Cedric Gabathuler,
 Sara Irina Fabrikant, and Marcel Waldvogel

ABSTRACT: We propose a new, streamlined, two-step geographic visual analytics (GVA) workflow
for efficient data storage and access based on a native web XML database called TreeTank coupled
with a Scalable Vector Graphics (SVG) graphical user interface for visualization. This new storage
framework promises better scalability with rapidly growing datasets available on the Internet, while
also reducing data access and updating delays for collaborative GVA environments. Both improve
interactivity and flexibility from an end-user perspective. The proposed framework relies on a REST-
based web interface providing scalable and spatio-temporal read-write access to complex spatio-tem-
poral datasets of structured, semi-structured, or unstructured data. The clean separation of client
and server at the HTTP web layer assures backward compatibility and better extensibility. We discuss
the proposed framework and apply it on a prototype implementation employing world debt data.
The excellent compression ratio of SVG as well as its fast delivery to end users are encourageing
and suggest important steps have been made towards dynamic, highly interactive, and collaborative
geovisual analytics environments.

KEYWORDS: Geographic visual analytics, data storage and access, interoperability, web interface, XML,
SVG

Cartography and Geographic Information Science, Vol. 36, No. 3, 2009, pp. 281-293

based on complex information, and to use this
understanding to develop and assess informa-
tion and communication technologies for this
purpose (MacEachren et al. 2006).

Increasing the sizes and complexities of data sets
being collected, handled, and analyzed by visual
analytics experts calls for new cross-disciplinary
approaches (Andrienko et al. 2008). Efficient and
effective storage and exchange of very large and
complex distributed spatio-temporal databases is
not only an important enabler for GVA, but also a
research focus of the database research community
within computer science. While previously large
geographic datasets were typically of structured
alpha-numerical nature (i.e., remote sensing
images, census datasets, etc.) more recently GVA
researchers have had to work with a multivari-
ate mix of structured (relational) databases and
increasingly semi-structured (e.g., XML-based)
and unstructured (e.g., plain text) data sets, all
readily available on the Internet.

A flexible and dynamic data storage and access
infrastructure is especially needed when represent-
ing movement, dynamism, and change (Andrienko
et al. 2008). Ideally, GV analysts should have effi-
cient tools at hand for interactively access, rapidly
modify, exchange in real-time, or generate entirely
new representations on the fly from underlying

282 Cartography and Geographic Information Science

massive data sets, whenever the research context
requires it.

Today, GVA user interfaces establish the necessary
linkages between collected geographic datasets,
data representations stored in databases, as well
as with external (graphic) visualizations presented
to a user which interact with internal (mental)
representations. Ongoing technological develop-
ments provide continuously changing data types
(i.e., from tracking devices, LBS, sensor networks,
audio, etc.), which in turn require new data-han-
dling structures for efficient GVA.

According to MacEachren and Kraak (2001), one
of the challenges is to develop extensible methods
and tools that enable the understanding of, and
insights from, increasingly large and complex vol-
umes of geospatial data that are becoming readily
available. Scalability of GVA solutions has become
one of the bottlenecks when dealing with massive
databases.

Many different (server-side, client-side, hybrid)
data-handling approaches are already available for
Internet-based geographic information systems
(GIS), and their goal is to improve data access per-
formance (Chang and Park 2006). Each approach
has its specific advantages and disadvantages with
respect to data manipulation and management,
user interactivity, and the distribution of server-
side or client-side tasks (Chang and Park 2006;
Yao and Zou 2008). Scalability and the provision
of distributed collaboration varies significantly
with each approach.

One of the main challenges for highly interac-
tive and distributed GVA is the inherent potential
for media breaks when dealing with distributed
and diverse databases, thus reducing the potential
for knowledge discovery. For example, knowledge
might be disseminated through one media channel
(such as written communication) in the form of
emails or a journal article summarizing insights
from a database that is no longer directly accessible
from this particular media channel. Essentially,
the media break is enforced by the underlying
data infrastructure, as this infrastructure does
not natively support the dynamic adaptation of
large-scale data sets to various media channels.
Each media break within a collaborative research
context hinders knowledge discovery as it requires
the (manual) conversion of data from one format
to the next. The preparation, conversion, and
reviewing steps all require time and significant
computational resources when dealing with mas-
sive datasets. Consequently, real-time or interac-
tive collaborations over a network are severely
hindered.

This paper presents a data storage and a visual
access framework capable of dealing with large-
scale and frequently changing semi-structured
(XML-based) spatio-temporal data sets being
increasingly used in GVA research contexts. The
proposed GVA infrastructure enables analysts to
access and modify large and complex data sets
and rapidly display these changes in response
to user actions, thus enabling efficient and col-
laborative visual data exploration environments
(Andrienko et al. 2008).

Specifically, we propose an XML-based
infrastructure to reduce the potential number of
media breaks within geographic visual analytics. Our
infrastructure provides sound support to securely
store and quickly access dynamically changing data,
thereby providing adequate cognitive knowledge in
a scalable, web-based, and collaboration-oriented
way. We describe the underlying technology and
provide a case study to demonstrate its benefits.

The rest of this article is organized as follows.
The following section outlines the technological
research context and related work. Then comes
a description of the proposed GVA data storage
and access infrastructure, followed by a section
where we apply the implemented prototype to a
case study. The next section discusses our research
findings, highlighting opportunities and challenges
of the proposed approach. This is followed by a
concluding section which includes an outlook to
future work.

Background
Recent developments foster the integration of
data storage and display technologies in ways
not possible before. The (well designed) web-
based geovisualization display has become an
interface to massive, complex and distributed
databases that can support efficient information
access and knowledge construction.

The Open GIS Consortium has initiated web map-
ping interoperability initiatives and specifications
to develop interface specifications for geographic
data (OGC 2002). This includes the Geography
Markup Language (GML) encoding standard
to express geographic features (OGC 2007), or
the Web Feature Service (WFS) Implementation
Specification for retrieving geographic features
across the web (OGC 2005). In addition, geo-
graphic features stored in this fashion can be dis-
played using the Scalable Vector Graphics (SVG)
format, an open standard developed by the world
wide web Consortium (W3C) (Peng and Zhang

Vol. 36, No. 3 283

2004). SVG makes use of the eXtended Markup
Language (XML) to describe two-dimensional
geometric objects (points, lines, and polygons).
In Neumann and Winter (2001)’s words, XML
is the future core-technology for all upcoming
web standards.

Peng and Zhang (2004) have outlined the role of
GML, SVG, and WFS in building an Internet-based
geographic information system (GIS). Open issues
were in their opinion the compression of GML and
SVG files, seen also as the easiest issues to solve.
More complex open issues are the client-side SVG
user interface and data processing tools to assist
users as they interact with GML data. More recently,
Yao and Zou (2008) highlighted interoperability
challenges of Internet mapping tools based on
the open source approach. A core challenge is the
efficient transfer of data between relational and
object-oriented databases. For example, widely
used proprietary databases such as ESRI ArcSDE
or Oracle Spatial store geospatial information in
a long, binary data type in an unpublished format.
To access these data for display with SVG, an SQL
query is required. The traditional approach is to
deliver the requested data in a Standard Open
Format, e.g., an ESRI Generate File. An inter-
mediate data conversion step is then required
to generate the SVG document from the ESRI
Generate File, before it can be presented to the
user in the form of an easy-to-use graphical inter-
face (Dunfey et al. 2006).

According to Neumann and Winter (2001), data-
bases are easier to query or update while XML is
perfect for data exchange and archiving.

SVG displays can be constructed directly out of
(XML) database and be presented to a user for
interactive geovisualization and visual analytical
knowledge construction. SVG is optimized for
graphic rendering on the web. Features such as
vector display, animation, interactivity, transpar-
ency, graphic filter effects, shadows, lighting effects,
and easy editing are all provided with SVG (Yao
and Zou 2008). However, while SVG is eminently
suitable for graphic content delivery by providing
flexibility for user interactions (Neumann and
Winter 2001), one should recognize the problem
of missing topology for advanced spatial analysis
and such limitations in cartographic symbolization
as missing complex line styles.

Approach
We propose a web-based, flexible, and scalable
GVA framework using native, XML-based data
storage and back-end handling infrastructure

coupled with SVG at the system–user interface.
This GVA infrastructure provides analysts with
highly interactive GVA tools to support complex
data exploration and decision-making tasks. It
includes flexible data depiction, high computer–
user interaction, and collaboration over the web.

We favor SVG for our approach, as it allows
for rapid system development and prototyping,
provides fast response times for interactive query
requests, and supports efficient data interoperability
over networks (Yao and Zou 2008). Similarly to
Yao and Zou (2008) and Dunfey et al. (2006), we
expect that SVG will be supported natively in most
if not all web browsers, and thus no extra plug-ins
will be necessary.

We natively store SVG data in an XML-based
database, even though other authors have argued
against using SVG as basis for geovisualization
(Yao and Zou 2008), because it is not suitable for
securely and efficiently storing, managing, or deliv-
ering spatial data over the network. We argue
that TreeTank solves such problems as secure and
efficient storage, management, and network-based
data delivery. Another XML-based language, the
Geographic Markup Language, specifically targets
geographic data. Fortunately, SVG and GML are
highly compatible and can work in synergy. For
example, Yao and Zou (2008) convert GML-based
data to SVG before transmitting data to the client
for display.

We employ the representational state transfer
(REST) technology for queries to, and feature extrac-
tion from, our XML database. REST is a set of
network architecture principles which outline how
resources are defined and addressed. Practically
speaking, REST defines a simple and scalable
interface for exchanging resources over the Internet
using the HTTP protocol. Each resource must be
uniquely addressable through hypermedia links,
meeting a universal syntax. A well defined and
typically a small set of HTTP operations specifies
how to proceed with the obtained resource. The
basic operations are POST to create a resource,
GET to read a resource, PUT to update a resource,
and DELETE to remove a resource. The scalability
and unquestioned expressiveness of REST makes it
the interface of choice when it comes to handling
large-scale SVG data on a network. The clean sepa-
ration of client and server at the web layer (HTTP)
allows both sides to be independently implemented,
while drawing from state-of-the-art standardized
web technologies such as, Java, Ruby on Rails, or
Adobe Flex. In addition, REST is a bidirectional
interface both for querying and modifying the
requested resource (Fielding 2000).

284 Cartography and Geographic Information Science

Infrastructure
At the heart of our contribution lies the switch
to a native XML database capable to directly
store and emit fine-grained XML data. Unlike
traditional relational databases, native XML
databases do not store the XML data as char-
acter large objects (CLOB) and inherently know
about the XML structure and XML nodes. The
finer granularity allows answering complex que-
ries and extracting the stored XML in a scalable
fashion because there is no parsing and recon-
struction as required with character large objects.
In addition, most state-of-the-art native XML
databases support modifications of the stored
XML.

Our XML-based infrastructure consists of two
components, i.e., the web interface called Temporal
REST (Giannakaras and Kramis 2008), and the
TreeTank storage manager (code name Idefix) as
described by (Gruen et al. 2006). The two com-
ponents are connected to implement a two-step
workflow as follows:

An XQuery expression is issued to TreeTank
through Temporal REST;
TreeTank returns SVG through Temporal
REST.
In stark contrast to the traditional three-step

workflow based on relational spatial databases, the
intermediate data conversion step is eliminated,
i.e., there is no need for converting such a standard
open format as an ESRI Generate File into SVG.
The eliminated intermediate data conversion step
makes heavy use of CPU and IO, which contributes
to large end-to-end delay, thus virtually inhibiting
interactive Geographic Visual Analytics.

The two following subsections give an introduc-
tory overview of the involved technologies.

Temporal REST
While there exists a variety of solutions to access
XML resources over the web, there is—to our
knowledge—no generic and unified solution to
conveniently access:

The current revisions of the XML resource or
any subset thereof;
The full revision history of the XML resource
or any subset thereof; and
The full modification history of the XML
resource or any subset thereof.
We decided to work with XML as a fine-grained

tree of nodes and evolve this tree over time through
user modifications. As such, we realize that we
can access single nodes or whole sub-trees, i.e.,

•

•

•

•

•

XML fragments, within a temporal dimension in
a unified, scalable, and robust way.

Only if we consider the entire life cycle of an
XML resource, including the past revisions and
the (transaction-based) modification history, will
we get a complete idea of its true power. Notably,
collaboration processes frequently involve asyn-
chronous workflows. As such, the effectiveness of
the workflow largely depends on the ability to
highlight the modifications which took place during
the last (or any past) step of the workflow.

We use Temporal REST with its related proto-
col message exchanges to generically implement
our idea of exploiting web-based XML resources.
Based on the Pareto principle, our proposal is
simple enough for the average web application
developer and at the same time it is extensible
enough to be used with complex setups.

There are three different ways of accessing nodes
and subtrees (XML fragments) in an XML resource.
These include (1) the step-by-step tree naviga-
tion (XPath), (2) the query including joins and
other complex expressions (XQuery), and (3) the
ID-based random node access (DOM). Temporal
REST supports all three and complements them
with a temporal expression as described later. Note
that XPath is a subset of XQuery.

XML IDs enable the user to tag the XML document
and to quickly access the XML fragment. However,
most XML nodes are not tagged with such an XML
ID and hence not available for random access.
We suggest that at the least all element nodes are
tagged with a system-generated REST ID. Text
nodes or attributes are accessible through their
parent node. Other XML nodes such as comments
or processing instructions may be tagged by the
system on demand. One advantage of having the
system do the REST ID tagging is that REST ID
remains stable throughout subsequent revisions
and modifications, i.e., a node or its modifica-
tions can be accessed irrespective of the revision
or position in the tree. Another advantage is the
guarantee of the existence of an ID. The system
can make the REST IDs visible by tagging the
serialized XML with REST ID attributes bound
to the namespace of Temporal REST. Figure 1
shows how an example XML document is tagged
with REST IDs.

Each insertion operation assigns unique immu-
table REST IDs to all new element nodes. This
assignment is made by the back-end that stores
the XML, and it does not affect any existing user-
assigned XML IDs. REST IDs are numerical, and
they are incrementally assigned starting at one.
REST IDs do not necessarily need to be assigned

Vol. 36, No. 3 285

in document order and they must not change
once assigned to a node. In addition, we suggest
that REST IDs not be re-used, so as to minimize
confusion due to reassignments in future revisions.
Since deletions are less frequent than insertions
with most real-world workloads, the steadily shrink-
ing space of available IDs is considered to be a
negligible problem.

Each insertion, update, or deletion of an XML
node results in a modification event. Each new
revision event is assigned a timestamp, an author,
and a comment. Temporal REST communicates
modifications by encapsulating the modified node
within an item element. This element contains the
REST ID of the modified node as well as revision,
time stamp, author, and comment information.
As such, both the insertion and the deletion can
be considered as setting a node to a new value.
Deletion sets the node to the empty node. We
opted for this approach for two reasons. First, we
can streamline the transport of XML fragments
and modifications within the XQuery data model,
i.e., within a sequence of items. Second, the back-
end can combine the storage of the modification
event and the result of the modification.

The select operation allows the retrieval of a
sequence of items as defined by XQuery. Each item
either is an atomic value, or an XML node, or a
modification event. The selection can be query-based
or REST ID-based. Temporal REST will restrict the
execution domain of both the query and the REST
ID according to the temporal expression by either
selecting a point in time or a time period. While
a query may return a sequence of multiple items,
an access solely based on a REST ID will return a
sequence with at most one item. If the query and
REST ID approach are combined, the query treats
the node with the given REST ID as the root node
of the query. The query-based approach makes
it possible to add new query languages in the

future and express com-
plex queries, including
operations such as full-
text search or joins.
The REST ID-based
approach makes it pos-
sible to directly select
an item with optimal
performance because
the system does not
have to compile and
optimize the query.

The temporal expres-
sion must be enclosed
with round brackets ‘(‘
and ‘)’ and contain a

single point in time or a time period consisting of
two points in time separated by a dash ‘-‘. A point
in time can be a revision number, an ISO date in
short notation, i.e., without dashes or colons, or
nothing. If no date or revision is provided, the last
successfully committed revision is selected. Note
that the ISO date in short notation is compliant
with the specification of a URL. A single point
in time will retrieve the XML fragments as they
were at the given revision. The time period will
retrieve the modifications between (and includ-
ing) the two provided points in time in ascending
or descending order. Leaving out the temporal
expression automatically causes a fallback to the
last successfully committed revision for backward
compatibility. Table 1 shows the HTTP request and
response required to either select a single point in
time (Example 1) or a time period (Example 2).

A single node or a whole sub-tree can be inserted
either as the first child of an existing node or
as its right sibling. As such, the insert operation
requires a query selecting a number of nodes or
a REST ID besides the actual XML fragment to
complete the insertion. During the insertion pro-
cess, the back-end system will assign REST IDs
as described above. Note that the insertion of an
attribute must be made with the PUT operation
which changes the whole node.

A single node can be replaced with or without the
replacement of its sub-tree. Again, the updating
operation requires a query to select a number of
nodes to update or a REST ID. In addition, the
actual updated XML fragment has to be provided.
Restricting the effect of the update to the node
(not effecting its sub-tree), allows the insertion of
an attribute into an existing node without chang-
ing its whole sub-tree.

Whenever a node is deleted, the node and its
sub-tree are purged from the system (but not from

Figure 1. Each XML node gets its own ID.

286 Cartography and Geographic Information Science

the past revisions). The dele-
tion operation requires a query
or a REST ID to select the
nodes to delete.

TreeTank
We tried to implement
Temporal REST on top of exist-
ing open and closed source
technologies. Unfortunately,
it turned out that there was
no file system, no relational
database, and no native XML
database to efficiently support
all our requirements at once.
All systems struggled with the
combination of large-scale,
heterogeneous, and revision-
based data. In fact, it was pos-
sible to mimic the revisioning
feature, i.e., to keep past revi-
sions for given data. However,
the resource consumption
with respect to disk, memory,
and CPU already exceeded
the capabilities of state-of-the-
art systems even for data sets far smaller than a
single gigabyte. Eventually, we decided to imple-
ment our own system to overcome these limita-
tions and called it TreeTank. Three systems mainly
influenced our work on TreeTank. The ZFS (Sun
Microsystems, Inc. 2004) file system handles trans-
actions and snapshots but still operates at file-level
granularity, which is far too coarse for small-grained
XML data. The revision control system Mercurial
brought along Revlog (Mackall 2006), a space-effi-
cient method to store all past revisions—again only
at file-level granularity. XPathAccelerator (Grust
2002) inspired the low-level XML encoding of
TreeTank as it makes it possible to work efficiently
with read-only large-scale heterogeneous data sets.

TreeTank is a native XML database designed
to provide scalable read and write access to XML
data. TreeTank concurrently allows multiple read
transactions and a single write transaction each of
which creates a new revision per transaction commit.
TreeTank was designed to be secure and easy to
maintain. The scalability of TreeTank results from
the concurrent use of resources such as processing
and storage units and from the design of the main
internal data structure to store the XML tree.

The decision to only support a single write trans-
action at any time makes it possible to run any
number of processes concurrently, accessing any

past revisions or modifications. The newly modi-
fied data are clearly separated and only become
visible after the last successful transactional commit
to processes different from the write transaction
process. If multiple users want to work on the same
XML tree at the same time, a transaction man-
ager is required to coordinate, i.e., sequentialize
the changes, or a workflow has to be established
stating clearly when each user is allowed to work
and what he or she can do. Alternatively, a locking
scheme has to be established which may follow an
optimistic or pessimistic locking policy. However,
it turns out, that in many real-world use cases, only
a single user is working on a given part of the
tree at any time, or that the natural workflow of a
team working with XML data resolves modification
conflicts before they even could appear.

The data model of TreeTank was intentionally
chosen to be equal to the data model of Temporal
REST (see Figure 2). Each XML resource, i.e.,
an SVG file, is bound to a session. The session is
allowed to start transactions. Read-only transac-
tions support two different selection modes. The
first selection mode makes it possible to answer
the question of what the data looked like at a given
point in time. The second selection mode leads
to an answer to the question of what changed
between two different points in time. A write trans-
action can select the last successfully committed

HTTP Request HTTP Response

1 GET http://../document/(1)?//para/text()

<?xml version=’1’?>
<rest:response xmlns:rest=’REST’>
<rest:sequence rest:revision=’1’>

<rest:item>
Joe is happy.

</rest:item>
</rest:sequence>
</rest:response>

1 GET

http://../document/(2-3)

<?xml version=’1’?>
<rest:response xmlns:rest=’REST’>

<rest:sequence>
<rest:item rest:revision=’2’>

<para rest:id=’3′>
Mike is happy.

</para>
</rest:item>
<rest:item

rest:revision=’3′
rest:item=’2’/>

</rest:sequence>
</rest:response>

Table 1. Two example REST request and response pairs. Example 1 retrieves an
XML sub-tree at revision one. Example 2 retrieves the modifications on the whole
document during revisions two and three.

Vol. 36, No. 3 287

point in time and modify it. Note that TreeTank
currently does not support checkpoints within a
single write transaction, i.e., the modifications on
an XML tree are made persistent at once during
the commit operation. A rollback can revert the
XML tree to any past revision.

The data structure of TreeTank was optimized
for updates. At most three directly related nodes
must be updated whenever a single node or sub-
tree is modified. Only the modified nodes are
stored on disk in a compressed page. Note that
traditional databases usually store the whole page
(which may potentially contain dozens of nodes)
even though only a single node may have changed.
Still, care has to be taken that reads do not have
to collect a huge number of scattered changes to
reconstruct a single page. We opt to intermittently
store a snapshot of the whole page to also support
reads with reasonable performance. Compressing
all pages, storing only the page modifications, and
intermittently storing snapshots of the pages all
help to reduce the storage requirements by one
order of magnitude. As a result, TreeTank does not
consume significantly more space and it can swiftly
reconstruct any past state or modification.

Security is not a choice with TreeTank—it is
always activated. Care was taken to implement
only time-proven cryptographic primitives with
sufficient key lengths and well chosen cryptographic
modes so as not to create a weak link which could
be attacked to break the whole system. TreeTank
encrypts all compressed pages before they are
stored on disk. This guarantees the confidentiality
of the stored XML tree, even if the TreeTank files
are exposed to the public or transferred through
insecure networks. Besides the encryption, a strong
message authentication code is derived from each
compressed page and stored with a reference to
the page. As each reference contains the message
authentication code of all its children, the integrity
and authenticity of the whole TreeTank can be veri-
fied recursively. The root message authentication
code can be securely signed and further secured
by an external secure time stamping mechanism,
which also ensures that modifications cannot

be denied. The
availability of
TreeTank can
be guaranteed
on the applica-
tion level by a
mas ter–s lave
replication which
consumes very
little network
bandwidth and

is perfectly suited for geographically distributed
operations. The master–slave setup ensures that
all modifications applied to the master are syn-
chronously or asynchronously propagated to the
slave. The tight integration of security enables
storage of sensitive data in the TreeTank. This is
especially important because visualizations are
usually based on large data sets collected from the
internal operation of an organization or project
and must not be exposed to the public.

Preliminary measurements on a state-of-the-art
desktop computer show two significant advantages
of TreeTank. First, it compresses the original XML
data while storing it in its native data structure.
Second, it enables a fast retrieval of the original
XML. The promising preliminary results of the
compression and time measurements for three
SVG files of different sizes are as follows:

The size of the TreeTank is up to ten times
smaller than the original SVG file and
TreeTank can deliver the original SVG data up
to twenty times faster than a relational data-
base with spatial extensions.
The excellent compression ratio is due to the
verbosity of SVG.
The time of the data conversion step alone
(excluding the time to retrieve the original
data from the spatial database) takes much
longer than the time required to retrieve the
whole SVG from TreeTank.

Case Study
In this section, we provide a case study to dem-
onstrate not only the feasibility but also the
significant benefit a user can gain from our
infrastructure. Most importantly, we want to
build a mindset for designing and using our
infrastructure because it is notably different
from traditional workflows both on the technical
and application levels. With our infrastructure,
the user can organize and later modify the data
in the XML tree, as he or she likes. He can mix

•

•

•

Figure 2. The data model of Temporal REST and TreeTank. Note that each item consists of an XML
fragment, i.e., a value, an XML node, or a whole XML sub-tree.

288 Cartography and Geographic Information Science

document-centric sub-trees containing informa-
tion, e.g., in the OpenDocument format, with
sub-trees compliant with ready-to-visualize SVG
data, as well as data-centric statistical informa-
tion. Figure 3 shows a typical setup of our XML-
based infrastructure.

In this case study, we build an example TreeTank
of gross external debt positions in U.S.$ per person.
This information is available on a quarterly basis
(Worldbank 2008) and perfectly suited to illustrating
how a team can create sophisticated visualizations
based on a set of statistical data. Four revisions of
the visualization can be seen in Figure 4.

Note that the TreeTank is exposed to authorized
users through a web service running Temporal REST.
While we intentionally present a basic example,
our infrastructure can deal with any large-scale
heterogeneous data as long as the data can be
transformed into XML.

The first step is to convert the Excel-based sta-
tistical information into a data-centric XML. This
is a straightforward step and only required if the
original data are not available as XML. The result-
ing XML can be directly imported into TreeTank
by inserting the whole XML document through
Temporal REST. We can now query Temporal
REST to extract the whole document or any sub-
tree therein.

For the second step, we need an SVG representa-
tion of the world with all countries. One can rely
on open source SVG world maps or retrieve an
individually configured world map from a tradi-
tional relational spatial database, depending on
requirements. To keep the statistical data sepa-

rate from the SVG data, we insert the new node
statistic as the parent of the statistical XML data.
Then, we insert a new node geodata as the right
sibling of statistic and group the two nodes statistic
and geodata under the third new node example.
We then insert the whole SVG data under the
node geodata. Hence, we can retrieve the plain
statistical data by selecting the sub-tree rooted
at statistic or visualize the world map within any
SVG-enabled web browser by selecting the sub-
tree rooted at geodata. To combine the statistical
data with the visualization, we have to make sure
that both sub-trees store the ISO country codes
for each country. If this is not already the case, we
can update each country in each sub-tree. Note
that most SVG-based world maps will separately
store an SVG path for each country.

Meanwhile, we created a set of revisions, each
consisting of a Temporal REST modification request.
At any time, we can retrieve an older revision or
list the modifications applied to past revisions.
This is convenient, if one wants to know what
changed, e.g., in the sub-tree under geodata. It is
also assuring to know, because one can revert the
tree to a past revision if an unintended modifica-
tion took place. At no time, data are overwritten or
lost. Furthermore, the author of the changes can
provide commit comments with each Temporal
REST modification request to document his inten-
tions and the evolution of the tree.

We prepare the visualization of statistical informa-
tion by defining value ranges and color schemes
for each value range. Then, we add the color infor-
mation as an XML attribute to each element in

Figure 3. A typical setup of our XML-based infrastructure. Server and client exchange SVG/XML data with HTTP-based
Ajax technology.

Vol. 36, No. 3 289

a)

b)

c)

d)

Figure 4. TreeTank of
gross external debt. a)
The SVG sub-tree with
the map of the world and
a description box. Figure
4b) The gross external
debt positions in U.S.$ per
person for the year 2006;
third quarter. Figures 4c)
and Figure 4d) show the
same information for the
years 2007 and 2008;
third quarter, respectively.

290 Cartography and Geographic Information Science

the statistic sub-tree based on the statistical value
and make sure that the statistical information is
grouped in sub-trees for each year and within the
years for each quarter. Next, we add the SVG ele-
ments to the geodata sub-tree required to draw a
box displaying the color scheme and value ranges.
To better support layering in SVG, we group the
SVG elements required to draw the box under the
XML element description and then group the SVG
path elements required to draw the world map
under the XML element worldmap. This step helps
to interactively enable or disable layers and can
later be extended to support, e.g., layers contain-
ing water bodies, charts, or other GUI elements
required for improved and convenient user inter-
action. To prepare the coloring of the countries
according to the selected statistical data, we add
the appropriate SVG color attribute to each path
element. Finally, we add a SVG GUI element under
geodata, which enables us to interactively select a
quarter of the year.

The actual procedure to color the world map
according to the selection can either be imple-
mented with an XQuery expression issued through
Temporal REST or with JavaScript on the client
side. If XQuery is chosen, one must select both
the statistic and the geodata sub-trees and then set
the color attribute of the SVG path elements to
the color attribute of the statistical data by joining
them by country code. When JavaScript is preferred,
both the geodata and the sub-tree containing the
statistical information for the selected quarter have
to be transferred to the client and then joined
together by looping through all countries and
setting their color to the color value found in
the statistical data. Note that the statistical data
can be reloaded efficiently and on demand with
Ajax technology.

The main differences between the XQuery and
the JavaScript variant is the location where work
is done (i.e., on the client or the server side) and
the amount of data that has to be transferred
over the network. In the case of XQuery, the join
is calculated on the server side for each request.
Then the result is transferred to the client and
immediately visualized. In the case of JavaScript,
large amounts of data have to be transferred to the
client for the first request in order to calculate and
visualize the join. For later requests, only the new
statistical data are transferred, joined, and visual-
ized. Thus, JavaScript is the better choice if the
workload consists of multiple selections for different
quarters. However, note that current JavaScript
runtime environments are so slow that the XQuery
variant might be faster even though all data for

the visualization have to be transferred for each
request. This may change in the near future sd
most JavaScript runtime environments are cur-
rently undergoing major rewrites to speed them
up significantly.

An alternative to the method of joining pre-cal-
culated persistent coloring information with the
map is the purely dynamic calculation depend-
ing on the current user requirements. Again, the
calculation can be performed on the server or
on the client side, with the same advantages and
limitations as noted for the join method.

Figure 5 gives an additional example of laying
out GUI elements with SVG (including a sample
chart). The GUI elements of interest are the revi-
sion slider, the map layer control, and the search
field. All events are handled by JavaScript which
uses Ajax technology to fetch missing data from
the Temporal REST web service. The JavaScript
itself is embedded in CDATA sections of the XML.
In our view, this is not the most elegant way to
store JavaScript in CDATA sections. However it
is a straightforward and practical solution, which
automatically guarantees the revision of the appli-
cation code itself. There already are technologies
such as the XML user interface language (XUL) or
Adobe Flex which describe GUIs and their interac-
tions based on pure XML. More work is however
needed before these solutions can be included in
off-the-shelf web browsers.

We have shown that the XML tree can be grown
exactly according to the user’s demand. All rel-
evant data sources can gradually be integrated
with TreeTank and then queried and further modi-
fied from within one single infrastructure. While
the last paragraphs only considered a single user
performing the modifications, we describe the
collaboration of multiple users collectively work-
ing on the same TreeTank in the next paragraphs.
Note that each user can modify the XML tree
and add more statistical data or visualization ele-
ments as described before. As any professional
publication or authoring workflow, it is important,
however, that each user behaves according to a
policy. With TreeTank and Temporal REST, this
means that concurrent modifications have to be
done in disjoint sub-trees.

While the current version of TreeTank does not
provide a facility to enforce this behavior, it can be
implemented technically on the application layer
or non-technically in the organizational structure.
We suggest a hierarchical responsibility delega-
tion scheme, such that at any time, one author
(person or process) is responsible for a given sub-

Vol. 36, No. 3 291

tree unless he or she delegates a descendant to
someone else with the option to revoke.

This scheme can be extended by a nonhierarchi-
cal access-control-list-based (ACL-based) scheme if
required. To clarify the hierarchical responsibility
delegation scheme, we imagine a situation where
author A1 adds more statistical data each quarter,
author A2 works on the SVG-based GUI and color
schemes (Brewer 1994), and author A3 links the
visualizations to scatter plots or other statistical
graphics (Andrienko and Andrienko 1999). One
possible hierarchical delegation then is as follows.
The owner of the TreeTank delegates statistics to
A1 and geodata to A2. A2 creates a new node charts
and delegates it to A3. Then, all three authors
concurrently modify the tree and will never cause
isolation conflicts such as lost writes or dirty reads
as they are stated in the ACID model, which is
one of the oldest and most important concepts
of database theory. Lost writes are prohibited by
design because each author works in his respon-
sibility domain, i.e., a dedicated sub-tree. Dirty
reads are avoided because each author will only

see successfully committed changes and has the
option to query the tree as it was at a given, fixed
revision. Whenever the user wants to switch to a
newer revision, he or she first checks for modifica-
tions on the sub-trees of interest and whether they
impact his own work, e.g., introduce an inconsis-
tency because the color attributes were dropped.
Finally the user can adapt his or her part of the
tree to the modifications.

Discussion
The findings from the case study open a wealth
of opportunities for the end-user as well as an
array of research challenges. The immediate
benefit of our XML-based infrastructure is the
very efficient use of processing and storage
resources. Much more user requests can be han-
dled per time unit, and the degree of interactiv-
ity is dramatically improved as the user actions
are no longer a matter of minutes but seconds.
Both throughput and interactivity are essential

Figure 5. An example of a rich SVG GUI providing a chart and extended end-user input facilities. Note that this additional
SVG sub-tree could be plugged-in seamlessly with the existing TreeTank.

292 Cartography and Geographic Information Science

for collaboration-oriented environments where
end-users are used to interact in an asynchro-
nous as well as a synchronous fashion. The sup-
port for the evolutionary growth of tree (XML)
data structures as well as the ability to store and
query statistical and SVG data, side-by-side,
help to reduce unnecessary media breaks which
hinder the dissemination of (visually) discovered
knowledge.

The research challenges are manifold. One chal-
lenge is to find and categorize tree structure and
tree design patterns. Our infrastructure makes it
possible to store huge amounts of unstructured
data in a single TreeTank. Without patterns, the
TreeTank could end up being a junk room where
everything is contained but rarely something can
be found in time. Hand in hand with the patterns
comes the question of how best to organize and
manage the concurrent access of multiple users
assuming changing roles. In our case study, we
suggested an organization form natural for tree-
based data structures. But there may be other
more efficient solutions. As with the tree structure
and tree design patterns, the collaboration-ori-
ented (authoring) workflows have to be collected,
categorized, implemented, and tested with real
teams. From a technical point of view, the challenge
arises to integrate various indices with TreeTank
to speed up specialized queries such as full text
queries or spatial queries on rasterized data.
While the server side can be further speeded up
with the help of indices, the client side GUI and
JavaScript environments still need to be revised to
unleash the processing power of modern desktop
or notebook computers. The GUI functionality
of browsers and SVG plug-ins is not yet on par
with native applications. Even the extensive use
of Ajax and JavaScript does not hide the current
shortcomings.

The case study made the assumption that there
are multiple users but only one single TreeTank.
When multiple teams concurrently grow their
data structures in independent TreeTanks, the
issue is how all these distributed TreeTanks can
be integrated into one unified storage. While our
infrastructure solves this by integrating different
data sets into one tree, it does not yet provide sup-
port for integrating multiple trees into a forest.

Conclusion
We propose a new streamlined two-step GVA

workflow for efficient data storage and access based
on our native web-based XML database TreeTank

and couple it with an SVG graphical user interface
for visualization. Not only does our XML-based
infrastructure substantially reduce access delays
due to the elimination of intermediary data format
conversion steps. Rather, it extends the user’s options
by providing significantly better scalability, inherent
data security, and, most importantly, the ability to
collaboratively work in GVA environments thanks
to optimized update support. With up to twenty
times shorter data access delays and up to one
tenth of the traditional storage requirements, our
infrastructure improves interactivity and flexibility
from an end-user perspective.

Furthermore, our infrastructure suggests a para-
digm shift leaving behind dispersed disconnected
data sets and media breaks and introduces a tightly
integrated unified storage for complex spatio-tem-
poral datasets of structured, semi-structured, or
unstructured data. The clean separation of client
and server at the HTTP web layer assures backward
compatibility and better extensibility. Future work
will focus on fully implementing the latest XML
query facilities such as XQuery, XQuery Update,
and XQuery Full Text to give the end-user state-of-
the-art tools with which to query large-scale data
sets. Especially the full-text feature will further
improve the value of our infrastructure for the
collaboration-oriented end-user because he or she
can freely search in all comments and documents
stored along with the spatio-temporal data. We
also plan to investigate how to most efficiently
distribute TreeTank for even better scalability.

ACKNOWLEDGMENTS
This work was supported by DFG Research
Training Group GK-1042 “Explorative Analysis
and Visualization of Large Information Spaces”
at University of Konstanz in Germany. We are
grateful to Georgios Giannakaras who created a
fully working case study as well as the world map
figures during his master thesis at the University
of Konstanz.

REFERENCES
Andrienko, G.L., and N.V. Andrienko. 1999. Interactive

maps for visual data exploration. International Journal
of Geographical Information Science 13(4): 355-74.

Andrienko, G.L., N.V. Andrienko, J. Dykes, S.I.
Fabrikant, and M. Wachowicz. 2008. Geovisualization
of dynamics, movement and change: Key issues and
developing approaches in visualization research.
Information Visualization 7(3): 173-80.

Brewer, C.A. 1994. Color use guidelines for mapping and
visualization. In: MacEachren, A.M., and D.R.F. Taylor

http://www.ingentaconnect.com/content/external-references?article=1365-8816()13L.355[aid=964556]
http://www.ingentaconnect.com/content/external-references?article=1365-8816()13L.355[aid=964556]
http://www.ingentaconnect.com/content/external-references?article=1473-8716()7L.173[aid=8747219]

Vol. 36, No. 3 293

management, designing technologies to meet real-
world needs. In: Proceedings of the 2006 International
Conference on Digital Government Research, volume
151 of ACM International Conference Proceedings
Series. New York, New York:ACM Press. pp. 71-72.

Neumann, A., and A. Winter. 2001. Time for SVG-
towards high-quality interactive web-maps. In:
Proceedings of the 20th International Cartographic
Conference, Beijing, China. pp. 2349-62.

OGC. 2002. Overview of OGC’s interoperability
program. [http://portal.opengeospatial.org/files/
?artifact_id=6196; accessed November 10, 2008].

OGC. 2005. Web feature service implementation
specification. [http://portal.opengeospatial.org/files/
?artifact_id=8339; accessed November 10, 2008].

OGC. 2007. OpenGIS geography markup
language (GML) encoding standard. [http://
www.opengeospatial.org/standards/gml; accessed
November 10, 2008].

Peng, Z.R., and C. Zhang. 2004. The roles of geography
markup language (GML), scalable vector graphics
(SVG), and web feature service (WFS) specifications
in the development of Internet geographic
information systems (GIS). Journal of Geographical
Systems 6(2): 95-116.

Sun Microsystems, Inc. 2004. ZFS: The last word in file
systems. [http://www.sun.com/2004-0914/feature/;
accessed November 10, 2008].

Worldbank. 2008. The Worldbank data & research.
[http://econ.worldbank.com; accessed November
10, 2008].

Yao, X., and L. Zou. 2008. Interoperable internet
mapping: An open source approach. Cartography
and Geographic Information Science 35(4): 279-93.

(eds). Visualization in Modern Cartography, Tarrytown,
New York:Elsevier Science Inc. pp. 123-47.

Chang, Y.S., and H.D. Park. 2006. XML web service-
based development model for GIS applications.
International Journal of Geographical Information
Science 20(4): 371-99.

Dunfey, R.I., B.M. Gittings, and J.K. Batcheller.
2006. Towards an open architecture for vector GIS.
Computers & Geosciences 32: 1720-32.

Fielding, R.T. 2000. Architectural styles and the design
of network-based software architectures. PhD thesis,
University of California, Irvine, California.

Giannakaras, G., and M. Kramis. 2008. Temporal
REST—How to really exploit XML. IADIS
International Conference WWW/Internet, Freiburg,
Germany.

Gruen, C., A. Holupirek, M. Kramis, M. Scholl, and M.
Waldvogel. 2006. Pushing XPath accelerator to its
limits. In: Proceedings of the First International Workshop
on Performance and Evaluation of Data Management
Systems (EXPDB 2006), Chicago, Illinois, USA.

Grust, T. 2002. Accelerating XPath location steps. In:
Proceedings of the 2002 ACM SIGMOD international
conference on management of data, Madison, Wisconsin.
pp. 109-20.

Keim, D.A., F. Mansmann, J. Schneidewind, and H.
Ziegler. 2006. Challenges in visual data analysis. In:
Information Visualization (IV’06), Tenth International
Conference on Information Visualisation, London,
England. pp. 9-16.

Mackall, M. 2006. Towards a better SCM: Revlog
and mercurial. In: Ottawa Linux Symposium, Ottawa,
Ontario, Canada.

MacEachren, A., and M.J. Kraak. 2001. Research
challenges in geovisualization. Cartography and
Geographic Information Science 28(1): 3-12.

MacEachren, A., G. Cai, M. McNeese, R. Sharma,
and S. Fuhrmann. 2006. GeoCollaboration crisis

http://www.ingentaconnect.com/content/external-references?article=1435-5930()6L.95[aid=8889553]
http://www.ingentaconnect.com/content/external-references?article=1435-5930()6L.95[aid=8889553]
http://www.ingentaconnect.com/content/external-references?article=1523-0406()35L.279[aid=8889552]
http://www.ingentaconnect.com/content/external-references?article=1523-0406()35L.279[aid=8889552]
http://www.ingentaconnect.com/content/external-references?article=1365-8816()20L.371[aid=8889551]
http://www.ingentaconnect.com/content/external-references?article=1365-8816()20L.371[aid=8889551]
http://www.ingentaconnect.com/content/external-references?article=0098-3004()32L.1720[aid=8889550]
http://www.ingentaconnect.com/content/external-references?article=1523-0406()28L.3[aid=8316951]
http://www.ingentaconnect.com/content/external-references?article=1523-0406()28L.3[aid=8316951]
http://portal.opengeospatial.org/files/?artifact_id=6196
http://portal.opengeospatial.org/files/?artifact_id=8339
http://portal.opengeospatial.org/files/?artifact_id=8339
http://www.opengeospatial.org/standards/gml
http://www.opengeospatial.org/standards/gml
http://www.sun.com/2004-0914/feature/
http://econ.worldbank.com
http://portal.opengeospatial.org/files/?artifact_id=6196

