
Introduction

Geographic visual analytics (GVA) is a 
highly interdisciplinary research field, 
with tight links to different related 

disciplines, and having needs and interests in 
synthesizing information and deriving insights 
from massive, dynamic, ambiguous, and often 
heterogeneous data sources (Keim et al. 2006). 
The scientific objective of GVA is to understand 
how both individuals and teams carry out ana-
lytical reasoning and decision-making tasks 
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based on complex information, and to use this 
understanding to develop and assess informa-
tion and communication technologies for this 
purpose (MacEachren et al. 2006).

Increasing the sizes and complexities of data sets 
being collected, handled, and analyzed by visual 
analytics experts calls for new cross-disciplinary 
approaches (Andrienko et al. 2008). Efficient and 
effective storage and exchange of very large and 
complex distributed spatio-temporal databases is 
not only an important enabler for GVA, but also a 
research focus of the database research community 
within computer science. While previously large 
geographic datasets were typically of structured 
alpha-numerical nature (i.e., remote sensing 
images, census datasets, etc.) more recently GVA 
researchers have had to work with a multivari-
ate mix of structured (relational) databases and 
increasingly semi-structured (e.g., XML-based) 
and unstructured (e.g., plain text) data sets, all 
readily available on the Internet.

A flexible and dynamic data storage and access 
infrastructure is especially needed when represent-
ing movement, dynamism, and change (Andrienko 
et al. 2008). Ideally, GV analysts should have effi-
cient tools at hand for interactively access, rapidly 
modify, exchange in real-time, or generate entirely 
new representations on the fly from underlying 
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massive data sets, whenever the research context 
requires it.

Today, GVA user interfaces establish the necessary 
linkages between collected geographic datasets, 
data representations stored in databases, as well 
as with external (graphic) visualizations presented 
to a user which interact with internal (mental) 
representations. Ongoing technological develop-
ments provide continuously changing data types 
(i.e., from tracking devices, LBS, sensor networks, 
audio, etc.), which in turn require new data-han-
dling structures for efficient GVA.

According to MacEachren and Kraak (2001), one 
of the challenges is to develop extensible methods 
and tools that enable the understanding of, and 
insights from, increasingly large and complex vol-
umes of geospatial data that are becoming readily 
available. Scalability of GVA solutions has become 
one of the bottlenecks when dealing with massive 
databases.

Many different (server-side, client-side, hybrid) 
data-handling approaches are already available for 
Internet-based geographic information systems 
(GIS), and their goal is to improve data access per-
formance (Chang and Park 2006). Each approach 
has its specific advantages and disadvantages with 
respect to data manipulation and management, 
user interactivity, and the distribution of server-
side or client-side tasks (Chang and Park 2006; 
Yao and Zou 2008). Scalability and the provision 
of distributed collaboration varies significantly 
with each approach.

One of the main challenges for highly interac-
tive and distributed GVA is the inherent potential 
for media breaks when dealing with distributed 
and diverse databases, thus reducing the potential 
for knowledge discovery. For example, knowledge 
might be disseminated through one media channel 
(such as written communication) in the form of 
emails or a journal article summarizing insights 
from a database that is no longer directly accessible 
from this particular media channel. Essentially, 
the media break is enforced by the underlying 
data infrastructure, as this infrastructure does 
not natively support the dynamic adaptation of 
large-scale data sets to various media channels. 
Each media break within a collaborative research 
context hinders knowledge discovery as it requires 
the (manual) conversion of data from one format 
to the next. The preparation, conversion, and 
reviewing steps all require time and significant 
computational resources when dealing with mas-
sive datasets. Consequently, real-time or interac-
tive collaborations over a network are severely 
hindered.

This paper presents a data storage and a visual 
access framework capable of dealing with large-
scale and frequently changing semi-structured 
(XML-based) spatio-temporal data sets being 
increasingly used in GVA research contexts. The 
proposed GVA infrastructure enables analysts to 
access and modify large and complex data sets 
and rapidly display these changes in response 
to user actions, thus enabling efficient and col-
laborative visual data exploration environments 
(Andrienko et al. 2008).

Specifically, we propose an XML-based 
infrastructure to reduce the potential number of 
media breaks within geographic visual analytics. Our 
infrastructure provides sound support to securely 
store and quickly access dynamically changing data, 
thereby providing adequate cognitive knowledge in 
a scalable, web-based, and collaboration-oriented 
way. We describe the underlying technology and 
provide a case study to demonstrate its benefits. 

The rest of this article is organized as follows. 
The following section outlines the technological 
research context and related work. Then comes 
a description of the proposed GVA data storage 
and access infrastructure, followed by a section 
where we apply the implemented prototype to a 
case study. The next section discusses our research 
findings, highlighting opportunities and challenges 
of the proposed approach. This is followed by a 
concluding section which includes an outlook to 
future work.

Background
Recent developments foster the integration of 
data storage and display technologies in ways 
not possible before. The (well designed) web-
based geovisualization display has become an 
interface to massive, complex and distributed 
databases that can support efficient information 
access and knowledge construction.

The Open GIS Consortium has initiated web map-
ping interoperability initiatives and specifications 
to develop interface specifications for geographic 
data (OGC 2002). This includes the Geography 
Markup Language (GML) encoding standard 
to express geographic features (OGC 2007), or 
the Web Feature Service (WFS) Implementation 
Specification for retrieving geographic features 
across the web (OGC 2005). In addition, geo-
graphic features stored in this fashion can be dis-
played using the Scalable Vector Graphics (SVG) 
format, an open standard developed by the world 
wide web Consortium (W3C) (Peng and Zhang 
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2004). SVG makes use of the eXtended Markup 
Language (XML) to describe two-dimensional 
geometric objects (points, lines, and polygons). 
In Neumann  and Winter (2001)’s words, XML 
is the future core-technology for all upcoming 
web standards.

Peng and Zhang (2004) have outlined the role of 
GML, SVG, and WFS in building an Internet-based 
geographic information system (GIS). Open issues 
were in their opinion the compression of GML and 
SVG files, seen also as the easiest issues to solve. 
More complex open issues are the client-side SVG 
user interface and data processing tools to assist 
users as they interact with GML data. More recently, 
Yao and Zou (2008) highlighted interoperability 
challenges of Internet mapping tools based on 
the open source approach. A core challenge is the 
efficient transfer of data between relational and 
object-oriented databases. For example, widely 
used proprietary databases such as ESRI ArcSDE 
or Oracle Spatial store geospatial information in 
a long, binary data type in an unpublished format. 
To access these data for display with SVG, an SQL 
query is required. The traditional approach is to 
deliver the requested data in a Standard Open 
Format, e.g., an ESRI Generate File. An inter-
mediate data conversion step is then required 
to generate the SVG document from the ESRI 
Generate File, before it can be presented to the 
user in the form of an easy-to-use graphical inter-
face (Dunfey et al. 2006).

According to Neumann and Winter (2001), data-
bases are easier to query or update while XML is 
perfect for data exchange and archiving. 

SVG displays can be constructed directly out of 
(XML) database and be presented to a user for 
interactive geovisualization and visual analytical 
knowledge construction. SVG is optimized for 
graphic rendering on the web. Features such as 
vector display, animation, interactivity, transpar-
ency, graphic filter effects, shadows, lighting effects, 
and easy editing are all provided with SVG (Yao 
and Zou 2008). However, while SVG is eminently 
suitable for graphic content delivery by providing 
flexibility for user interactions (Neumann and 
Winter 2001), one should recognize the problem 
of missing topology for advanced spatial analysis 
and such limitations in cartographic symbolization 
as missing complex line styles.

Approach
We propose a web-based, flexible, and scalable 
GVA framework using native, XML-based data 
storage and back-end handling infrastructure 

coupled with SVG at the system–user interface. 
This GVA infrastructure provides analysts with 
highly interactive GVA tools to support complex 
data exploration and decision-making tasks. It 
includes flexible data depiction, high computer–
user interaction, and collaboration over the web.

We favor SVG for our approach, as it allows 
for rapid system development and prototyping, 
provides fast response times for interactive query 
requests, and supports efficient data interoperability 
over networks (Yao and Zou 2008). Similarly to 
Yao and Zou (2008) and Dunfey et al. (2006), we 
expect that SVG will be supported natively in most 
if not all web browsers, and thus no extra plug-ins 
will be necessary.

We natively store SVG data in an XML-based 
database, even though other authors have argued 
against using SVG as basis for geovisualization 
(Yao and Zou 2008), because it is not suitable for 
securely and efficiently storing, managing, or deliv-
ering spatial data over the network. We argue 
that TreeTank solves such problems as secure and 
efficient storage, management, and network-based 
data delivery. Another XML-based language, the 
Geographic Markup Language, specifically targets 
geographic data. Fortunately, SVG and GML are 
highly compatible and can work in synergy. For 
example, Yao and Zou (2008) convert GML-based 
data to SVG before transmitting data to the client 
for display.

We employ the representational state transfer 
(REST) technology for queries to, and feature extrac-
tion from, our XML database. REST is a set of 
network architecture principles which outline how 
resources are defined and addressed. Practically 
speaking, REST defines a simple and scalable 
interface for exchanging resources over the Internet 
using the HTTP protocol. Each resource must be 
uniquely addressable through hypermedia links, 
meeting a universal syntax. A well defined and 
typically a small set of HTTP operations specifies 
how to proceed with the obtained resource. The 
basic operations are POST to create a resource, 
GET to read a resource, PUT to update a resource, 
and DELETE to remove a resource. The scalability 
and unquestioned expressiveness of REST makes it 
the interface of choice when it comes to handling 
large-scale SVG data on a network. The clean sepa-
ration of client and server at the web layer (HTTP) 
allows both sides to be independently implemented, 
while drawing from state-of-the-art standardized 
web technologies such as, Java, Ruby on Rails, or 
Adobe Flex. In addition, REST is a bidirectional 
interface both for querying and modifying the 
requested resource (Fielding 2000).
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Infrastructure
At the heart of our contribution lies the switch 
to a native XML database capable to directly 
store and emit fine-grained XML data. Unlike 
traditional relational databases, native XML 
databases do not store the XML data as char-
acter large objects (CLOB) and inherently know 
about the XML structure and XML nodes. The 
finer granularity allows answering complex que-
ries and extracting the stored XML in a scalable 
fashion because there is no parsing and recon-
struction as required with character large objects. 
In addition, most state-of-the-art native XML 
databases support modifications of the stored 
XML.

Our XML-based infrastructure consists of two 
components, i.e., the web interface called Temporal 
REST (Giannakaras and Kramis 2008), and the 
TreeTank storage manager (code name Idefix) as 
described by (Gruen et al. 2006). The two com-
ponents are connected to implement a two-step 
workflow as follows:

An XQuery expression is issued to TreeTank 
through Temporal REST;
TreeTank returns SVG through Temporal 
REST.
In stark contrast to the traditional three-step 

workflow based on relational spatial databases, the 
intermediate data conversion step is eliminated, 
i.e., there is no need for converting such a standard 
open format as an ESRI Generate File into SVG. 
The eliminated intermediate data conversion step 
makes heavy use of CPU and IO, which  contributes 
to large end-to-end delay, thus virtually inhibiting 
interactive Geographic Visual Analytics.

The two following subsections give an introduc-
tory overview of the involved technologies.

Temporal REST
While there exists a variety of solutions to access 
XML resources over the web, there is—to our 
knowledge—no generic and unified solution to 
conveniently access:

The current revisions of the XML resource or 
any subset thereof;
The full revision history of the XML resource 
or any subset thereof; and
The full modification history of the XML 
resource or any subset thereof.
We decided to work with XML as a fine-grained 

tree of nodes and evolve this tree over time through 
user modifications. As such, we realize that we 
can access single nodes or whole sub-trees, i.e., 

•

•

•

•

•

XML fragments, within a temporal dimension in 
a unified, scalable, and robust way.

Only if we consider the entire life cycle of an 
XML resource, including the past revisions and 
the (transaction-based) modification history, will 
we get a complete idea of its true power. Notably, 
collaboration processes frequently involve asyn-
chronous workflows. As such, the effectiveness of 
the workflow largely depends on the ability to 
highlight the modifications which took place during 
the last (or any past) step of the workflow.

We use Temporal REST with its related proto-
col message exchanges to generically implement 
our idea of exploiting web-based XML resources. 
Based on the Pareto principle, our proposal is 
simple enough for the average web application 
developer and at the same time it is extensible 
enough to be used with complex setups.

There are three different ways of accessing nodes 
and subtrees (XML fragments) in an XML resource. 
These include (1) the step-by-step tree naviga-
tion (XPath),  (2) the query including joins and 
other complex expressions (XQuery), and (3) the 
ID-based random node access (DOM). Temporal 
REST supports all three and complements them 
with a temporal expression as described later. Note 
that XPath is a subset of XQuery.

XML IDs enable the user to tag the XML document 
and to quickly access the XML fragment. However, 
most XML nodes are not tagged with such an XML 
ID and hence not available for random access. 
We suggest that at the least all element nodes are 
tagged with a system-generated REST ID. Text 
nodes or attributes are accessible through their 
parent node. Other XML nodes such as comments 
or processing instructions may be tagged by the 
system on demand. One advantage of having the 
system do the REST ID tagging is that REST ID 
remains stable throughout subsequent revisions 
and modifications, i.e., a node or its modifica-
tions can be accessed irrespective of the revision 
or position in the tree. Another advantage is the 
guarantee of the existence of an ID. The system 
can make the REST IDs visible by tagging the 
serialized XML with REST ID attributes bound 
to the namespace of Temporal REST. Figure 1 
shows how an example XML document is tagged 
with REST IDs.

Each insertion operation assigns unique immu-
table REST IDs to all new element nodes. This 
assignment is made by the back-end that stores 
the XML, and it does not affect any existing user-
assigned XML IDs. REST IDs are numerical, and 
they are incrementally assigned starting at one. 
REST IDs do not necessarily need to be assigned 
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in document order and they must not change 
once assigned to a node. In addition, we suggest 
that REST IDs not be re-used, so as to minimize 
confusion due to reassignments in future revisions. 
Since deletions are less frequent than insertions 
with most real-world workloads, the steadily shrink-
ing space of available IDs is considered to be a 
negligible problem.

Each insertion, update, or deletion of an XML 
node results in a modification event. Each new 
revision event is assigned a timestamp, an author, 
and a comment. Temporal REST communicates 
modifications by encapsulating the modified node 
within an item element. This element contains the 
REST ID of the modified node as well as revision, 
time stamp, author, and comment information. 
As such, both the insertion and the deletion can 
be considered as setting a node to a new value. 
Deletion sets the node to the empty node. We 
opted for this approach for two reasons. First, we 
can streamline the transport of XML fragments 
and modifications within the XQuery data model, 
i.e., within a sequence of items. Second, the back-
end can combine the storage of the modification 
event and the result of the modification.

The select operation allows the retrieval of a 
sequence of items as defined by XQuery. Each item 
either is an atomic value, or an XML node, or a 
modification event. The selection can be query-based 
or REST ID-based. Temporal REST will restrict the 
execution domain of both the query and the REST 
ID according to the temporal expression by either 
selecting a point in time or a time period. While 
a query may return a sequence of multiple items, 
an access solely based on a REST ID will return a 
sequence with at most one item. If the query and 
REST ID approach are combined, the query treats 
the node with the given REST ID as the root node 
of the query. The query-based approach makes 
it possible to add new query languages in the 

future and express com-
plex queries, including 
operations such as full-
text search or joins. 
The REST ID-based 
approach makes it pos-
sible to directly select 
an item with optimal 
performance because 
the system does not 
have to compile and 
optimize the query.

The temporal expres-
sion must be enclosed 
with round brackets ‘(‘ 
and ‘)’ and contain a 

single point in time or a time period consisting of 
two points in time separated by a dash ‘-‘. A point 
in time can be a revision number, an ISO date in 
short notation, i.e., without dashes or colons, or 
nothing. If no date or revision is provided, the last 
successfully committed revision is selected. Note 
that the ISO date in short notation is compliant 
with the specification of a URL. A single point 
in time will retrieve the XML fragments as they 
were at the given revision. The time period will 
retrieve the modifications between (and includ-
ing) the two provided points in time in ascending 
or descending order. Leaving out the temporal 
expression automatically causes a fallback to the 
last successfully committed revision for backward 
compatibility. Table 1 shows the HTTP request and 
response required to either select a single point in 
time (Example 1) or a time period (Example 2).

A single node or a whole sub-tree can be inserted 
either as the first child of an existing node or 
as its right sibling. As such, the insert operation 
requires a query selecting a number of nodes or 
a REST ID besides the actual XML fragment to 
complete the insertion. During the insertion pro-
cess, the back-end system will assign REST IDs 
as described above. Note that the insertion of an 
attribute must be made with the PUT operation 
which changes the whole node.

A single node can be replaced with or without the 
replacement of its sub-tree. Again, the updating 
operation requires a query to select a number of 
nodes to update or a REST ID. In addition, the 
actual updated XML fragment has to be provided. 
Restricting the effect of the update to the node 
(not effecting its sub-tree), allows the insertion of 
an attribute into an existing node without chang-
ing its whole sub-tree.

Whenever a node is deleted, the node and its 
sub-tree are purged from the system (but not from 

Figure 1. Each XML node gets its own ID.
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the past revisions). The dele-
tion operation requires a query 
or a REST ID to select the 
nodes to delete.

TreeTank
We tried to implement 
Temporal REST on top of exist-
ing open and closed source 
technologies. Unfortunately, 
it turned out that there was 
no file system, no relational 
database, and no native XML 
database to efficiently support 
all our requirements at once. 
All systems struggled with the 
combination of large-scale, 
heterogeneous, and revision-
based data. In fact, it was pos-
sible to mimic the revisioning 
feature, i.e., to keep past revi-
sions for given data. However, 
the resource consumption 
with respect to disk, memory, 
and CPU already exceeded 
the capabilities of state-of-the-
art systems even for data sets far smaller than a 
single gigabyte. Eventually, we decided to imple-
ment our own system to overcome these limita-
tions and called it TreeTank. Three systems mainly 
influenced our work on TreeTank. The ZFS (Sun 
Microsystems, Inc. 2004) file system handles trans-
actions and snapshots but still operates at file-level 
granularity, which is far too coarse for small-grained 
XML data. The revision control system Mercurial 
brought along Revlog (Mackall 2006), a space-effi-
cient method to store all past revisions—again only 
at file-level granularity. XPathAccelerator (Grust 
2002) inspired the low-level XML encoding of 
TreeTank as it makes it possible to work efficiently 
with read-only large-scale heterogeneous data sets.

TreeTank is a native XML database designed 
to provide scalable read and write access to XML 
data. TreeTank concurrently allows multiple read 
transactions and a single write transaction each of 
which creates a new revision per transaction commit. 
TreeTank was designed to be secure and easy to 
maintain. The scalability of TreeTank results from 
the concurrent use of resources such as processing 
and storage units and from the design of the main 
internal data structure to store the XML tree.

The decision to only support a single write trans-
action at any time makes it possible to run any 
number of processes concurrently, accessing any 

past revisions or modifications. The newly modi-
fied data are clearly separated and only become 
visible after the last successful transactional commit 
to processes different from the write transaction 
process. If multiple users want to work on the same 
XML tree at the same time, a transaction man-
ager is required to coordinate, i.e., sequentialize 
the changes, or a workflow has to be established 
stating clearly when each user is allowed to work 
and what he or she can do. Alternatively, a locking 
scheme has to be established which may follow an 
optimistic or pessimistic locking policy. However, 
it turns out, that in many real-world use cases, only 
a single user is working on a given part of the 
tree at any time, or that the natural workflow of a 
team working with XML data resolves modification 
conflicts before they even could appear.

The data model of TreeTank was intentionally 
chosen to be equal to the data model of Temporal 
REST (see Figure 2). Each XML resource, i.e., 
an SVG file, is bound to a session. The session is 
allowed to start transactions. Read-only transac-
tions support two different selection modes. The 
first selection mode makes it possible to answer 
the question of what the data looked like at a given 
point in time. The second selection mode leads 
to an answer to the question of what changed 
between two different points in time. A write trans-
action can select the last successfully committed 

HTTP Request HTTP Response
 
 
 
 
1 GET http://../document/(1)?//para/text()

<?xml version=’1’?>
<rest:response xmlns:rest=’REST’>
<rest:sequence rest:revision=’1’>

<rest:item>
Joe is happy.

</rest:item>
</rest:sequence>
</rest:response>

 
 
 
 
 
 
1 GET

http://../document/(2-3)

<?xml version=’1’?>
<rest:response xmlns:rest=’REST’>

<rest:sequence>
<rest:item rest:revision=’2’>

<para rest:id=’3′>
Mike is happy.

</para>
</rest:item>
<rest:item

rest:revision=’3′
rest:item=’2’/>

</rest:sequence>
</rest:response>

Table 1. Two example REST request and response pairs. Example 1 retrieves an 
XML sub-tree at revision one. Example 2 retrieves the modifications on the whole 
document during revisions two and three.
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point in time and modify it. Note that TreeTank 
currently does not support checkpoints within a 
single write transaction, i.e., the modifications on 
an XML tree are made persistent at once during 
the commit operation. A rollback can revert the 
XML tree to any past revision.

The data structure of TreeTank was optimized 
for updates. At most three directly related nodes 
must be updated whenever a single node or sub-
tree is modified. Only the modified nodes are 
stored on disk in a compressed page. Note that 
traditional databases usually store the whole page 
(which may potentially contain dozens of nodes) 
even though only a single node may have changed. 
Still, care has to be taken that reads do not have 
to collect a huge number of scattered changes to 
reconstruct a single page. We opt to intermittently 
store a snapshot of the whole page to also support 
reads with reasonable performance. Compressing 
all pages, storing only the page modifications, and 
intermittently storing snapshots of the pages all 
help to reduce the storage requirements by one 
order of magnitude. As a result, TreeTank does not 
consume significantly more space and it can swiftly 
reconstruct any past state or modification.

Security is not a choice with TreeTank—it is 
always activated. Care was taken to implement 
only time-proven cryptographic primitives with 
sufficient key lengths and well chosen cryptographic 
modes so as not to create a weak link which could 
be attacked to break the whole system. TreeTank 
encrypts all compressed pages before they are 
stored on disk. This guarantees the confidentiality 
of the stored XML tree, even if the TreeTank files 
are exposed to the public or transferred through 
insecure networks. Besides the encryption, a strong 
message authentication code is derived from each 
compressed page and stored with a reference to 
the page. As each reference contains the message 
authentication code of all its children, the integrity 
and authenticity of the whole TreeTank can be veri-
fied recursively. The root message authentication 
code can be securely signed and further secured 
by an external secure time stamping mechanism, 
which also ensures that modifications cannot 

be denied. The 
availability of 
TreeTank can 
be guaranteed 
on the applica-
tion level by a 
mas ter–s lave 
replication which 
consumes very 
little network 
bandwidth and 

is perfectly suited for geographically distributed 
operations. The master–slave setup ensures that 
all modifications applied to the master are syn-
chronously or asynchronously propagated to the 
slave. The tight integration of security enables 
storage of sensitive data in the TreeTank. This is 
especially important because visualizations are 
usually based on large data sets collected from the 
internal operation of an organization or project 
and must not be exposed to the public.

Preliminary measurements on a state-of-the-art 
desktop computer show two significant advantages 
of TreeTank. First, it compresses the original XML 
data while storing it in its native data structure. 
Second, it enables a fast retrieval of the original 
XML. The promising preliminary results of the 
compression and time measurements for three 
SVG files of different sizes are as follows: 

The size of the TreeTank is up to ten times 
smaller than the original SVG file and 
TreeTank can deliver the original SVG data up 
to twenty times faster than a relational data-
base with spatial extensions. 
The excellent compression ratio is due to the 
verbosity of SVG.
The time of the data conversion step alone 
(excluding the time to retrieve the original 
data from the spatial database) takes much 
longer than the time required to retrieve the 
whole SVG from TreeTank.

Case Study
In this section, we provide a case study to dem-
onstrate not only the feasibility but also the 
significant benefit a user can gain from our 
infrastructure. Most importantly, we want to 
build a mindset for designing and using our 
infrastructure because it is notably different 
from traditional workflows both on the technical 
and application levels. With our infrastructure, 
the user can organize and later modify the data 
in the XML tree, as he or she likes. He can mix 

•

•

•

Figure 2. The data model of Temporal REST and TreeTank. Note that each item consists of an XML 
fragment, i.e., a value, an XML node, or a whole XML sub-tree.
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document-centric sub-trees containing informa-
tion, e.g., in the OpenDocument format, with 
sub-trees compliant with ready-to-visualize SVG 
data, as well as data-centric statistical informa-
tion. Figure 3 shows a typical setup of our XML-
based infrastructure.

In this case study, we build an example TreeTank 
of gross external debt positions in U.S.$ per person. 
This information is available on a quarterly basis 
(Worldbank 2008) and perfectly suited to illustrating 
how a team can create sophisticated visualizations 
based on a set of statistical data. Four revisions of 
the visualization can be seen in Figure 4.

Note that the TreeTank is exposed to authorized 
users through a web service running Temporal REST. 
While we intentionally present a basic example, 
our infrastructure can deal with any large-scale 
heterogeneous data as long as the data can be 
transformed into XML.

The first step is to convert the Excel-based sta-
tistical information into a data-centric XML. This 
is a straightforward step and only required if the 
original data are not available as XML. The result-
ing XML can be directly imported into TreeTank 
by inserting the whole XML document through 
Temporal REST. We can now query Temporal 
REST to extract the whole document or any sub-
tree therein.

For the second step, we need an SVG representa-
tion of the world with all countries. One can rely 
on open source SVG world maps or retrieve an 
individually configured world map from a tradi-
tional relational spatial database, depending on 
requirements. To keep the statistical data sepa-

rate from the SVG data, we insert the new node 
statistic as the parent of the statistical XML data. 
Then, we insert a new node geodata as the right 
sibling of statistic and group the two nodes statistic 
and geodata under the third new node example. 
We then insert the whole SVG data under the 
node geodata. Hence, we can retrieve the plain 
statistical data by selecting the sub-tree rooted 
at statistic or visualize the world map within any 
SVG-enabled web browser by selecting the sub-
tree rooted at geodata. To combine the statistical 
data with the visualization, we have to make sure 
that both sub-trees store the ISO country codes 
for each country. If this is not already the case, we 
can update each country in each sub-tree. Note 
that most SVG-based world maps will separately 
store an SVG path for each country.

Meanwhile, we created a set of revisions, each 
consisting of a Temporal REST modification request. 
At any time, we can retrieve an older revision or 
list the modifications applied to past revisions. 
This is convenient, if one wants to know what 
changed, e.g., in the sub-tree under geodata. It is 
also assuring to know, because one can revert the 
tree to a past revision if an unintended modifica-
tion took place. At no time, data are overwritten or 
lost. Furthermore, the author of the changes can 
provide commit comments with each Temporal 
REST modification request to document his inten-
tions and the evolution of the tree.

We prepare the visualization of statistical informa-
tion by defining value ranges and color schemes 
for each value range. Then, we add the color infor-
mation as an XML attribute to each element in 

Figure 3. A typical setup of our XML-based infrastructure. Server and client exchange SVG/XML data with HTTP-based 
Ajax technology.
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a)

b)

c)

d)

Figure 4. TreeTank of 
gross external debt. a) 
The SVG sub-tree with 
the map of the world and 
a description box. Figure 
4b) The gross external 
debt positions in U.S.$ per 
person for the year 2006; 
third quarter. Figures 4c) 
and Figure 4d) show the 
same information for the 
years 2007 and 2008; 
third quarter, respectively.
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the statistic sub-tree based on the statistical value 
and make sure that the statistical information is 
grouped in sub-trees for each year and within the 
years for each quarter. Next, we add the SVG ele-
ments to the geodata sub-tree required to draw a 
box displaying the color scheme and value ranges. 
To better support layering in SVG, we group the 
SVG elements required to draw the box under the 
XML element description and then group the SVG 
path elements required to draw the world map 
under the XML element worldmap. This step helps 
to interactively enable or disable layers and can 
later be extended to support, e.g., layers contain-
ing water bodies, charts, or other GUI elements 
required for improved and convenient user inter-
action. To prepare the coloring of the countries 
according to the selected statistical data, we add 
the appropriate SVG color attribute to each path 
element. Finally, we add a SVG GUI element under 
geodata, which enables us to interactively select a 
quarter of the year.

The actual procedure to color the world map 
according to the selection can either be imple-
mented with an XQuery expression issued through 
Temporal REST or with JavaScript on the client 
side. If XQuery is chosen, one must select both 
the statistic and the geodata sub-trees and then set 
the color attribute of the SVG path elements to 
the color attribute of the statistical data by joining 
them by country code. When JavaScript is preferred, 
both the geodata and the sub-tree containing the 
statistical information for the selected quarter have 
to be transferred to the client and then joined 
together by looping through all countries and 
setting their color to the color value found in 
the statistical data. Note that the statistical data 
can be reloaded efficiently and on demand with 
Ajax technology. 

The main differences between the XQuery and 
the JavaScript variant is the location where work 
is done (i.e., on the client or the server side) and 
the amount of data that has to be transferred 
over the network. In the case of XQuery, the join 
is calculated on the server side for each request. 
Then the result is transferred to the client and 
immediately visualized. In the case of JavaScript, 
large amounts of data have to be transferred to the 
client for the first request in order to calculate and 
visualize the join. For later requests, only the new 
statistical data are transferred, joined, and visual-
ized. Thus, JavaScript is the better choice if the 
workload consists of multiple selections for different 
quarters. However, note that current JavaScript 
runtime environments are so slow that the XQuery 
variant might be faster even though all data for 

the visualization have to be transferred for each 
request. This may change in the near future sd 
most JavaScript runtime environments are cur-
rently undergoing major rewrites to speed them 
up significantly.

An alternative to the method of joining pre-cal-
culated persistent coloring information with the 
map is the purely dynamic calculation depend-
ing on the current user requirements. Again, the 
calculation can be performed on the server or 
on the client side, with the same advantages and 
limitations as noted for the join method.

Figure 5 gives an additional example of laying 
out GUI elements with SVG (including a sample 
chart). The GUI elements of interest are the revi-
sion slider, the map layer control, and the search 
field. All events are handled by JavaScript which 
uses Ajax technology to fetch missing data from 
the Temporal REST web service. The JavaScript 
itself is embedded in CDATA sections of the XML. 
In our view, this is not the most elegant way to 
store JavaScript in CDATA sections. However it 
is a straightforward and practical solution, which 
automatically guarantees the revision of the appli-
cation code itself. There already are technologies 
such as the XML user interface language (XUL) or 
Adobe Flex which describe GUIs and their interac-
tions based on pure XML. More  work is however 
needed before these solutions can be included in 
off-the-shelf web browsers.

We have shown that the XML tree can be grown 
exactly according to the user’s demand. All rel-
evant data sources can gradually be integrated 
with TreeTank and then queried and further modi-
fied from within one single infrastructure. While 
the last paragraphs only considered a single user 
performing the modifications, we describe the 
collaboration of multiple users collectively work-
ing on the same TreeTank in the next paragraphs. 
Note that each user can modify the XML tree 
and add more statistical data or visualization ele-
ments as described before. As any professional 
publication or authoring workflow, it is important, 
however, that each user behaves according to a 
policy. With TreeTank and Temporal REST, this 
means that concurrent modifications have to be 
done in disjoint sub-trees. 

While the current version of TreeTank does not 
provide a facility to enforce this behavior, it can be 
implemented technically on the application layer 
or non-technically in the organizational structure. 
We suggest a hierarchical responsibility delega-
tion scheme, such that at any time, one author 
(person or process) is responsible for a given sub-
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tree unless he or she delegates a descendant to 
someone else with the option to revoke.

This scheme can be extended by a nonhierarchi-
cal access-control-list-based (ACL-based) scheme if 
required. To clarify the hierarchical responsibility 
delegation scheme, we imagine a situation where 
author A1 adds more statistical data each quarter, 
author A2 works on the SVG-based GUI and color 
schemes (Brewer 1994), and author A3 links the 
visualizations to scatter plots or other statistical 
graphics (Andrienko and Andrienko 1999). One 
possible hierarchical delegation then is as follows. 
The owner of the TreeTank delegates statistics to 
A1 and geodata to A2. A2 creates a new node charts 
and delegates it to A3. Then, all three authors 
concurrently modify the tree and will never cause 
isolation conflicts such as lost writes or dirty reads 
as they are stated in the ACID model, which is 
one of the oldest and most important concepts 
of database theory. Lost writes are prohibited by 
design because each author works in his respon-
sibility domain, i.e., a dedicated sub-tree. Dirty 
reads are avoided because each author will only 

see successfully committed changes and has the 
option to query the tree as it was at a given, fixed 
revision. Whenever the user wants to switch to a 
newer revision, he or she first checks for modifica-
tions on the sub-trees of interest and whether they 
impact his own work, e.g., introduce an inconsis-
tency because the color attributes were dropped. 
Finally the user can adapt his or her part of the 
tree to the modifications.

Discussion
The findings from the case study open a wealth 
of opportunities for the end-user as well as an 
array of research challenges. The immediate 
benefit of our XML-based infrastructure is the 
very efficient use of processing and storage 
resources. Much more user requests can be han-
dled per time unit, and the degree of interactiv-
ity is dramatically improved as the user actions 
are no longer a matter of minutes but seconds. 
Both throughput and interactivity are essential 

Figure 5. An example of a rich SVG GUI providing a chart and extended end-user input facilities. Note that this additional 
SVG sub-tree could be plugged-in seamlessly with the existing TreeTank.



292                                                                                                       Cartography and Geographic Information Science

for collaboration-oriented environments where 
end-users are used to interact in an asynchro-
nous as well as a synchronous fashion. The sup-
port for the evolutionary growth of tree (XML) 
data structures as well as the ability to store and 
query statistical and SVG data, side-by-side, 
help to reduce unnecessary media breaks which 
hinder the dissemination of (visually) discovered 
knowledge.

The research challenges are manifold. One chal-
lenge is to find and categorize tree structure and 
tree design patterns. Our infrastructure makes it 
possible to store huge amounts of unstructured 
data in a single TreeTank. Without patterns, the 
TreeTank could end up being a junk room where 
everything is contained but rarely something can 
be found in time. Hand in hand with the patterns 
comes the question of how best to organize and 
manage the concurrent access of multiple users 
assuming changing roles. In our case study, we 
suggested an organization form natural for tree-
based data structures. But there may be other 
more efficient solutions. As with the tree structure 
and tree design patterns, the collaboration-ori-
ented (authoring) workflows have to be collected, 
categorized, implemented, and tested with real 
teams. From a technical point of view, the challenge 
arises to integrate various indices with TreeTank 
to speed up specialized queries such as full text 
queries or spatial queries on rasterized data. 
While the server side can be further speeded up 
with the help of indices, the client side GUI and 
JavaScript environments still need to be revised to 
unleash the processing power of modern desktop 
or notebook computers. The GUI functionality 
of browsers and SVG plug-ins is not yet on par 
with native applications. Even the extensive use 
of Ajax and JavaScript does not hide the current 
shortcomings.

The case study made the assumption that there 
are multiple users but only one single TreeTank. 
When multiple teams concurrently grow their 
data structures in independent TreeTanks, the 
issue is how all these distributed TreeTanks can 
be integrated into one unified storage. While our 
infrastructure solves this by integrating different 
data sets into one tree, it does not yet provide sup-
port for integrating multiple trees into a forest.

Conclusion
We propose a new streamlined two-step GVA 

workflow for efficient data storage and access based 
on our native web-based XML database TreeTank 

and couple it with an SVG graphical user interface 
for visualization. Not only does our XML-based 
infrastructure substantially reduce access delays 
due to the elimination of intermediary data format 
conversion steps. Rather, it extends the user’s options 
by providing significantly better scalability, inherent 
data security, and, most importantly, the ability to 
collaboratively work in GVA environments thanks 
to optimized update support. With up to twenty 
times shorter data access delays and up to one 
tenth of the traditional storage requirements, our 
infrastructure improves interactivity and flexibility 
from an end-user perspective.

Furthermore, our infrastructure suggests a para-
digm shift leaving behind dispersed disconnected 
data sets and media breaks and introduces a tightly 
integrated unified storage for complex spatio-tem-
poral datasets of structured, semi-structured, or 
unstructured data. The clean separation of client 
and server at the HTTP web layer assures backward 
compatibility and better extensibility. Future work 
will focus on fully implementing the latest XML 
query facilities such as XQuery, XQuery Update, 
and XQuery Full Text to give the end-user state-of-
the-art tools with which to query large-scale data 
sets. Especially the full-text feature will further 
improve the value of our infrastructure for the 
collaboration-oriented end-user because he or she 
can freely search in all comments and documents 
stored along with the spatio-temporal data. We 
also plan to investigate how to most efficiently 
distribute TreeTank for even better scalability.
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