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Visual analytics is often based on the intuition that highly interactive and dynamic depic-
tions of complex and multivariate databases amplify human capabilities for inference and
decision-making, as they facilitate cognitive tasks such as pattern recognition, association,
and analytical reasoning (Thomas and Cook 2005). But how do we know whether visual
analytics really works? This article offers a generic evaluation approach combining theory-
and data-driven methods based on sequence similarity analysis. The approach system-
atically studies users’ visual interaction strategies when using highly interactive interfaces.
We specifically ask whether the efficiency (i.e., speed) of users can be characterized by
specific display interaction event sequences, and whether studying user strategies could be
employed to improve the (interaction) design of the dynamic displays. We showcase our
approach using a very large, fine-grained spatiotemporal dataset of eye movement record-
ings collected during a controlled human subject experiment with dynamic visual analytics
displays. With this methodological approach based on empirical evidence, we hope to
contribute to a deeper understanding of how people make inferences and decisions with
highly interactive visualization tools and complex displays.

Keywords: visual analytics strategies; eye tracking; sequence analysis; map use;
efficiency

1. Introduction

Vision is the strongest among the senses in humans: the literature suggests that we use more
than 40% of our brain to process visual input (Hoffman 2000, Ware 2008). Therefore, using
graphics (visuals) to enhance cognition and understanding seems immediately obvious
(Thomas and Cook 2005). Many approaches exist to study the validity of the assumption
that graphical representations are more efficient than their nongraphical counterparts. For
example, one such approach is called cognitive fit theory (CFT), which studies the fit of
technology to a task (Vessey 1991). Dennis and Carte (1998) used CFT for geographic
decision-making tasks and have shown that people were faster andmore accurate usingmaps
as opposed to tabular representations in making multicriteria decisions, if the geographic
regions of interest were adjacent to each other on the map (else they were faster, but not
accurate). Measuring human response to different depictions using theories such as the CFT
allows us to explore the fitness of the displays for human inference and decision-making.
However, we must also acknowledge that humans are not as homogenous as visual analytics
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tool developers may think: individual and group differences exist on the basis of parameters
such as expertise, culture, sex, age, sensory differences, ethnicity, and socioeconomic status
(Slocum et al. 2001). Understanding the diversity in human behavior when dealing with
geographic visualizations is critical for public participation projects (Haklay and Tobon
2003). In-depth studies dealing with individual and group differences are becoming more
and more relevant with rapidly increasing accessibility and availability of geographic
services. Developments in data availability coupled with more affordable technology lead
to research toward personalizing geovisualizations (Wilson et al. 2010), where, naturally, the
individual (or group) differences also matter.

In this article we suggest a generic exploratory approach to study individual and group
differences for geovisual analytics tasks with dynamic displays using eye tracking. Our
suggested approach employs both a theory- and a data-driven analysis of eye movement
recordings using sequence similarity analysis methods to compare gaze sequences.
Differences and similarities found in fixation sequences may be parallel to cognitive
differences and similarities of the viewers (Stark and Ellis 1981, Brandt and Stark 1997,
West et al. 2006). Additionally, patterns found in viewing sequences may be helpful to
establish whether there are distinct strategies that a group of users employ (e.g., Aaltonen
et al. 1998, Byrne et al. 1999). We propose a systematic analysis of similarity in participants’
fixation sequences for the identification of users’ visual analytic exploration actions
(e.g., inspect, query, zoom) with interactive visual analytics displays based on an action
taxonomy provided by Gotz and Zhou (2009). The proposed approach also helps address
problems encountered trying to analyze high-resolution spatiotemporal datasets such as eye
tracking data. Our software PoPAnalyst developed for this purpose bridges the gap between
raw data obtained from eye tracking devices to sequence analysis software. We demonstrate
our approach with a case study by exploring and identifying the similarities and differences
in the strategies of efficient (faster) and less efficient (slower) map users.

2. Background and related work

In a previous empirical usability study with 30 participants, we evaluated two informationally
equivalent (Larkin and Simon 1987), but differently designed interactive map interfaces
(Coltekin et al. 2009). The study was designed as a between-subject experiment and eye move-
ment analysis was coupled with traditional usability metrics to identify possible design issues.
Initial analyses included statistical tests for satisfaction, effectiveness (accuracy of response), and
efficiency (response speed). Additionally, common eye tracking metrics such as fixation count,
fixation duration, and time to first fixationwere used as overall indicators of participants’ ease or
difficulty using the studied interfaces (see Section 2.2 for a definition of fixation). Using a subset
of collected eye movement data from the previous experiment mentioned above, this article
suggests a methodological approach for a systematic analysis of participants’ efficiency (or the
lack of it) while performing visual analytics actions. In this analysis we specifically try to answer
the following questions:Why are some users multiple times more efficient than others, and what
do faster (more efficient) and slower (less efficient) users do differently when solving the given
visual analytics tasks? Can we refine our understanding of how efficient and less efficient users
interact with highly interactive visual analytics displays?

2.1. Theory- (top-down) and data-driven (bottom-up) approaches

One way to study the differences in the efficiency of visual analytics activities is to identify a
hypothetical event sequence (e.g., with eye movements as a proxy) and compare the strategies
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of faster and slower users to this predetermined, baseline sequence (referred to as hypothetical
sequence from now on). Sometimes also termed as ‘optimal scanpath,’ a hypothetical eye
movement sequence is expected to be the shortest path to a target, with a relatively short
fixation duration at that target (Goldberg and Kotval 1999, p. 635), and deviations from this
may demonstrate inefficiency in information search tasks. We consider comparing partici-
pants’ recorded sequences to a hypothetical sequence a theory-driven (top-down) approach. A
hypothetical sequence can be obtained in a cognitive walkthrough session where experts
consider possible usage scenarios (Polson et al. 1992). It is also possible to combine theory-
(top-down) and data-driven (bottom-up) sequence patterns within or between groups, as well
as one individual’s records over several stimuli and/or stages of training (Goldberg and Kotval
1999, Fabrikant et al. 2008, 2010). Following the theory-driven approach, we complement our
exploratory analysis with a data-driven (bottom-up) approach by identifying macro- and
micropatterns in the recorded sequences. The question we search to answer with data-driven
analysis is whether we can find patterns hidden in the recorded data that will allow us to learn
more about why groups differ in their efficiency solving visual analytical tasks. Hence, we
study the similarities in fixation sequences in the high-performing (fast and accurate) partici-
pants and compare them to a group of equally accurate but slower participants.

2.2. Gaze path: a fixation sequence

A fixation is a spatiotemporal phenomenon in vision, which describes a single location
where eyes stay fixed longer than a time threshold (Yarbus 1967). A minimum duration
(temporal feature) and maximum radius (spatial feature) is necessary to define and depict a
fixation. Eye tracking systems typically ask their users to provide a threshold value for each.
Fixations occur sequentially, that is, individuals move their eyes to the next visual target in a
quick, seamless manner (this phenomenon is called a saccade). A node-and-link depiction is
commonly used to visualize entire gaze paths with changing node sizes, where the changes
in node size represent varying fixation lengths (see Figure 1a).

In Figure 1, the fixations are numbered to indicate their viewing order. Although
Figure 1a depicts a simple gaze plot, typical gaze plots rarely consist of only five fixations.
In eye movement recordings that are longer than a few seconds, depiction of gaze paths
becomes impossible to interpret visually because of excessive over-plotting (e.g., Figure 1b).
Recording times and the number of participants vary between eye movement studies.
However, even in a modest study, the obtained data can be prohibitively large for qualitative
visual inspection of gaze plots (Fabrikant et al. 2008, Coltekin et al. 2009). Among the
common approaches to dealing with this problem, one solution is to implement a time slider
that allows a restricted time window to be displayed. The viewer can then explore the data
over a shorter time interval. However, using a time slider is not sufficient to make sense of
long or multiple recordings, as it is impractical to assume that the viewer can remember and
compare everything he or she has seen. Alternatively, gaze paths can be analyzed for their
spatial (geometric) and temporal similarities in an aggregated manner (e.g., Brandt and Stark
1997, Duchowski et al. 2010). A common way to aggregate fixation data for analysis is by
producing fixation density maps. Such maps can provide insight into visual behavior of
groups, but they do not represent the order of events.

2.3. Sequence similarity analysis

Spatiotemporal similarities between trajectories have been studied bymany researchers from
different fields including GIScience (e.g., Andrienko et al. 2007, Dodge et al. 2009,
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Gudmundsson et al. 2009) and some of these methods can also be used for eye movement
data (e.g., Noton and Stark 1971, Fabrikant et al. 2008). With an emphasis on temporal
similarities, the fixation sequences in eye movement data can also be analyzed by employing
methods that are used for sequence analysis of biochemical microsystems and structures as
in genomics (e.g., Noton and Stark 1971, Hacisalihzade et al. 1992, West et al. 2006).
Abbott (1995) is frequently cited as the first person to apply sequence similarity analysis to
social science data. A variety of sequence analysis algorithms exist in bioinformatics to
identify sequence similarity or dissimilarity expressed by a distance function. However,
sequence analysis methods are far from being ‘standardized.’

Several studies in geography have also employed sequence alignment methods to
trajectory analysis (Joh et al. 2002, Shoval and Isaacson 2007, Wilson 2008). However,
these are not eye movement studies. On the contrary, most eye movement studies found in
cartography and geovisualization (Steinke 1987, Brodersen et al. 2001) have not made use
of eye movement sequence similarity analysis. Fabrikant et al. (2008) have employed
sequence alignment analysis for evaluating small multiple and animated displays. In this
article, we employ sequence similarity methods on eye movement data to specifically study
users’ efficiency in visual analytics activities in both a theory- and a data-driven manner.

3. Methods

3.1. Eye movement data collection

Eye movement data collection was carried out in a controlled laboratory environment at the
University of Zurich. The original experimental setup was optimized for a usability study with
eye tracking (Coltekin et al. 2009). Details regarding the experimental setup and the respective
data collection procedures can be found in Coltekin et al. (2009). In the scope of this article,
eye movement recordings are most relevant. We employed a near-infrared-enabled remote

Figure 1. (a) An example of a gaze path including a sequence of fixations (nodes) and saccades
(links). (b) Over-plotting. Fixations occlude each other and the stimulus.
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video eye tracker (TobiiTM X120, Tobii Technology AB, Sweden) and recorded at 60 Hz
temporal resolution, with the fixation threshold set to 100 ms, and a radius of 50 pixels. The
threshold values do not come from clearly established rules. However, in the body of
published literature these values are typical for similar studies (e.g., Goldberg and Kotval
1999, Jacob and Karn 2003). We recorded the eye movements of 30 participants solving three
typical visual analytics tasks using two different interactive display designs that presented the
same information. It was a between-subject design, that is, half of the participants workedwith
one design and the second half with the other.

3.2. Participant selection

For the study reported in this article, we selected participants (N = 30) first on their
effectiveness (response accuracy) and then on their efficiency (response speed).We removed
the participants if they answered all questions incorrectly. Of the remaining (N = 27), we
identified the 10 fastest and 10 slowest participants by aggregating completion times over
two tasks. This left us with two groups (N = 20) and 40 sequences to study. Among the
selected participants, 9 are geography experts and 11 are nonexperts. Figure 2 depicts the
clearly distinguishable difference in response speed between the fast and slow groups.

The average of the fast group is 2.59 minutes (155.42 seconds), and the average of the
slow group is 9.17 minutes (550.41 seconds). The ANOVA confirms that there is a highly
significant difference (F = 65.85, P , 0.01) between the averages of the fastest 10
participants and slowest 10 participants. Also note the significant variance difference
between the fast and the slow group in Figure 2. The fast group seems much more
homogenous in terms of the response speed. This could be due to the fact that there are
more experts in the fast group (six of 10) compared with the slow group.

Although participants viewed two interfaces (see Figure 3) in a between-subject setup,
grouping as presented in Figure 2 is independent of the interface. This is because the areas of
interest (AOIs) are classified based on function rather than location, which is explained in
more detail in the following section.

Figure 2. Central tendency and spread of task completion time for the 10 fastest and the 10 slowest
participants.
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3.3. Task analysis and the ‘hypothetical sequence’

Although design issues are also critical in visual analytics, at this point it is important to
mention that in the scope of this article we are not particularly concerned about the
effectiveness of the interface designs (see Coltekin et al. 2009, for a comparative study of
interface designs). Our focus in this article is on the efficiency of visual analytics strategies
different user groups seem to employ. The two studied interfaces offer identical visuospatial
exploration actions, which we classified according to Gotz and Zhou (2009), to explore

Figure 3. The studied interfaces labelled with AOIs that are categorized according to their visual
analytics action: (a) Mapmaker, National Atlas of the United States (Natlas 2010) and (b) Carto.net
(2010).
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crime data in the United States. For example, the inspect, query, change-metaphor, and
change-range (zoom, pan, etc.) are present in both of the tested interfaces, even though they
are positioned in different locations. All exploration activities and the relevant AOIs that
belong to the data exploration action Select are labeled as S, Locate as L, Respond as R, and
the map area as M (Figure 3).

The visual analytics tasks (Table 1) were presented to users in a systematic rotation to
avoid potential learning effects. Before recording began, participants were shown two task-
relevant locations in the map display to avoid possible bias from differences in previous
knowledge of the geography of the United States. Participants did not receive any additional
training or practice opportunities for the tasks or the interface elements.

To identify the hypothetical event sequence and respective AOIs, a cognitive walk-
through (Polson et al. 1992) was performed with the experiment leaders and the interface
designers. Once a participant receives and understands the task, the expected participant
behavior for Task 1 involves a quick overview of the map (M), selecting (S) appropriate
attributes to change the display to depict ‘assaults,’ finding the relevant state (i.e., Maine)
and respective county (i.e., Washington) using appropriate locate (L) tools (e.g., zoom and
pan), and finally identifying the correct piece of information for the response (R) and/or
which button(s) they must press to display the answer. For Task 2, as the location (i.e.,
Oregon) is mentioned before the attribute (i.e., murder rate) in the question, a participant is
expected to start with the map (M), locate the State (L), then select the attribute (S), andmove
on to the areas where the response is displayed (R).

As a result, the expected consecutive action sequence, that is, the hypothetical sequence
is as follows: Task 1: MSLMR (map, select, locate, map, respond); Task 2: MLSMR (map,
locate, select, map, respond), yielding an average hypothetical sequence: M(SL|LS)MR
(map, [select, locate] or [locate, select], map, respond). The average hypothetical sequence is
denoted by a regular expression, that is, when a search is performed using this syntax,
sequences MSLMR and MLSMR are both found.

As mentioned earlier, we specifically categorized the visual analytics activities based on
the higher level task taxonomies reported in earlier task analysis studies with visual displays.
For example, according to Knapp (1995), geographic information system specialists use four
primary ‘visual operators’: locate, identify, compare, and associate. Zhou and Feiner (1998)
and Gotz and Zhou (2009) also suggested a visual task taxonomy, in which they suggested
tasks such as distinguish, locate, and identify (among others) as a means to perform visual
search that allows data exploration, and enables visual inference making. In this text, we
avoid the word ‘identify’ as this is used as a label in one of the interfaces andmay confuse the
reader. We use respond instead.

3.4. Data preprocessing with PoP Analyst

An ArcGIS Toolbox called Point Pattern Analyst (PoPAnalyst) was developed in-house to
extract discrete event sequences from continuous gaze paths based on predefined AOIs, and
to visualize gaze paths in a GIS.1 Figure 4 shows the complete sequence generation process.

Table 1. The tasks included in the sequence similarity analysis (Coltekin et al. 2009).

Task I What is the number of assaults in Washington County (Maine, ME) in 2000? Please provide
a number.

Task II Which county in the State of Oregon (OR) has the highest murder rate in 2000? Please
provide the county name.

International Journal of Geographical Information Science 1565
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PoPAnalyst allows users to create manually or automatically an AOI table for parsing eye
movement fixation data to create a sequence. For example, fixations that fall within the
Select, Locate, and Respond AOI’s are recorded as S, L, and R, respectively, using the time
stamp to create an ordered sequence. Consequently, a series of fixations starting with the
AOI Select, then Locate, to Respond and back to Locate, would generate a sequence SLRL.

When the data are imported to PoP Analyst, they are stored in a ‘database file’ (.dbf).
After this, it is possible to perform selections and filtering based on attributes (fields). Once
the data are ‘clean’, the user can create a table with assigned codes for the chosen AOIs. If
needed, this encoding can be manually edited. The table with the AOI codes is used by the
‘Create Sequence’ tool and the sequences are then created. These steps can be automated
using ESRI’s Model Builder to create automated or semiautomated workflows. Currently,
PoP Analyst can create sequences that can be opened by three different sequence analysis
software packages: Clustal G (Clustal 2010), TraMineR (TraMiner 2010), and eyePatterns
(West et al. 2006), the latter of which we use in this study to analyze our sequences.

3.5. Sequence similarity analysis

There are several ways to compare our hypothetical sequence with the recorded participant
sequences to identify possible similarities and dissimilarities. For example, a simple string
search function allows to identify sequences that match a certain pattern. The eyePatterns
software (West et al. 2006) offers such a function. Because the order of fixations is more
important in sequence analysis than the fixation count, the search is performed on the
collapsed sequences. A collapsed sequence is a ‘compressed’ version of an expanded
sequence. For example, if there is a fixation on M 3 times, the expanded sequence is
MMM and the collapsed sequence is M.

The theory-driven approach can be further supported by clustering the data based on
similarity measures. Many similarity detection algorithms exist for sequential data, such as
the well-known Levenshtein dissimilarity measure (Levenshtein 1966). Levenshtein’s
(1966) string-edit algorithm assesses the similarity of two string sequences by counting
the number of necessary steps (i.e., insertions, deletions, or substitutions for each character)
to convert one string into the other. Smith and Waterman (1981) also offered a similarity
measure for sequential data based on string-editing. Their algorithm is often used for
pairwise local alignments that allow pattern discovery between two and more sequences
(Smith andWaterman 1981). Another common similarity measure in sequence analysis is by
Needleman and Wunsch (1970). Needleman and Wunsch’s global sequence alignment
algorithm employs a scoring scheme to align two sequences by introducing a reward for
matching, a cost for gaps, and a penalty for mismatches. The similarity of sequences is
typically expressed in a similarity matrix that can be input to various multivariate explora-
tory data analysis methods. A popular method to identify groups of similar sequences is, for

Figure 4. PoPAnalyst’s workflow presented as used in ArcGIS Model BuilderTM.
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example, hierarchical average linkage clustering (West et al. 2006), starting with the pair of
sequences that have the highest similarity score and progressively leading to the least similar
pair. The result of the clustering process can be inspected with a dendrogram. Another classic
method for identifying groups of similar items is multidimensional scaling (MDS), also
available in West et al.’s eyePatterns software. Clustering and MDS can be helpful for
validating theory-driven assumptions such as we have made in this study. Do user groups
defined based on speed alone also cluster in terms of viewing (inference making) behavior?
Clustering is also helpful for data-driven analysis because it might reveal unexpected
patterns. We first apply the Levenshtein (1966) and Needleman and Wunsch (1970) algo-
rithms implemented in eyePatterns to generate a distance matrix and to visualize the results
of the similarity analyses with both a cluster dendrogram (Figure 5) and MDS (Figure 6) to
inspect the clustering.

Another method that can be useful for both theory- and data-driven analyses is
calculating the transition frequencies (see Figures 7 and 8) between events in a
sequence. Therefore, for example, if there are many transitions between two AOIs,
this information can be used as a metric indicating ‘inefficient scanning with extensive
search’ (Goldberg and Kotval 1999, p.640). In this study, we analyze the transition
frequencies between the AOIs, and finally execute a local alignment to detect potential
microlevel cycles. We finish the microlevel analysis querying for specific revealing
patterns in selected sequences.

Figure 5. Clustering based on Levenshtein distances and the average linkage clustering. (a) Both
tasks combined (40 sequences), (b) Task 1 (20 sequences), (c) Task 2 (20 sequences). Faster partici-
pants are represented in red. Dotted lines mark the visually identified clusters.

Figure 6. Clustering based on the Needleman and Wunsch sequence alignment algorithm and
MDS. (a) Both tasks combined (stress level: 0.09), (b) Task 1 (stress level 0.09), (c) Task 2 (stress
level 0.08). Faster participants are represented in red. Dotted lines mark the visually identified clusters.
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4. Results

When grouping the participants based on their accuracy and speed alone, not surprisingly,
we found that experts are faster than nonexperts. In the fast group, there are 6 (out of 10)
geography experts. Hence, as we study the strategies of the fast group, we are also arguably
studying the strategies of experts. For all of the studied 40 sequences, the expanded sequence
length varies between 51 and 1047 letters, and the collapsed sequences vary from 3 to 275
letters. For the fast group (20 sequences), the expanded sequence lengths vary from 51 to 352
letters, and from 3 to 26 when collapsed. For the slow group (20 sequences), the expanded
sequence lengths vary from 275 to 1047, and from 5 to 107 when collapsed. The slower, thus
less efficient participants, as expected, consistently have longer (thus less efficient) gaze
paths in expanded and in collapsed sequences, possibly indicating more inefficient visual
search loops (cycles).

Figure 8. Transition probability matrix for the slow group.

Figure 7. Transition probability matrix for the fast group.
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4.1. Top-down analysis: string matching for the hypothetical sequence

Searching for the participant sequences for our average hypothetical sequenceM(SL|LS)MR
(either MSLMR or MLSMR), we find that 17 of the 40 (42.5%) sequences have this pattern.
The distribution of these sequences in the fast and slow groups is nearly equal: of the 17
sequences nine are from slower and eight are from faster participants. Because the propor-
tion of those who follow the hypothetical sequence is approximately the same in both groups
(42.5%), what do the rest of the participants do? One group is significantly faster than the
other, are there perhaps ‘hidden’ similarities within these groups? These questions lead us to
data-driven approaches.

4.2. Identifying groups of similar behavior

Using Levenshtein’s (1966) string-edit algorithm (the ‘default’ scoring scheme in
eyePatterns) and average linkage clustering, we analyzed the data for all 40 sequences
to confirm whether fast and slow groups emerge. It is immediately apparent from the
resulting dendrogram (Figure 5) that the fast group has many similar sequences,
whereas the slow group does not. Similar to the greater variance identified in response
speed for the slow group compared to the fast group (Figure 2), we again find a
greater variance in viewing behavior for the slow group. Note that the spatial distances
in the dendrogram are not necessarily scaled to the sequence similarities, but counting
the number of branches between the sequences allows meaningful interpretation (West
et al. 2006).

To validate these results, we used another scoring scheme for clustering (Figure 6) based
on the Needleman and Wunsch (1970) sequence alignment algorithm. As mentioned earlier,
this algorithm calculates the similarity based on a match reward (set to 1), a gap cost (set to
0), and a mismatch penalty (set to -1). We visualize the results using MDS (Kruskal and
Wish 1978).

Similar to the results represented in the dendrograms (Figure 5), we find that the
fast group (red labels) clusters more consistently than the slow group (blue labels)
(Figure 6). In MDS, the visualized spatial distances are proportional to the similarities
(or distances) between sequences, that is, when inspecting Figure 6, the labels that
appear close (or overlapping) represent similar sequences. The so-called stress level
can be used to determine how well output distances in an MDS configuration match
the similarity of the input data. Using Kruskal’s stress formula 1, a rule of thumb
suggests that 0 is considered a perfect match, any number less than 0.05 is exceptional,
and more than 0.15 is unacceptable (Kruskal and Wish 1978). The stress levels for our
results are in the acceptable ranges.

The 15 sequences from the faster participants (out of 20) that are found to be most similar
by both algorithms are circled in Figures 5 and 6. Nine of the 15 sequences (60%) are from
experts, and nine (not necessarily the same ones) of the 15 (60%) are participants solving
Task 1. Eight of the 15 (53.3%) sequences came from participants using carto.net and seven
of the 15 (47.7%) from Natlas, indicating that the stimuli did not have a strong effect on the
fastest 15 strings. The task, participant background and training, or the stimuli type/design
can affect the inference making (e.g., gaze) behavior. Therefore, we also looked at the
possible clustering based on task, participant background, and design independently.
Although the total set of 40 sequences do not clearly cluster based on either task or interface
design, the sequences for the fast group cluster based on task, and those of the slow group
cluster based on the interface design.

International Journal of Geographical Information Science 1569

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
G
e
o
g
r
a
p
h
i
s
c
h
e
s
 
I
n
s
t
i
t
u
t
 
d
e
r
 
U
n
i
v
 
Z
u
e
r
i
c
h
]
 
A
t
:
 
1
8
:
2
3
 
6
 
O
c
t
o
b
e
r
 
2
0
1
0



4.3. Microlevel behavior identification by transition frequency analysis

Clustering reveals overall similarities between sequences. However, to identify possible
microlevel behavioral patterns (thus possible reasons for differences) between groups, we
calculated transition probabilities between viewing events within a sequence using
eyePatterns.

Each matrix cell has three values in the transition probability matrices as shown in
Figures 7 and 8. The first line shows the tallies (count), the second line shows the ‘row
probabilities’ (AOI in the row leads to AOI in the column) and the third line shows the
‘column probabilities’ marked with C after the percent sign (AOI in the column comes from
the AOI in the row). For example, in Figure 7, we can study the relationship between the
AOIs Select (S) and Locate (L). The number of transitions from S to L is 47, with a 34.56%
probability that S leads to L (i.e., participant looked at S then at L, instead of R or M), and
with 28.32% probability that the gaze at L comes from S (instead of R or M). Comparing the
row probabilities (first row in Figure 7), we see that the highest probability is that S leads to
M, in other words, faster participants are most likely to look at the map (M, 55.89%) after a
Select (S) operation (instead of L or R). Comparing the column probabilities for S (first
column in Figure 7), we see that the highest probability that a participant selected an attribute
(S) (49.26%) is after looking at the map (M).

An overview of the tallies in both matrices (Figures 7 and 8) shows that the slow group is
more likely to go back and forth between all the AOIs. The tallies come from the collapsed
sequences, which are still considerably longer for the slower participants. This cycling
behavior confirms what we suspected based on the sequence lengths alone. Comparing
the tallies in the two matrices shown in Figures 7 and 8, we can see that the highest transition
occurs between M and R and the lowest between S and R in both groups.

The column probabilities share overall tendencies between groups. However, row
probabilities reveal a difference: while in both groups S leads to M the most, in the fast
group it is least likely that M leads toS. For the slow group, it is more likely that M leads to S
than M to L, that is, the faster participants selected (S) the attribute first, then checked the
map (M), maybe use zoom tools to locate (L), and then move on, whereas the slower
participants are more likely to cycle between Select (S) and Map (M). A closer look at the
differences tells us a similar story, as summarized in Tables 2 and 3.

Table 2 demonstrates that the chances that the participants find the answer after viewing
the map (R leads to M) is approximately 7% higher in the fast group. Members of the slow
group, after looking at the map, most likely go back to select (M leads to S approximately 9%
more in the slow group than in the fast group). Once the response is found (R), the fast group
is more likely to proceed to L or S, whereas the slow group is more likely to go back to M
(R leads to M approximately 7% more in the slow group than in the fast group).

The transition probabilities also show that the slow group is cycling between S and M a
lot more; M leads to S approximately 9% more for the slow group (Table 2) and more than
20% more move from S to M (Table 3). L leads to M and L leads to S are more frequent in
the fast group compared to the slow group, and M leads to L is more frequent in the slow

Table 2. The row transition probability differences based on Figures 7 and 8 for the fast (lowercase f)
and the slow (lowercase s) groups. When slower participants are more likely to perform the transition,
the line is highlighted in gray (s . f). Bolded AOI labels are the starting event and the gray AOI labels
the ending event.

SL: 6.68% f . s LS: 10.12% f . s MS: 8.49% s . f RS: 1.02% f . s
SR: 2.37% f . s LR: 5.92% f . s ML: 0.71% f . s RL: 5.95% f . s
SM: 9.06% s . f LM: 16.03% s . f MR: 7.77% f . s RM: 6.96% s . f
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group compared to the fast group (Table 2), which indicates that the faster group uses the
locate (L) (e.g., navigational tools, zoom, pan) more efficiently. After responding, approxi-
mately 7% more of the slow participants go back to M (R leads to M, Table 2), and
confirming this, 5% more of the slow participants arrive from R at M (Table 3), potentially
indicating slower participants feeling uncertain about their response.

4.4. Local alignment and pattern discovery

Transition probabilities are basically Markov chains, that is, they consider the local ‘state’
immediately before and after an event but do not reveal possible repetitive cycles longer than
two-letter long patterns and do not reveal where in the sequence they occur. For this reason,
we locally aligned the 15 sequences that clustered earlier using eyePatterns’ Smith and
Waterman (1981) algorithm implementation (West et al. 2006). A snippet from the results
can be seen in Figure 9.

Local alignments between individual pairs of sequences, followed by a string
search, may help reveal additional microlevel patterns. The local alignments among
the fast participants do not have many surprising behavioral patterns. However, we
have identified several ‘microlevel’ cycles. These cycles show that although there is a
constant interaction with the map throughout a sequence, select and locate (e.g., SMS,
LML) appear more often at the beginning of a sequence, whereas response (MRM), as
expected, appears more toward the end of a sequence. This pattern roughly holds also
for the slower participants, with additional ‘MRM’ cycles appearing in the middle of
the sequence. This may again suggest that the faster participants indeed have a more
direct (possibly more confident), thus efficient, visual analytics strategy. The slow
group repeatedly returns to study the map. Very long strings such as SMSMSMSMSM
and RMRMRMRMRM are considerably more present with the slower users. The
RMRMRMRMRM string can be identified in 13 of the total number of sequences
(32%); in 3 sequences from the faster participants (23%) and in 10 from the slower
participants (77%). Similarly, the SMSMSMSMSM cycle can be seen in 8 sequences
(20% of all sequences) of which only two (25%) are fast, and six are slow participants
(75%).

Table 3. The column transition probability differences based on Figures 7 and 8 for the fast (lower-
case f) and the slow (lowercase s) groups. The gray highlight denotes slower participants that are more
likely to perform the transition (s . f). Gray AOI labels are starting events, and bolded AOI labels
denote the ending events.

LS: 17.00% f . s SL: 1.3% f . s SM: 3.04% s . f SR: 0.52% f . s
RS: 3.22% f . s RL: 7.67% f . s LM: 2.61% s . f LR: 4.45% f . s
MS: 20.22% s . f ML: 8.53% s . f RM: 5.66% f . s MR: 4.96% s . f

Figure 9. Local alignment of two fast participants.
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5. Discussion

In our case study, based on a theory-driven approach, we compared the recorded visual
analytics sequences from participants to a previously established baseline sequence deter-
mined by a cognitive walkthrough (hypothetical sequence). We found that the participants,
independent of their efficiency, generally follow a sequence that agrees with the hypothetical
sequence. However, we are left with the question why there are differences between the fast
and the slow groups, and what and where are these differences? Looking at the background
of our participants, we find that proportionally more experts are in the fast group, which
agrees with previous findings in usability studies (e.g., Stenfors et al. 2003). The varying
length of the visual analytics sequences across slow and fast participants confirms that faster
participants are more efficient in their visual search strategies as they require fewer fixations
(Goldberg and Kotval 1999) to solve the visual analytics tasks.

We then followed a data-driven analysis approach applying multiple sequence explora-
tion methods and found that the slower participants spend more time repeatedly inspecting
the map in comparison with the faster participants. A cycle of re-fixations (moving back and
forth between AOIs) can be interpreted in two contradictory ways: either a localized learning
took place and people attend more to what they know and find useful (i.e., have a greater
interest) or they feel uncertain and want to confirm the information that they have found
(Goldberg and Kotval 1999). This hesitant behavior seems to appear more when the
information is presented both in a verbal (text) and in an iconic (graphic) format, and
sometimes is referred to as semantic uncertainty (Stenfors et al. 2003). Jacob and Karn
(2003) distinguished between an encoding task and an information search task, and sug-
gested that in the former the repetitive clusters indicate greater interest, whereas in the latter
they indicate inefficiency or difficulty in recognizing the targeted item. Our findings in this
case study confirm the latter, as we grouped the participants based on their efficiency in a
visuospatial information search task, and the less efficient group has many more repetitive
cycles. As a result of the clustering, we also find that the faster participants have similar
sequences based on the task, and slower participants have similar sequences based on the
display design (they are not necessarily faster with one stimuli over the other, but their visual
scan patterns change when the design changes). We interpret this as another indication of the
saliency effect found by Fabrikant et al. (2010) and others, showing that naive participants
tend to extract information based on perceptual salience rather than thematic relevance.

6. Conclusions

The interaction between a display and a user can be affected by many factors including the
nature of the task and the design of the displays (Yarbus 1967, Olson 1979, Stark and Ellis
1981, Brandt and Stark 1997), but ultimately the interaction is highly controlled by the user
(Stenfors et al. 2003). Theories such as the scanpath theory (Noton and Stark 1971) suggest
that this ‘moderating internal mental power’ or ‘plan/schema of visual activity’ has a strong
correlation to human eye movements (Yarbus 1967, Privitera 2006). This is why the eye
movement studies can be very helpful in uncovering visual analytics strategies of users, and
how these strategies relate to the task at hand, and/or the display design. Eye movements are
fairly reliable as a proxy to attention, and, in recent years, data are straightforward to collect
(Duchowski 2007). However, as in other areas, we seem to be able to collect data at higher
(temporal) resolutions faster than we can analyze it (Thomas and Cook 2005).

Fixation sequences obtained through eye movements are very complex to analyze and
understand, not only because the data may be difficult to group and filter but also because
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there are different ways to measure similarity between gaze paths which may yield different
results (Lorigo et al. 2006). In this article, we suggest employing the well-established
sequence analysis methods borrowed from bioinformatics that are rarely used in empirical
studies to assess the utility and usability of dynamic geovisual analytic displays, and in the
process introduce our own software PoP Analyst that helps to support this. Our case study
demonstrates that it is possible to identify visual analytic activity patterns and strategies
paying attention to individual and group differences. The identified differences might allow
us to enhance our understanding of cognitive spatial processes when performing visual
analytics tasks. As Slocum et al. (2001) suggested, when such differences are identified, two
approaches are possible to address the question ‘what to do with them’: integrate the insights
from the findings in education (training) of potential users, or modify the design to meet the
needs of the user. Therefore, a future direction for this kind of work could be to first study the
task- and stimuli-based clustering more in depth and then to modify the design of the
interfaces for further comparative testing. Additionally, another important future direction
could be to systematically compare and contrast methods, thresholds, and tools that are used
in sequence analysis of eye movement recordings to establish benchmarks and guidelines for
this kind of empirical work.
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