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Neuroimaging results are typically graphically rendered and color-coded, which influences the process of
knowledge generation within neuroscience as well as the public perception of brain research. Analyzing
these issues requires empirical information on the display practice in neuroimaging. In our study we evalu-
ated more than 9000 functional images (fMRI and PET) published between 1996 and 2009 with respect to the
use of color, image structure, image production software and other factors that may determine the display
practice. We demonstrate a variety of display styles despite a remarkable dominance of few image produc-
tion sites and software systems, outline some tendencies of standardization, and identify shortcomings
with respect to color scale explication in neuroimages. We discuss the importance of the finding for knowl-
edge production in neuroimaging, and we make suggestions to improve the display practice in neuroimaging,
especially on regimes of color coding.

© 2013 Elsevier Inc. All rights reserved.
Introduction

Colors are a powerful attribute of our visual world. They highlight,
decorate, symbolize, regulate, soothe and warn. They mediate feel-
ings and emotions but also influence cognition (Elliot and Maier,
2007). Perceptual illusions make us “see” non-existing colors
(Benham, 1894), judge two identical colors as different or perceive
different colors as identical (Wong, 2010). Rapid automatic process-
ing of color interferes with other senses and biases the hedonic aspect
of a perceptual experience (Österbauer et al., 2005), the cognitive
evaluation of sentences (Reber and Schwarz, 1999), or the trustful-
ness of data (Skarlatidou et al., 2011). Based on such findings, visual-
ization research has established guidelines to select appropriate
colors and color scales for data display and to adjust the associated
color maps for particular applications (Silva et al., 2011).

Also in neuroimaging, color has achieved a powerful role in data vi-
sualization (Ashby, 2011; Dumit, 2004; Otte and Halsband, 2006;
Schott, 2010). After a century of monochrome medical imaging, its in-
troduction has revolutionized the field. However, coloring the brain in
action has been less reflected on in neuroscience than, e.g., in geographic
information visualization, where major cartography textbooks discuss
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color perception, semantics of color, color models, and the use of color
hue, saturation, and lightness to convey data relationships in maps
(Kraak and Ormeling, 2010; Slocum et al., 2010). In contrast, methodo-
logical discussions in neuroimaging focus on issues like study design
(Caplan, 2009), signal interpretation (Logothetis, 2008), or circular
data analysis (Kriegeskorte et al., 2009). If considering the effect of im-
ages on a lay audience with respect to the persuasiveness of a scientific
argument (Keehner et al., 2011;McCabe and Castel, 2008), color has not
figured as a prominent attribute. The same is true for ethical concerns
about misleading image-driven misrepresentations of neuroscientific
results in the public (Illes et al., 2010) or courtroom (Baskin et al.,
2007). Empirical research on the display practice in neuroimaging
(methods of image creation, image iconographies, epistemic effects of
neuroimages, etc.) is rather scarce (Alač, 2004; Beaulieu, 2002; Burri,
2008; Dumit, 2004).

Our study intends to inform the debate about neuroimaging data vi-
sualization. Based on an analysis of more than 9000 functional brain
maps published over a period of 14 years we depict the display practice
with respect to color use and consider underlying factors like image cre-
ation software or image production sites. Our focus was on the breadth
of display styles, trends in standardization and potential shortcomings
in the use of colors. This empirical grounding is important, because
data visualization is a central component in creating and advancing
knowledge in scientific communities in general (Jones and Galison,
1998; Tufte, 1997) and in medicine in particular (Kevles, 1998).
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As the pervasiveness of colors in today's structural and functional
neuroimaging is striking (Schott, 2010), a focus on color in depicting
the display practice in neuroimaging suggests itself. Colors can be used
in four different ways for visually presenting complex information: to
label, to represent or to imitate reality, to measure, and to enliven or
decorate (Tufte, 1990). In the neuroimaging literature, examples for
all four purposes are found, but colors may serve multipurpose func-
tions and their precise role is often not clearly circumscribed (Schott,
2010). Furthermore, color is often used to picture mathematical data
such as the magnitude of a statistical parameter reflecting activation
differences between two or more brain regions. This raises several
issues that merit consideration. First, viewers might overestimate the
distinctness of research data due to display differences that are not
conveyed by the data themselves. For instance, two colors might be
perceived as more distinct than two different shades of the same color
(Dumit, 2004). This invites the question of which display styles are
used in neuroimaging. Second, the perceptual impact of colors is depen-
dent on culture and varies with their perceived ecological valence
(Palmer and Schloss, 2010). These subtle, but influential factors of
color perception are largely outside an observer's awareness (Elliot
and Maier, 2007). Thus, the understanding between illustrator and
viewer, so crucial in the communication process, is implicit at best.
Given the sheer number of color scales available (Ware, 1988), it raises
the question whether a standard has emerged that would be compara-
ble to, e.g., the field of electroencephalography (Herrmann et al., 1989).
Third, evenwhen taking for granted that color-coding does improve the
way we access scientific data, the issue of standardizing perception
poses major challenges. These include a raft of implicit assumptions
about objectivity, the nature of the observer, the role of instruments,
and the trade-offs between standardization and descriptive power
(Johnston, 2002), but also involve very practical issues, such as the
use of numerical scales in univariate representations of data using
colors (Silva et al., 2011).

To address these issues, we investigated data of 14 years
(1996–2009) of functional neuroimaging display practice in six major
journals representing three different readerships (cognitive neuroim-
aging, imaging for clinical purposes, general scientific readership). To
make the study feasible, we focused on the two most important
functional imaging technologies fMRI and PET, including variants of
fMRI (BOLD and non-BOLD-contrasts; Figley et al., 2010), but excluding
diffusion tensor imaging and SPECT. By using a complete sampling
approach, we created a database of publications and figures published
in Annals of Neurology and Brain (neurology journals), Human Brain
Mapping and NeuroImage (neuroimaging journals), and Nature and
Science (broad interest journals). We collected information on the
origins of the contributions, on the software used in image analysis,
on image structure and image complexity (Berlyne, 1971), and on the
presence or absence of numerical explanations of neural activation.
We coded all pictures with respect to the use of color scales in brain
activation in order to identify different styles of brain images and eval-
uated their underlying regimes of data presentation. Coder reliability,
data accuracy, and data completeness were carefully checked.

Material and methods

This project extended over 33 months. Project start was in
December 2010. After preparatory work, database creation and image
coding extended from May 2010 to May 2011; preliminary data analy-
sis, completeness check, and data cleaning from June 2011 to February
2012; and data analysis and paper writing from March to September
2012. In the following, we describe the methodology in detail.

Choice of imaging methods, journals, and timeframe

In neuroimaging, many methods addressing structural (e.g., mag-
netic resonance imaging, MRI; diffusion tensor imaging) or functional
(e.g., positron emission tomography, PET; single photon emission
computed tomography; functional MRI, fMRI) aspects of neuronal
systems are employed. As functional neuroimaging raises specific
issues with respect to the use of colors and because we wanted to
understand the temporal development of the display practice, we
restricted ourselves to images created by fMRI and PET.

We expected differences in the display practice in different scien-
tific communities (Dumit, 2004). Therefore, we chose journals that
either fell into the subject category “neuroimaging” or “clinical neu-
rology” of the Thomson Reuters Web of Knowledge® classification.
For each category, we took the journals with the highest and
second-highest impact factor (IF) based on the 2009 data that have
been published at least since the mid-1990s. We selected Human
Brain Mapping (IF=6.256) and NeuroImage (IF=5.739) for the cate-
gory neuroimaging, and Brain (IF=9.490) and Annals of Neurology
(IF=9.317) for the category clinical neurology. Lancet Neurology
(IF=18.126) has been excluded as the journal's first issue was in
2002. We note that there is no one-to-one mapping between journals
and community. For example, Human Brain Mapping and NeuroImage
also rank at positions 3 and 4 for journals of the subject category
“Radiology, Nuclear Medicine & Medical Imaging”, which indicates that
representatives of clinical imaging also publish in these journals. Due
to these overlaps, we do not intend to map in detail all scientific fields
in which functional imaging has gained importance (e.g., psychiatry;
Fusar-Poli and Broome, 2006; see also the Discussion section).

In addition, we have chosen the journals Nature (IF=34.480) and
Science (IF=29.747) as representatives of journals that address a broad
scientific community. As all papers were saved as pdf-files, the access
rights of the six journals in the library of the University of Zurich deter-
mined the beginning of our time span. Building up the database started in
2010. Thus, our time frame spanned from January 1996 to December 2009.

Data acquisition and completeness tests

Data acquisition was performed in two steps. First, a publication
database was created. This database consists of contributions of all
kinds (including editorial articles in Nature and Science) from the six
journals that contained figures displaying data generated either by
fMRI or by PET, and in which a brain or brain part picture is shown.
We pursued full sampling by consecutively examining the electronic
table of contents of each journal issue. If a potential hit based on the
title and the abstract was identified, the pdf file was downloaded
and checked for figures. If the contribution contained appropriate fig-
ures, it was included into the database. Some contributions in Human
Brain Mapping (~5%) or NeuroImage (~6%) were very technical and
contained figures displaying fMRI or PET measurement results with
no resemblance to a brain image or displayed only simulated fMRI
data. Those were excluded from the data set. Supplementary online
information (and the figures therein) were also not included. For
creating the publication database, additional workforce besides the
three coders was involved.

The image database was set up using a template with the follow-
ing items: Figure identification number (consecutive numbering);
reference information (journal volume, year, and first page of the
contribution); title of the contribution; type of the contribution
(research article, review, short communication, comment, and edito-
rial article in the case of Nature and Science); authors; nationality of
the contribution (defined by the country in which the lab of the last
author is located, as the last author usually is the supervisor of the
research published); name and location of the lab of the last author
(usually the name of the institute or department); text of the abstract
of the contribution; text of the figure caption; method used (fMRI or
PET); use of colors in the figure (yes or no); software used for image
creation (see below); reference of the colors used (e.g., activation
location, t-values); image coding (see next paragraph); presence of
a color scale (if applicable); image structure (number of parts in the
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figure differentiated, e.g., by a), b), c), etc., and number of single brain
pictures per part).

Each figure of a contribution generated one entry in the database. A
“figure” (or image) is a single picture or a set of pictures clearly denoted
as a distinct entity in the contribution by the facts that it has a figure
caption and that it is cited in the text as “Figure x”. Inmost cases, afigure
consisted of more than one picture (captured by the item “image struc-
ture”) and the pictures may also involve different color scales or even
different methods. Some items of an entrymay therefore include sever-
al parts (e.g. two coded color scales). In rare cases, a figure consisted of a
complex arrangement of pictures (e.g. flow chart) and we tried to cap-
ture the structure of the figure as accurate as possible for the item
“image structure”. The image database was set up by three coders
(M.C., D.A.V., and L.H.) and each of them coded a randomly assigned
set of journal volume numbers in order to limit the bias that the display
style of a certain journal may impose.

In the majority of the cases, either the method section or the
supplementary online material contained a paragraph describing
the data analysis and the software used for performing the analysis.
In most cases (in particular for the common tools like SPM, AFNI,
and BrainVoyager), we can assume that the software was also used
for creating the single pictures, although information on image
post-processing (using graphics software like, e.g., Adobe Illustra-
tor®) that is necessary for merging different types of pictures (brain
images, charts, etc.) into a single figure is not outlined in any contri-
bution. For some software or in-house programs that have not been
specified further, we were unable to clarify whether they were
actually used for generation of pictures suitable for publications. As
this is rare, we did not consider this shortcoming relevant.

It turned out that identifying fMRI and PET papers based on the
electronic table of contents was more difficult in Brain, Annals of
Neurology, Nature and Science than in Human Brain Mapping and
NeuroImage due to the lower number of those papers compared to
the total number of papers per issue. Furthermore, editorial contribu-
tions in Nature and Science were not always accessible as pdf file,
impeding the identification of articles with brain images. Therefore,
we repeated the full-text scanning by manually skim-reading all
issues in the printed editions of those journals from 1996 to 2009 —

also because the number of papers and images was significantly
smaller than for Human Brain Mapping and NeuroImage, i.e. a failure
in missing a paper would have a higher statistical weight. In this
way, between 12% (Nature) and 31% (Brain) more contributions
have been identified and added to the publication database.

In order to assess the completeness of our database, we calculated
for each journal (excluding Nature and Science) the number of all con-
tributions between 1996 and 2009 that included the terms “PET” or
“fMRI” (or related expressions; full-text search) and compared this
number to the number of contributions in our publication database.
The numbers reveal coverage of 100% for Annals of Neurology, 92%
for Brain, 83% for Human Brain Mapping and 72% for NeuroImage. By
taking into account that a term-based search also counts publications
that do not contain fMRI or PET images (about 8%, if Brain is taken as a
proxy) and that in Human Brain Mapping (5%, see above) and in
NeuroImage (6%) contributions that were too technical have been ex-
cluded, we can conclude that we reached full coverage for Annals of
Neurology, almost full coverage for Brain and that we missed between
4 and 14% of all fMRI and PET contributions in Human Brain Mapping
and NeuroImage. As the number of images for both journals is very
high and as the missed contributions are probably randomly distrib-
uted in the time interval 1996 to 2009, we can assume that complete-
ness of the data set is sufficient for a robust trend analysis.

Image coding and coder reliability check

The color use in images has been coded as follows. The base colors
have been attributed numbers: black: 1, white: 2, red: 3, yellow: 4,
green: 5, blue: 6, violet/purple: 7. If an image used colors merely to
pinpoint specified regions, e.g. using red and blue for this purpose,
we coded this as 3/6. If an image used, e.g., a full rainbow scale to
illustrate, e.g., t-values, we code this as: 7-6-5-4-3. In the sequence,
we always started with the color that indicates the value closest to
the statistical baseline (or lowest significance) and ended with the
color that indicated the most statistically significant value. If the
figure contained no explicit scale but nevertheless used color
sequences to display activated regions, we zoomed into the picture
and wrote down the sequence of colors beginning at the border of
the colored area up to the center, e.g. an area where red is the
outmost color, followed by yellow, and white is in the center, we
wrote: 4-3-2. Intensity changes in colors are indicated by (1) for
darker or (2) for lighter, e.g. a transition from dark green to light
green is coded as 5(1)-5-5(2). Besides the colors used to label speci-
fied brain regions or to display activated areas, we also coded the
color of the brain template used and the color of the background in
which the template has been embedded in the picture. Usually, the
template is a standard gray brain, which is indicated by the term
“gray”. In glass brains, the template is usually white or sometimes
black with a black (or white) contour line sketching a brain. The back-
ground is usually black, sometimes white or gray.

In order to assess coder reliability, 5% of all figures in the database
(460) were randomly chosen and re-coded by one coder (M.C.). Seven
cases (1.52%) were identified where coding errors led to a wrong attri-
bution of a figure to a main color scale class (see the Results section).
Another 15 cases (3.26%) have been identified where not all colors in
a single-color-labeling were coded (8), where a present color-scale
was not coded at all (3) or where colors have been coded using wrong
numbers (4). This leads to a total error rate estimate of 4.78%, which
we consider as acceptable for a robust trend analysis.

Statistical analysis

We used basic descriptive statistics and correlation analysis for the
most part of data analysis using Mathematica®, Version 8.0. Inspired
by the notion of image complexity by Berlyne (1971), we calculated
the complexity of an image as

Ci ¼
n� l� s

max nli

� �

where n is the total number of single pictures in the image, l is the
number of levels of the image (e.g., if it consists of three parts labeled
as a), b) and c), then l=3), s is the number of different main color
scales of the image and max nli

� �
is the number of pictures of the

level li that has the highest number of pictures (taking into account
that sequences of pictures on a level often show either a brain from
different perspectives or a sequence of brain slices, i.e. tell “the
same story” thus diminishing the complexity of the picture). As
both the n and the l distributions have a pronounced long-tail charac-
teristic, a direct comparison of the Ci-values or calculating mean
values makes little sense. Instead we calculated whether a specific
image is in the first two quartiles, the third or the fourth quartile of
the Ci-distribution in order to analyze the trend.

Results

Description of the data set

Using the methodology outlined in the section Material and
methods, we created a publication database of 3993 contributions
and an image database of 9179 figures (Table 1). The data confirm
the expected pervasiveness of the use of colors in neuroimaging
result presentations and the expected dominance of fMRI over PET.



Table 1
Overview of the dataset: In “# publications” we indicate also the fraction of the
analyzed papers compared to all papers (first number in bracket) and the fraction of
research articles compared to all analyzed articles; latter include also review papers
or, in Nature and Science, editorial articles (second number). In “# figures” we indicate
also the fraction of PET-images (first number in brackets) and the fraction of images
using color (second number). The data show that 90.6% of all images used colors,
20.2% were created using PET. The temporal developments of the total number of
contributions and figures show a steady increase until 2006, where a plateau is reached
(data not shown). The temporal development of the fraction of PET images per year
shows a dramatic decrease over time from 78.3% in 1996 to 9.9% in 2009 (data not
shown). *upper limit, as the electronic databases on which the counts are based do
not contain all articles of the editorial part for Nature and Science.

Assumed main
readership

Journal # publications
(% of all publications/%
research articles)

# figures
(% PET/% color)

Neuroimaging Human Brain Mapping 712 (57.4/99.6) 1659 (13.0/90.0)
NeuroImage 2352 (42.2/99.0) 5678 (15.3/93.6)

Neurology Annals of Neurology 181 (5.9/98.3) 301 (60.5/86.4)
Brain 448 (14.4/97.1) 1089 (46.1/76.7)

Broad interest Nature 96 (0.3*/71.9) 140 (34.3/94.3)
Science 202 (0.7*/60.4) 312 (18.3/96.8)

Total 3993 9179 (20.2/90.6)
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A striking feature of the data set is that few image production sites
and image creation software systems dominate: Although 29 coun-
tries have been identified to host image-producing sub-units (insti-
tutes, departments and the like), only three of them (USA, UK, and
Germany) produced 65.6% of all images. In the temporal develop-
ment, this dominance decreased over time (Fig. 1a). Within the
top-three, the importance of Germany increased and UK sub-units
produced fewer images over time. This dominance pattern is reflected
on a smaller geographical scale. 320 cities have been identified to host
imaging producing sites, but London is the undisputed “imaging
capital” of the world, as 11.5% of all images have been produced
there. The number of identified universities and other institutions is
491; and the number of institutional sub-units is 1339. On all levels
of spatial organization, a pronounced long-tailed distribution of the
number of images produced per unit is discernible, i.e. few sub-
units produce many images, whereas many sub-units produce only
few images (Fig. 1b). Apart from the countries, the scaling of the
distributions is comparable and the lab distribution fits a power law
with exponent k=−0.66. This dominance pattern influences also
the geographical distribution of the papers published in the journals
investigated (Fig. 1c). In particular in the high-ranked interdisciplin-
ary journals, papers originating from imaging sites in the USA and
the UK dominate (Nature: 84.1%, Science: 69.3%).
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The same dominance pattern holds for the software that has been
used for analyzing the imaging data and (supposedly, see the
Discussion section) for creating the images. Although we identified 72
different software programs (excluding those labeled as “in-house soft-
ware”), 85.8% of all images fromwhich information about software was
available were produced by only three systems (Fig. 2a, left): Statistical
Parametric Mapping, SPM (originating from the Wellcome Trust Centre
for Neuroimaging, London, UK); Analysis of Functional NeuroImages,
AFNI (originating from the Medical College of Wisconsin, Milwaukee,
USA); and BrainVoyager (Brain Innovation B.V., Maastricht, The
Netherlands). Both SPM and AFNI are distributed freely under the
Gnu General Public License Agreement, which partly explains the success
of those two systems. The “quasi-monopoly” of SPM, dominating 69.3% of
the “imaging market”, has diminished over the years (Fig. 2a, right).
Noticeable is the substantial decrease of the fraction of images where
information on the analysis software was missing (49.0% in 1996, 7.2%
in 2009; Fig. 2a, right), indicating improvements in communication
standards. PET papers are more likely not to include information about
the analysis software compared to fMRI paper (27.0% versus 18.6%).

For SPM, we (if available) collected information on the version
used. Most common in our data was SPM99 (released in January
2000), followed by SPM2 (released in 2003) and SPM5 (released in
December 2005; see the SPM homepage http://www.fil.ion.ucl.ac.
uk/spm/; Fig. 2b, left). We also depicted the replacement of SPM ver-
sions (Fig. 2b, right). It took 2 years until SPM99 entailed about half of
all SPM-produced images and another 2 years for complete domina-
tion. The same pattern is observable for SPM2, whereas SPM5 needed
much longer (4 years) until about half of all SPM-produced images
relied on this version.

Finally, we also found variances within the scientific communities
represented by the three journal groups. PET images are much more
common in the clinical neurology journals compared to the neuroim-
aging journals; surprising was that the number of PET images pub-
lished in Nature was almost twice as high as in Science (34.3%
versus 18.3%). The number of fMRI and PET papers compared to the
total number of papers per year is also substantially smaller for the
clinical journals compared to the neuroimaging journals; surprising
was the difference between the two clinical journals, as the percent-
age of those papers in Brain was more than double than in Annals of
Neurology (14.4% versus 5.9%). Distinctions among Brain and Annals
of Neurology were also discernible with respect to the mean number
of figures per contribution (significantly smaller in Annals of Neurol-
ogy) and display styles (figures in the RBS style, see below, were more
common in Annals of Neurology resulting from the higher fraction of
PET images).
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Display styles

The color coding reveals a remarkably diverse use of colors. We
identified five main display styles (Fig. 3a) that vary with method
and software used (Fig. 3b). Most common is the heated body scale
(HBS) in which the luminance increases from black through red,
yellow and white. 44.4% of all images used this style (either the full
scale or sections), the transition red–yellow (20.4%) is the single
most common color scale used. The second most common styles
(22.4%) are single color maps (SCM) for denoting, e.g. activated
regions. Third is the rainbow scale (RBS, 15.2%), where the hue is
varying in the order of the spectrum (violet–blue–green–yellow–

red; or sections of this sequence), sometimes including black and
white at either end. About equally frequent (6.8% and 7.4%) are single
color luminance changes (CLC, e.g. from blue to white) and glass
brains (GLB) — a characteristic display style for statistical maps and
a peculiar format for SPM using usually black of gray shades for local-
izing activation and displaying the brain as a (usually) black contour
on a (usually) white background. 3.9% of all images used color scales
that were different from those of the five main groups (e.g. red–blue
transitions).

The phenomenology with respect to the use of display styles is,
however, larger than these main classes suggest, as one has to take
into account that the main display style groups consist of various
sub-scales. For example, only 49.2% of the scales in the rainbow
scale (RBS) group used the full rainbow spectrum in the standard
way (i.e. red represents the highest value of statistical significance),
33.7% used only a section of the spectrum and 17.1% reversed the
sequence of the colors (e.g., blue denoted the highest significance).

The arrangement of images within a single figure is captured by
our image complexity measure. The distribution is pronouncedly
long-tailed, i.e. only a few images have a very high complexity (data
not shown). We found no statistically significant trend in the tempo-
ral development of image complexity, i.e. the figures published in
1996 have basically the same image complexity as those in 2009,
but we found expected differences for the three communities. The
fraction of pictures with high image complexity (fourth quartile of
the distribution) is lowest for Science (16.7%) and Nature (20.7%),
higher for Annals of Neurology (25.2%) and Brain (26.0%) and highest
for NeuroImage (27.8%) and Human Brain Mapping (28.9%).

Standardization

Despite the rather diverse phenomenology with respect to the use
of display styles, the temporal development shows a trend of stan-
dardization towards the heated body scale (HBS) (linear regression:
r=0.025, pb0.001), mainly at the expense of glass brains (Fig. 3c).
This trend becomes more pronounced, if only display styles are
considered that map an interval of numbers into the color space
(HBS, RBS, CLC, other). HBS then accounts for 63.2% of all cases.

With respect to the labeling of the color (i.e. what the color scale
denotes in the image, see figure legend), also some trends of stan-
dardization are discernible (Fig. 3d): The “HBS standard” is most
pronounced when the color scale codes for a statistical parameter
explicated as such. RBS is a “quasi standard” for figures referring to
“binding” (i.e. PET), and SCM is (not surprisingly) mostly used for
“area” coding. Interestingly, no substantial changes in color labeling
over time are discernible that could explain the overall trend towards
the HBS scale, although one would expect that the largest labeling
group “statistical values” (i.e., a precise labeling of a color scale)
should display an increase over time, whereas the second largest
group “activity” (a much more general description) should display a
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Fig. 3. Display styles and standardization. a) Distribution of the five main display styles and the class “others” among the data set (left) and examples of color scales (right). b) Re-
lationship between display style and method (fMRI or PET, left) and software used (right): The largest fractions of PET images compared to fMRI images are discernible in the GLB
(42.1%) and RGB (37.5%) style. Glass brains are preferably, but not exclusively produced by using SPM (83.5%), whereas pictures in the RGB display style often lack information
about the software used. c) Temporal development of the fraction of the main display styles. d) Fraction of the main display styles according to the reference of the color. We
coded any labeling of the colors presented given either in the figure caption or in the figure itself (scale) into 10 classes: “activation” (explicit wording like “active”, “increase”),
“activation & deactivation” (when the wording refers both to activation and deactivation), “area” (when the wording refers to a specific area of the brain), “binding” (binding po-
tential etc.), “correlation” (when the color scale codes for the strength of a correlation between parameters), “deactivation” (for “less active”, “decrease” and the like), “parametric
map” (if the wording refers to a statistical parametric map without further explications), “signal change” (for a wording that only refers to a change in the signal without further
indication), special cases (e.g. color-coding of latency times), or “statistical value” (if the color scale is explicitly said to code for F, P, T, or Z values).
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decrease if the communication practice would improve. However, the
corresponding linear regressions are small and not statistically signif-
icant (“statistical value”: r=0.003, p=0.40; “activity”: r=−0.003,
p=0.45), i.e. the trend towards HBS emerged independently of
changes in labeling practice.

In neurophysiological brain mapping and EEG it was agreed by
convention that red and yellow indicate high activity and positive po-
larity, whereas green and blue are used for low activity and negative
polarity (Herrmann et al., 1989; Schott, 2010). To test whether this
convention also holds for neuroimaging, we counted the appearance
of the basic colors red, yellow, green, blue, and violet in figures of
the labeling classes (see above) “activation” and “deactivation”. A
special set of figures are those that included two color-scales that
coded for “activation” and “deactivation”. For this set, the convention
was clearly fulfilled, i.e. activation is coded almost exclusively using
red and/or yellow, and deactivation is coded using blue and/or
green and/or violet. However, as soon as the figures referred to
“activation” or “deactivation” alone, the standard eroded. In particu-
lar, in 54.2% of the cases “warm” colors (yellow, red) have been
used for coding “deactivation” (data not shown).

A clear standardization is discernible with respect to the color of the
brain template and the background color of a figure. 86.3% of the figures
used a gray template and a black background, 7.5% a gray template and
a white background, and 3.7% didn't show any template (i.e. the color
scale used colored the whole brain) and used a black background.
Other combinations were very rare (e.g., only 1.5% of the figures used
a color as background, i.e. not black or white).

Finally, also on the level of institutional sub-units, tendencies of
standardizations are discernible, as laboratories/departments tend
to have unique styles. To detect such trends of standardization with
respect to display styles, we analyzed all sub-units that produced at
least 10 images (n=259) and calculated for each of them the ratio
of each display style per sub-unit. As the distributions of display
style fractions – with exception of HBS – failed to pass common
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tests for normality (Anderson-Darling, Cramér von Mises, Pearsons
χ2), a comparison using means is not appropriate. Rather, we ana-
lyzed for each sub-unit whether the fraction of a specific style lies
in the fourth quartile of the distribution, indicating a strong emphasis
of a style. Whenever this was the case, the sub-unit got one point for
uniqueness (for HBS, the sub-unit got also a point of the fraction lied
in the first quartile, indicating a significant neglect of the generally
dominating style). In this way, a measure for uniqueness is created.
15 sub-units were distinct with respect to at least 4 styles using our
degree of uniqueness measure (see Fig. 4a). A closer look to those
sub-units (Fig. 4b) reveals that all of them resist to use the dominat-
ing style HBS, but put an emphasis on RBS, SCM or used uncommon
color scales.
Shortcomings

A striking finding is that in 38.2% of the images that displayed neu-
ronal activations using color scales the colors were not associated
with numbers by either a scale bar or by outlining the meaning of
the colors in the figure caption. If the display style “glass brain” is
included in this figure (when gray shadings reflect numerical data
in an unspecified way), it rises to 40.9%. Missing scale explication is
more common in PET than fMRI papers (46.3% versus 39.5%). Also
the software used has an influence on the explication of the scale
(Fig. 5a). In the temporal development, a tendency (although no
clear trend) to explain scales is discernible: in 1996, 47.6% of the
figures did not have explicated scales; the number rose up to 64.9%
in 2000 and then dropped to 35.0% in 2009. This tendency seems to
be influenced by software improvements, as newer versions of SPM
increase the likelihood that a picture contains a scale, whereas
SPM5 also increases the likelihood of using single colors (mostly
red) for indicating activation (Fig. 5b). Furthermore, images in the
CLC style surprisingly often lack explained scales (47.5%), whereas
uncommon color scales are usually accompanied by scale explications
(missing explications in 19.9%).

Another shortcoming refers to the still considerable popularity of
the RBS scale, although there are well-known problems associated
with it (Silva et al., 2011): First, to some users it might not present
an intuitive ordering. Second, yellow is present half way through
the color scale, which means that if one is interested in depicting
extreme values the middle values might interfere, since yellow has
a highlighting effect being perceived as brighter than the other colors.
Third, the saturation steps do not equally represent differences
between numbers. Yellow has the smallest number of perceived
saturation steps and users find it harder to distinguish small satura-
tion variations for yellow than, for example, for blue.
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Discussion

We have provided an empirical analysis of the display practice in
functional neuroimaging that outlines characteristics and challenges
concerning the presentation of results in neuroimaging. Our first
question concerned the variability in display style. We found that,
despite a very limited number of dominating software systems and
contributing institutions, a considerable variation in display style
can be observed. Several factors may account for this apparent
discrepancy. First, a contribution may include images for purely illus-
trative purposes (e.g. a PET scan) that were not produced by the
software mentioned in the Material and methods section, increasing
the variability of display styles attributed to a specific software
system. The current communication practice in neuroimaging does
not allow identifying those cases. Second, the specific scientific ques-
tion posed may influence the display style. Testing this hypothesis
would require an in-depth content analysis of the contributions in
our database, which was beyond the scope of the present work.
Third, although the software used for image data analysis produces
the raw picture, image-post processing may increase the variability
in display styles. As image post-processing is not outlined in the
method sections of neuroimaging papers, it is currently not possible
to quantitatively assess the importance of this factor based on
published information. This would require surveys among image
producers — a study that we are currently preparing. Finally, there
is a fourth factor potentially responsible for the variability of dis-
play styles and for which we present empirical support. Sub-units
(laboratories/departments) may develop a “unique visual language” to
distinguish themselves from other sub-units. As we have shown,
sub-units indeed have clear preferences with respect to the display
style they use. These preferences may result from the types of
questions particular sub-units address. Disentangling this possible
content-driven motivation from the more superficial wish to create
an own “iconography” would require an in-depth analysis of the
image creation process among different sub-units.

Our second question asked for attempts of standardization. Across
the 14 years covered by the spotlight of our analyses, some trends
emerged. First and foremost, we noted an increasing popularity of
the heated body scale to denote increasing activity (or increasing
statistical significance) and the use of “cold” colors for a decrease in
activity (or decreasing statistical significance). However, the degree
of standardization still limps far behind the one reached in, for
instance, cartography and geographical information visualization
and a comparison with this field may be illuminating. In topographic
maps, one universal convention is to render water bodies in blue, not
because they are always blue (they actually rarely are!), but because
people probably easily associate the color blue with water (Robinson,
RBS CLC SCM GLB other

Display style

f sub-units with respect to display styles. b) Distribution of display styles among the 15
isplay style; the gray bars indicate the ratio of images of the correspondent display style
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1952). With the rise of more abstract, especially statistical maps since
the 19th century, a more generic approach to the uses of color has
been discussed for cartographic maps and statistical graphics. The se-
lection of color shades parallel to the progression of data values – the
higher the data value, the darker the color shade – has emerged as
one of the few standards by the end of the 19th century (Palsky,
1999). Since then, color progressions are by convention also used in
cartography to depict quantitative data sets, for example in a themat-
ic map, when using data at the ordinal (i.e., high-medium-low inci-
dents of crime), interval (i.e., day temperatures in degrees Celsius),
or ratio level (i.e., number of inhabitants per country) of measure-
ment. For these kinds of data sets single-hue, bi-polar hue, comple-
mentary hue, and value progressions (i.e., light-to-dark), and more
recently two- and more variable color progressions and multivariate
blends are commonly used in statistical maps. Many of such
cartographic conventions have been tested by time and eventually
found to be successful because of their commonly accepted use
(Garlandini and Fabrikant, 2009). More recently, cartographic design
conventions have been empirically assessed and found to be working
as predicted (Fabrikant et al., 2010; Hegarty et al., 2010), including
the principles for the systematic application of color in maps
(Brewer, 1994), and statistical data representations (Brewer, 1999).
Neuroimaging could take these long-standing and successful map-
ping principles and data visualization conventions as a starting point.

Regarding our third question, themost prominent among the short-
comings in the use of colors is the frequent absence of any color scale
explication. More than a third of the analyzed images were not accom-
panied by an unambiguous reference scale linking color codes to signal
strength or alteration. Using Tufte's (1990) terminology, colors in this
case have primarily a labeling function, i.e. they pinpoint to a specific
area, but do not allow representing specific activation values. For this
function, use of a single color would be sufficient. Our trend analysis
shows that the neuroimaging community is increasingly aware of this
inappropriate inclination towards “over-colorization”: use of newer
software systems (like BrainVoyager) or newer versions of SMP goes
along with a more frequent display of explicit color scales, and SPM5
supports the use of single colors for pinpointing on activated regions,
where arguably only a labeling function was intended by the authors.
This laudable trend to prevent the dissemination of “placebic” informa-
tion (Trout, 2008) should be fostered as it diminishes the seductive
force of color, which typically operates outside an observer's awareness
(Elliot and Maier, 2007).

The importance of explaining scales is outlined by experiencesmade
in cartography. Based on every day activities and interactions with the
world, people instinctively assume, often correctly, that higher is
more and that bigger is more (Lakoff and Johnson, 1980). In this
sense, the rationale for the commonly accepted darker-is-more conven-
tion in cartography is the intuition that people would naturally associ-
ate darker color shades with more of whatever is being symbolized in
the map (i.e., the deeper the water column in the ocean, the darker
the blue shade in the map). But this convention can conflict with
semantic conventions. For example, if one were to map the average
days of sunshine in Santa Barbara, California, over a year, then it is not
unmistakably clear whether to symbolize more days of sunshine with
darker yellow (i.e., following the darker-is-more convention), or to
apply a lighter yellow shade for more sunshine, following the semantic
connotations ofmore light yielding a brighter day. Similarly, using brain
images, it is not intuitively clearwhethermore activity should be repre-
sented by brighter or darker shades of a color. Depending on the chosen
semantic category (or metaphor), say temperature, one would have to
pick a fitting hue that also depends on the background color choice
(i.e., light or dark). To avoid ambiguity in the interpretation, the mean-
ing of the color progression needs to be communicated clearly with a
legend.

As outlined in the Introduction section, graphical, diagrammatic as
much as image-based rendering of data not only is a central component
in creating and advancing knowledge, but also in communicating
experimental findings within a given scientific community. Research
on regimes of data visualization and the specific intelligibility or cogni-
tive accessibility of representational formats is highlighted against the
abstractness of mere numerical scientific data (Delehanty, 2010;
Krohn, 1991). It has even been suggested that representational formats
generate a certain authority and strength of persuasiveness, which
grows out of its analytical power, its power to suggest and to communi-
cate (Giere, 1988) — a claim that has been empirically confirmed by
Keehner et al. (2011) for different types of brain images. The case has
been made that the question whether representational standards or
conventions bear this kind of authority has to be discussed against the
background of instrumental preconditions (Lynch and Woolgar, 1990)
as much as esthetic aspects (such as symmetry or color scheme) that
impact on representational formats to a significant degree, and hence
might guide scientific perception and interpretation of underlying
data (Huber, 2011). For instance, take a closer look at the correlation
of color-code and phenomena of interest, especially red–yellow as
“highness” and green–blue as “lowness” of metabolic processing. As a
result, thedynamics of color perception comingalongwith the epistemic
power of a validated unit of comparison (standard) might pave the road
for an deeper understanding of the phenomena presented, hence setting
the enquiry into the phenomena in question (e.g. “activity”) more and
more aside.

Conclusions and recommendations

In summary, our results and considerations lead to the following
suggestions with respect to the display practice in neuroimaging
(see also Fig. 6):

– The process of image production should be discussed in more
detail in the method section of publications, including choice and
application range of post-processing software.
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– If color scales are used in images, they need to be clearly explicat-
ed by a scale or an appropriate description in the figure caption. If
a figure primarily serves to display sites of activation (or the like),
single colors should be preferred.

– The discerned trend of standardization with respect to using the
heated body scale and “cold colors” (green–blue-transition) for
increase or decrease of statistical significance should be advanced
further. However, one has to take into account that the heated
body scale conflicts with the establishedmore-is-darker principles
discussed earlier, in particular if white is used to denote the
highest activation. Given the highlighting effect of yellow in per-
ception, we recommend that the highest statistical values should
be denoted by yellow and not by white.

– Whenever possible, color scales should be decoupled from the
mere labels “activation” and “deactivation”. Denoting the precise
statistical meaning of the scale, or referring to a more neutral
wording like “signal change” would be more appropriate.

– Non-standard displays of data relations in neuroimages (e.g., latency
times etc.) should be based on color scales other than HBS and they
should follow the established convention of higher equals darker
color shades, and lower equals lighter shades.

– The use of the rainbow color scale may be restricted to applications
where a quasi-standard has been established, e.g. for displaying
binding potentials in PET imaging.

– Producers of imaging analysis tools should support appropriate use
of colors both with respect to the usability of the programs as well
as instruction manuals.

We believe that these recommendations are of special impor-
tance for reviewers of functional neuroimaging contributions. They
have a responsibility to ensure an improvement in practice with re-
spect to standardization and exemplification of the process of
image generation in the methods part of journals that publish imag-
ing findings. This may be of particular importance for fields in which
functional neuroimaging gains increasing importance, e.g. in psychi-
atry (Borgwardt et al., 2012).

Scientific images in general and neuroimaging data in particular are
communicated beyond scientific domains, hence affecting e.g., patient–
physician relations or public perceptions of the explanatory power of
neuroimaging devices. Here, the question whether and how the scien-
tific community considers the ignorance of lay people with regard to
scientific images is at the heart of any future debate. The interpretative
authority of images using false colors seems particularly debatable in
this respect. A critical evaluationof the aims and scopes of the upcoming
interest in defining standards of color-coding in neuroimaging may not
only impact the way scientists reflect upon their practices of data pro-
cessing and representing, but also contribute to a better understanding
of the rationales of color-coding in neuroimaging as such. Our vast cor-
pus of image data collected and scrutinized here provides a firm empir-
ical basis for the future discussion of data visualization in neuroimaging.
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