
Mountain 
Glaciers

 Ellesmere Island (J. Noetzli)



52

Mountain Glaciers: On Thinning Ice

Mountain glaciers are key indicators of climate change. 
Glacier changes are the most visible evidence of global cli-
mate change we have. They affect the appearance of the 
landscape in high mountains and impact regional water sup-
plies, local hazard conditions and global sea levels. Glaciers 
may be found in, and compared across, all latitudes – from 
the equator to the poles. Due to their sensitivity to climatic 
changes, glaciers are key indicators for use in global climate 
observation systems.

Glaciers have been observed in an internationally coordinated way for more than 
a century [1, 2]. The results from data collected around the world are not comfort-
ing – the outlook for the near future is even less so: evidence of accelerated glacier 
shrinkage at a global scale is mounting. The decadal average rate of thickness loss 
measured via 37 reference glaciers worldwide (Figure 3.1) has tripled since the 
1980s (Figure 3.2). The record loss documented in the 1980–1999 time period (in 
1998) has already been exceeded four times in the twenty-first century: in 2003, 
2006, 2010 and 2011 [3]. Aerial and satellite data confirm the trend and point to 
even higher losses in certain regions such as southern Alaska. At the same time, 
decadal regional and individual exceptions have been found, showing intermittent 
glacier re-advance, for example, in the wetter parts of Norway, in New Zealand 
and in the western Himalayas. But assessed globally according to a centennial time 
scale, the dominant trend is one of rapid glacier melting.

Global glacier distribution and changes in mass and extent

According to recent global estimates, there are 170 000 glaciers worldwide cover-
ing an area of 730 000 km2 [4]. More than 80 percent of that area is located in 
the Canadian Arctic, Alaska, High Mountain Asia and around the continental ice 
sheets of Antarctica and Greenland. If all the world’s glaciers were to melt, it would 
result in a mean sea level rise of roughly half a metre [5, 6]. Much of the water 
locked in the world’s glaciers may indeed reach the global ocean within the next 
few centuries [7].

Measurements of change in the length of glaciers were the main data collected 
during the initial phases of international glacier monitoring, which began in 1894. 
The data from these simple observations are extremely robust. They leave no doubt 
that mountain glaciers worldwide have been shrinking rapidly since the late twen-
tieth century. Evidence suggests that this strikingly synchronous global retreat is 

Michael Zemp
Wilfried Haeberli 

Martin Hoelzle

Chopicalqui, Peru (E. Hegglin)



53

exceptional; in many places, glaciers have now been reduced close to their mini-
mum extent during the warmest periods of the Holocene – i.e. in the past 10 000 
years [8] – and some have shrunk even smaller.

Observations based on mass balance – i.e. the difference between accumulation 
(snowfall) and ablation (melting) – indicate that ice loss is occurring at a consider-
ably higher rate than greenhouse gas effects alone would predict. This means that 
feedback processes are probably playing an increasing role, in particular the mass 
balance altitude feedback and decreasing reflectivity (albedo) due to darkening 
glacier surfaces, retreating snow lines and enhanced dust deposition [9, 10].

New measurement techniques, new insights

Recently, glacier inventories based on satellite imagery and digital terrain infor-
mation have enabled new ways of documenting the distribution of glaciers and 
ice caps and changes affecting them. Computer models that combine data from 
observed time series with satellite information make it possible to examine changes 
across larger glacier ensembles, spanning entire mountain regions. The results 
show clearly that even if global warming is kept to 2 °C, many small- to medium-
size glaciers in mountain areas are likely to disappear entirely in the coming dec-
ades, with serious consequences for hazard risks and water cycles [11]. Rather 
than gradually retreating, many large glaciers may develop extreme disequilibria, 
causing them to down-waste or collapse, as is being observed with increasing 
frequency.

Techniques have also been developed to model the topography that will be ex-
posed by vanishing glaciers. This helps to anticipate the formation of new lakes in 
local depressions of glacier beds [12]. Some of these new lakes may bear potential 

Figure 3.1. Global distribution of glaciers, 
ice caps and ice sheets as well as the 

locations of 37 reference glaciers with long-
term continuous mass balance observations 
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•   Continue and expand the monitoring 
of glaciers via in situ and remotely 
sensed observations.

•   Promote free, unrestricted interna-
tional sharing of standardized data 
and information on glacier distribution 
and changes.

•   Promote assessments of glacier 
change impacts on local hazard risks, 
on regional freshwater availability and 
on global sea level rise.

Policy messages
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for generating hydropower or for preserving aesthetic appeal when the beauty 
of a glacier is lost. However, they also present a growing risk of flooding and far-
reaching debris flows caused by moraine breaching or rock avalanches from de-
glaciated slopes or slopes containing degrading permafrost [13].

Impacts of glacier retreat

The most serious impact of melting mountain glaciers concerns regional and global 
water cycles. Glacier melting will remain a major contributor to sea level rise in this 
century [11], and the seasonality of runoff will change dramatically in some regions 
due to the combined effects of diminished snow storage, earlier snowmelt and de-
creasing glacier melt. To assess the importance of glacier melt to water availability 
in a given place, one must consider the seasonal glacier contribution to water sup-
plies vis-à-vis the catchment size and corresponding contributions from snowmelt 
and precipitation. Glaciers’ importance to water supplies is minor in monsoonal 
climates, moderate in most mid-latitude basins and major in seasonally or perenni-
ally dry basins such as those in Central Asia or on the western slopes of the tropi-
cal Andes [14]. Currently, roughly one billion people – mainly in Asia, North and 
South America and Central and Southern Europe – depend on snow and glacier 
meltwater during the dry season and could be seriously affected by any changes 
[15]. In the future, water scarcity in long droughts exacerbated by changing snow 
and ice cover in high mountain ranges could seriously impact people’s livelihoods 
and the economy. Problems that could arise during warm or dry seasons include 
diminished water supplies, longer-lasting discharge minima and low flow periods 
in rivers, lower lake and groundwater levels, higher water temperatures, disrupted 
aquatic systems and diminished hydropower generation. These effects could be 
compounded by increasing demand for water due to growing populations, ur-
banization, industrialization, irrigation, hydropower generation and firefighting. A 
combination of decreased supply and increased demand such as this could cause 
conflicts. Together with higher air temperatures, increased evaporation and chang-
ing snow conditions, the disappearance of mountain glaciers could dramatically 
heighten two fundamental questions: Who owns the water? And who decides 
how it is used in critical situations?
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World Glacier Monitoring Service (WGMS)

For over a century, the Swiss-led World Glacier Monitoring Service (WGMS) and 
its predecessor organizations have coordinated the worldwide compilation and 
free dissemination of glacier observations. Today, together with the US National 
Snow and Ice Data Center (NSIDC) and the Global Land Ice Measurements from 
Space (GLIMS) initiative, WGMS supervises the Global Terrestrial Network for 
Glaciers (GTN-G): the framework for internationally coordinated monitoring of gla-
ciers within the Global Climate Observing System (GCOS), supporting the United 
Nations Framework Convention on Climate Change (UNFCCC). WGMS is financed 
by the Federal Office of Meteorology and Climatology MeteoSwiss in the frame-
work of GCOS Switzerland.

This effort relies on a network of scientific collaboration comprising over 1 000 
observers working in more than 30 countries. It has resulted in an unprecedented 
global database on glacier distribution and change. However, the resulting obser-
vations – especially from long-term programmes – are strongly biased towards 
the northern hemisphere and Europe. Regions with limited observational cover-
age include strongly glaciated areas in the Arctic and Antarctic as well as in the 
Andes and Asia (see Figure 3.1).

For more information see:

•	 World	Glacier	Monitoring	Service:	http://www.wgms.ch
•	 Website	of	the	Global	Terrestrial	Network	for	Glaciers:	http://www.gtn-g.org
•	 	Report	on	global	glacier	changes	(facts	and	figures):	http://www.grid.unep.ch/
glaciers/

Figure 3.3. Views of Findelengletscher, 
Switzerland, in 1862 (left) and 2010 (right), 
created based on historical maps and using 

modern laser scanning, respectively. The 
figures are provided by P. Rastner, University of 

Zurich, and were produced within the Glacier 
Laser Scanning Experiment Oberwallis project 

supported by the Swiss energy utility Axpo
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 Capacity Building and Twinning for Climate Observing Systems

Among the regions with limited glacier observations, the Andes and Central Asia 
are probably the most vulnerable to impacts of climate and glacier changes. In 
these regions, glaciers significantly contribute to water supplies during dry sea-
sons, and people and infrastructure are especially vulnerable to glacier-related 
hazards such as glacier lake outburst floods. Both regions are currently the fo-
cus of international capacity-building and twinning programmes. But all related 
efforts to understand secondary climate change impacts and identify mitigation 
and adaptation measures are hampered by a lack of long-term, high-quality me-
teorological/glacier	 observation	 series.	 The	 Capacity	 Building	 and	 Twinning	 for	
Climate Observing Systems (CATCOS) project – coordinated by the Federal Of-
fice of Meteorology and Climatology MeteoSwiss and funded by the Swiss Agency 
for Development and Cooperation (SDC) – aims at improving the monitoring of 
greenhouse gases, aerosols and glacier mass balances in regions of the world 
where data are lacking. In close collaboration with regional partners, the glacio-
logical work packages of the CATCOS project seek to continue in situ mass balance 
measurement programmes in Colombia and Ecuador in addition to carrying out 
new geodetic surveys of glaciers; and they seek to resume interrupted in situ mass 
balance measurements in Kyrgyzstan and Uzbekistan.

Demonstration of snow density measurements during a summer school held in the 
framework of the CATCOS project in Zermatt, Switzerland (M. Zemp) 

Note: This chapter is an updated version of  
W. Haeberli and M. Zemp’s contribution 
to: Mountains and Climate Change (2009), 
pp. 22–25
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The mountain ranges of Central Asia are water towers for large 
populations. Glacier runoff represents an important freshwater 
resource in the extensive arid parts of the region. The mass balance 
of glaciers here is also an important indicator of climate change. 

International guidelines for monitoring of mountain glaciers recommend combin-
ing in situ measurements (mass balance, front variations) with remote sensing (in-
ventories) and numerical modelling. This helps to bridge the gap between detailed 
(process-oriented) local studies of glaciers and globally relevant datasets.

Certain glaciers in Central Asia – namely, Abramov and Golubin – have been listed 
as reference glaciers by the World Glacier Monitoring Service (see Box on page 55). 
They represent important mountain ranges, such as the Pamir-Alay and the Tien 
Shan mountains. Long-term mass balance series – i.e. series over 20 years old 
– are available for these glaciers. Following the collapse of the former Soviet Un-
ion, measurement efforts were largely abandoned. In late summer 2011, scientists 
from Kyrgyzstan, Uzbekistan, Switzerland and Germany resumed measurement ac-
tivities for the Abramov glacier in the Pamir-Alay Mountains. This occurred within 
the Capacity Building and Twinning for Climate Observing Systems (CATCOS) pro-
ject (see Box on page 56) and the Central Asian Water project (CAWa). Measure-
ments were also resumed for Golubin Glacier, Suek Zapadniy and Glacier 354 in 
the Tien Shan Mountains in 2010. The resulting mass balance data were analysed 
together with snow line observations from terrestrial cameras and compared with 
measurements made earlier. 

Efforts towards capacity building and twinning are intended to transfer leadership 
of the observation programme to regional partners and to generate information 
for regional stakeholders involved in water management, disaster risk reduction 
and the health sector.

Abramov Glacier, Kyrgyzstan (H. Machguth)

Resuming Glacier Monitoring in Kyrgyzstan 

Ryskul Usubaliev
Erlan Azisov
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Glaciers in the tropical Andes are known to be especially sensitive to 
climate change. Due to the specific climate conditions in the tropical 
zone, ice melt occurs year-round on the lowest part of the glaciers. 
Thus, glacier termini display a short-term response to changes in 
mass balance and climate [1]. 

Tropical glaciers reached their “Little Ice Age” maximum extent between the late 
seventeenth and early nineteenth centuries. Since then these glaciers have ex-
hibited a general retreat, marked by two periods of acceleration: one in the late 
nineteenth century, and another in the last 30 years – the latter being the more 
pronounced. These changes are best captured by monthly mass balance measure-
ments performed in Bolivia, Ecuador and Colombia. The main drivers of recent 
glacier shrinkage are believed to be the increased frequency of El Niño events and 
changes in their spatial and temporal occurrence in combination with a warm-
ing troposphere over the tropics [2]. In the future, increasing air temperatures 
and minimal change in precipitation could greatly reduce glacial coverage and 
even eliminate small glaciers whose upper reaches are located close to the current 
equilibrium-line altitude [2]. This is a serious concern because large populations live 
in the arid regions to the west of the Andes and depend on water supplies from 
high-altitude glaciated mountain chains for agricultural, domestic consumption 
and hydropower [3].

Antizana ice cap, Ecuador (M. Zemp)

Strengthening Glacier Monitoring in the 
 Tropical Andes

Bolivar Cáceres
Jorge Luis Ceballos
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The Capacity Building and Twinning for Climate Observing Systems (CATCOS) pro-
ject (see Box on page 56) aims at strengthening the glacier monitoring programmes 
in Colombia and Ecuador. It supports the continuation of mass balance measure-
ments at the Antizana ice cap in Ecuador. In a joint effort with regional partners, 
participants are implementing a new geodetic survey based on aerial photography 
in order to validate in situ observations and assess the ice cap’s overall decadal ice 
volume change. In Colombia, the project supports the continuation of the mass 
balance programme at Conejeras, an outlet glacier of the Nevado de Santa Isabel. 
The project further complements this effort with a terrestrial laser-scanning survey 
of the glacier surface as well as a ground-penetrating radar survey to determine 
remaining ice thickness. Together with the mass balance programme at Zongo 
Glacier in Bolivia, the two monthly observation series in Colombia and Ecuador are 
vital to improving our understanding of climate change in the mid-troposphere of 
the tropical Andes as well as its impacts on glaciers, runoff and the availability of 
freshwater for regional populations and ecosystems. 

Nevado del Tolima (foreground) and Nevado del Ruiz (background, right) – two active volcanoes – and the inactive Santa Isabel (background, centre), Cordillera Central of Colombia (J. Ramírez Cadena)
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