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Glacier response to a changing climate and its impact on runoff is understood in general terms, but
model-based projections are affected by considerable uncertainties. They originate from the driving cli-
mate model, input data quality, and simplifications in the glacio-hydrological model and hamper the reli-
ability of the simulations. Here, an integrative assessment of the uncertainty in 21st century glacier
runoff is provided based on experiments using the Glacier Evolution Runoff Model (GERM) applied to
the catchment of Findelengletscher, Switzerland. GERM is calibrated and validated in a multi-objective
approach and is run using nine Regional Climate Models (RCMs) until 2100. Among others, the hydrolog-
ical impacts of the RCM downscaling procedure, the winter snow accumulation, the surface albedo and
the calculation of ice melt and glacier retreat are investigated. All experiments indicate rapid glacier
wastage and a transient runoff increase followed by reduced melt season discharge. However, major
uncertainties in, e.g., glacier area loss (�100% to �63%) and the change in annual runoff (�57% to
+25% relative to today) by 2100 are found. The impact of model assumptions on changes in August runoff
is even higher (�94% to �5%). The spread in RCM results accounts for 20–50% of the overall uncertainty in
modeled discharge. Initial ice thickness, the amount and spatial distribution of winter snow and the gla-
cier retreat model have the largest effect on the projections, whereas the RCM downscaling procedure,
calibration data quality and the melt model (energy balance vs. degree-day approach) are of secondary
importance.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Ongoing and future climate change has major impact on alpine
environments (e.g., Beniston, 2003). The potential loss of a sub-
stantial fraction of glacier ice volume until the end of this century
will significantly alter the runoff characteristics of mountainous
drainage basins (e.g., Braun et al., 2000; Barnett et al., 2005; Huss,
2011). Due to a seasonal shortage of water supply, downstream
impacts of changes in the cryosphere might be considerable in
terms of irrigation for agriculture, hydropower production, river
transportation and ecology (Xu et al., 2009; Immerzeel et al.,
2010; Kaser et al., 2010; Viviroli et al., 2011).

Numerous model studies for a wide range of climatic settings
have been performed, estimating future trends in the hydrology
of glacierized basins (e.g., Juen et al., 2007; Stahl et al., 2008; We-
ber et al., 2010; Hagg et al., 2013; Bavay et al., 2013; Ragettli et al.,
2013). As a robust result, a shift in the runoff regime and a decrease
in melting season discharge is found on the long run. However, an
integrative uncertainty assessment of modeled future runoff from
high-mountain catchments has not been performed to date.

The uncertainty in projected runoff is the combined effect of the
spread in climate model results, the downscaling procedure, input
data quality, as well as simplifications and poorly understood feed-
backs in the modeling of glacier change and runoff. Although the
individual uncertainties might cancel each other out, some param-
eterizations in the impact models might lead to a systematic over-
or underestimation of future runoff, and thus require a careful
evaluation. Knowledge about the integrated uncertainties is vital
for making runoff projections useful in terms of adaptations in
the water resource management.

Several individual components of the uncertainty in glacier run-
off projections have recently been assessed. The impact of differ-
ences in air temperature and precipitation trends projected by
Regional Climate Models (RCMs) or Global Circulation Models
(GCMs) on the runoff regime of glacierized catchments was ad-
dressed in different regions (e.g., Stahl et al., 2008; Farinotti
et al., 2012; Lutz et al., 2013; Ragettli et al., 2013). Dedicated stud-
ies have investigated the effect of climate model data downscaling
procedures on calculated glacier mass balance (e.g., Radić and
Hock, 2006; Kotlarski et al., 2010; Salzmann et al., 2012), and the
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field data requirements for an unambiguous calibration of hydro-
logical models (Konz and Seibert, 2010; Schaefli and Huss, 2011).
It has been recognized that the estimate of the initial glacier ice
volume (Gabbi et al., 2012), and the approach to calculate glacier
geometry change have a strong impact on calculated future glacier
area and runoff (Huss et al., 2010b; Linsbauer et al., 2013). Many
studies have focused on uncertainties in modeling of snow and
ice melt based on the surface energy balance or temperature-index
models (e.g., Klok and Oerlemans, 2004; Hock, 2005; Pellicciotti
et al., 2005; Kobierska et al., 2013). Other factors such as the effect
of the spatial snow accumulation distribution, and changes in deb-
ris-covered glacier surfaces on modeled discharge have not yet
been specifically addressed by glacio-hydrological studies to our
knowledge.

This paper aims at a detailed assessment of the major
uncertainties in the modeling of future runoff from glacierized
drainage basins, and quantifies potential uncertainty ranges based
on an extensive set of model experiments. This allows identifying
the factors and processes that are the least constrained by
state-of-the-art glacio-hydrological model approaches and are
most influential for the overall uncertainty in 21st century runoff
projections. Our study is focused on the high-alpine catchment of
Findelengletscher, Swiss Alps, for which a wealth of data on glacier
mass balance and discharge over several decades is available. The
basin thus represents an ideal test site for this comprehensive
modeling study.
2. Study site and data

2.1. Geographical setting

Findelengletscher is a large temperate valley glacier in the
southern Swiss Alps (46�00’N, 7�52’E). The region is characterized
by glacier equilibrium line altitudes of around 3300 m a.s.l., being
among the highest in the Alps (Maisch et al., 2000). The catchment
of the hydrological station ranges from 2484 to 4173 m a.s.l., and
has an area of 21.2 km2 (Fig. 1). The basin is located in the headwa-
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ters of the Rhone River and was 74% glacierized in 2010, leading to
a distinctly glacial runoff regime. Findelengletscher (13.0 km2 in
2010) occupies the largest part of the watershed. Adlergletscher
(2.0 km2) and a few smaller glaciers make up for the rest of the
glacierization (Fig. 1).

2.2. Studies on Findelengletscher

Over the last years, considerable knowledge about glaciological
and hydrological processes and changes in the basin of Findelen-
gletscher has been accumulated representing a starting point for
this study. Machguth et al. (2006a) and Sold et al. (2013) investi-
gated the spatial distribution of winter snow on Findelengletscher.
Long-term series of glacier mass balance since 1900 were derived
by Huss et al. (2010a). Several authors have addressed the future
hydrology of the catchment. Farinotti et al. (2012) calculated gla-
cier retreat and runoff over the 21st century using ten RCMs of
the ENSEMBLES project (van der Linden and Mitchell, 2009). Uhl-
mann et al. (2013a) and Uhlmann et al. (2013b) calibrated a hydro-
logical model to discharge data and performed a model run until
2100 using results of one RCM from the PRUDENCE project (Chris-
tensen and Christensen, 2007).

2.3. Field data

A mass balance monitoring program is maintained on Findelen-
and Adlergletscher since 2004 (Machguth, 2008). Extrapolation of
mass balance measured at a network of 13 stakes and 2 snow pits
(Fig. 1) over the glacier yields the annual mass budget of Findelen-
gletscher, as well as the altitudinal distribution of melt and accu-
mulation. Winter balance is determined since 2009 by 5–10
snow pits and 400–700 manual snow probings per survey, distrib-
uted over the entire elevation range. The monitoring of snow accu-
mulation distribution is further supported by helicopter-borne
ground-penetrating radar (GPR) since 2010 providing snow depth
on several tens of kilometers of continuous tracks (Sold et al.,
2013).
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Table 1
Regional climate scenarios of the ENSEMBLES project with the responsible institution
(Inst.) and abbreviations for the GCMs and the RCMs used. Projected changes in mean
winter (November–April) and summer (May–October) air temperature (in �C), DTw

and DTs, and precipitation (in %), DPw and DPs , for Findelengletscher in 2070–2099 are
given relative to 1980–2009. The median scenario is written in bold face, and two
extreme scenarios in italic.

Inst. GCM RCM DTw DTs DPw DPs

MPI ECHAM5 REMO 3.69 4.04 +6 �10
SMHI ECHAM5 RCA 3.69 4.15 +3 �16
KNMI ECHAM5 RACMO 2.82 4.22 +4 �16
ICTP ECHAM5 REGCM 2.69 3.32 +10 �10
ETHZ HadCM3Q0 CLM 3.51 4.60 +6 +2
HC HadCM3Q0 HadRM3Q0 3.31 5.16 +2 �16
SMHI HadCM3Q3 RCA 3.69 3.43 +18 �10
CNRM ARPEGE ALADIN 2.83 4.09 �11 0
SMHI BCM RCA 2.23 2.79 �11 �11
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Five Digital Elevation Models (DEMs) documenting glacier sur-
face elevation changes are available for Findelen- and Adlerglet-
scher. DEMs for 1982 and 2007 with a spatial resolution of 25 m
and an estimated accuracy of �0.5 m were derived based on air-
borne photogrammetry (Bauder et al., 2007). For 2005, 2009 and
2010, high-resolution Light Detection And Ranging (LiDAR) DEMs
with a random error of <0.01 m were established (Joerg et al.,
2012). Glacier outlines were mapped for each DEM (Fig. 1). DEM
differencing allows the calculation of ice volume changes. A LiDAR
DEM is also available for April 2010 (Joerg et al., 2012). By compar-
ing this terrain model with the DEM from October 2009 and apply-
ing a correction for submergence and emergence of the glacier
surface over the winter season, a fully distributed map of snow
depth on a 1 � 1 m grid over the entire glacier was derived (Sold
et al., 2013).

Glacier ice thickness and volume was determined based on a
combination of different Ground Penetrating Radar (GPR) mea-
surement campaigns. Two profiles with a low-frequency helicop-
ter-borne GPR device were acquired for the center of the glacier
in 2008 (Farinotti et al., 2009). In March 2012, ground-based GPR
measurements on the glacier tongue, and about 30 km of longitu-
dinal and cross-glacier tracks were realized with helicopter-borne
GPR. Whereas the ablation area is well covered with measure-
ments, bedrock reflections were partly weak in the accumulation
area. Therefore, an approach to invert ice thickness from surface
topography based on the principles of flow dynamics (Huss and
Farinotti, 2012) was first calibrated to the observations and then
used as complementary information for regions with an insuffi-
cient number of direct measurements (about 50% of the glacier sur-
face). The combined thickness map yields a maximum ice depth of
220 m, and a total volume of 1.26 km3 in the drainage basin. Local
ice thickness uncertainty is estimated as �10% for regions with
GPR data, and �25% for unmeasured regions.

Continuous discharge measurements recorded by Grande Dix-
ence SA are available for 1962–2010 at daily resolution. The gaug-
ing station is located at a distance of 1 km from the present glacier
terminus (Fig. 1). There are no runoff data during the winter
months (i.e. between November and April/May) for most years.
Hence, we do not use annual runoff volumes for validation,
although discharge is normally small during wintertime. For the
summer months, data quality is high with only very few data gaps.

Daily mean air temperature, global incoming short-wave radia-
tion and precipitation are available from a MeteoSwiss weather
station at Zermatt (1638 m a.s.l., 6 km from glacier terminus).
The data cover the period 1982–2012. In addition, daily air temper-
ature for 1990–2008 from Gornergrat (3130 m a.s.l.) at a distance
of 4 km from Findelengletscher, and Testa Grigia (3479 m a.s.l.,
10 km, 1951–2000) are available (Fig. 1).

2.4. Climate scenarios

Scenarios of future climate change are obtained from the pro-
ject CH2011 (e.g., Bosshard et al., 2011) that presents an analysis
of results of the ENSEMBLES climate model runs (van der Linden
and Mitchell, 2009). ENSEMBLES RCMs are driven by different
GCMs (Table 1) that are forced by the SRES A1B emission scenario
(Nakicenovic et al., 2000). The A1B emission scenario represents an
evolution close to the median of other storylines and features a ra-
pid economic growth as well as a balanced use of fossil and non-
fossil fuels. The changes in air temperature and precipitation used
in this study are based on the ‘delta change’ approach (see e.g., Hay
et al., 2000; Salzmann et al., 2007) and have been evaluated by
Bosshard et al. (2011) for the grid points around Findelengletscher
for ten RCMs. The ‘delta change’ approach expresses the effect of
climate change between two periods in terms of the difference in
the mean of a given variable. The periods have the same length
(30 years) and are divided into a reference period (1980–2009)
and three scenario periods (2021–2050/2045–2074/2070–2099).
Changes in daily mean air temperature and precipitation between
the reference and the scenario period are aggregated to monthly
values. Note that temperature changes are additive, and precipita-
tion changes are multiplicative, both relative to the period 1980–
2009.

All RCM results prescribe a significant increase in air tempera-
ture (Table 1). For the period 2070–2099, changes in annual tem-
perature relative to 1980–2009 are between +2.5 and +4.2 �C.
Expected trends in annual precipitation are minor and inconsistent
between the RCMs. Temperature increase in summer is projected
to be largest by all models (+0.94 �C above the annual average),
and most RCMs indicate increased winter precipitation and a
reduction in summer (Table 1). From the ten ENSEMBLES RCMs
we select a median scenario that is henceforth used as a reference
climate evolution (MPI_ECHAM5_REMO), and two extreme scenar-
ios providing a lower bound (SMHI_BCM_RCA) and an upper bound
(HC_HadCM3Q0_HadRM3Q0) of expected climate change. We
completely exclude results from the DMI_ECHAM5_HIRHAM mod-
el in our study. Close inspection of the raw results of this RCM indi-
cated the possibility of model artifacts close to the study region. As
peaks in air temperature seemed to be cut off for the grid cells
close to Findelengletscher, unrealistically small increases in sum-
mer temperatures in comparison to all other RCMs were evident.
3. Methods

3.1. Glacier model

Glacier mass balance, retreat and runoff is calculated using the
Glacier Evolution Runoff Model (GERM, Huss et al., 2008). This gla-
cio-hydrological model is designed to calculate past and future
runoff from glacierized drainage basins and includes components
for snow accumulation distribution, snow and ice melt, 3D glacier
geometry change, evapotranspiration, and runoff routing. A de-
tailed description of the model components is given in Huss et al.
(2008); Huss et al., 2010b and Farinotti et al., 2012. Hereafter,
the most important model parameterizations are briefly described
and further developments of the original model are highlighted.
GERM is run on a regular 25 m grid for the drainage basin of
Findelengletscher.

The model is driven by daily mean temperature, global radia-
tion and precipitation recorded at Zermatt. In order to reduce
uncertainties due to extrapolation with elevation, measured tem-
peratures are shifted to the Median Elevation (ME, 3305 m a.s.l.)
of the catchment by using observed monthly temperature gradi-
ents between Zermatt, and the summit stations Gornergrat and
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Testa Grigia (Fig. 1). Temperatures for time step t are then extrap-
olated to every gridcell (x; y) by assuming an annually constant
lapse rate dT=dz as

Tðx; y; tÞ ¼ TMEðtÞ þ ðzðx; yÞ � zMEÞ � dT=dz: ð1Þ

Snow accumulation C (in water equivalent) is calculated based
on the measured precipitation PZðtÞ at Zermatt occurring at tem-
peratures Tðx; y; tÞ < T thr as

Cðx; y; tÞ ¼ PZðtÞ � cprec � Dðx; yÞ: ð2Þ

T thr is the threshold temperature between solid and liquid pre-
cipitation with a linear transition range of ±1 �C. The factor cprec al-
lows the adjustment of measured precipitation sums to the
drainage basin and accounts for gauge undercatch. Spatial varia-
tions in accumulation due to preferential snow deposition and
wind-driven snow redistribution are taken into account by using
a snow distribution multiplier Dðx; yÞ (Tarboton et al., 1995; Farin-
otti et al., 2010). Dðx; yÞ is specifically derived for Findelengletscher
from direct observations of accumulation variability (Sold et al.,
2013) combined with small-scale terrain characteristics and has
values between 0 and 2.

Snow and ice melt is calculated based on a simplified formula-
tion of the energy balance equation proposed by Oerlemans (2001).
The energy available for melt QM ¼ Q Mðx; y; tÞ is obtained by

Q M ¼ ð1� aÞ � Gþ k0 þ k1T; ð3Þ

where a ¼ aðx; y; tÞ is the local surface albedo at day t, and
G ¼ Gðx; y; tÞ in W m�2 is the global incoming short-wave radiation.
k0 þ k1T is the sum of the long-wave radiation balance and the tur-
bulent heat exchange linearized around the melting point (Oerle-
mans, 2001; Machguth et al., 2006b), with k0 and k1 as constant
parameters, and T the air temperature. As no continuous and homo-
geneous radiation measurements are available for the drainage ba-
sin, G is computed as

Gðx; y; tÞ ¼ rðtÞ � Ipotðx; y; tÞ; ð4Þ

with Ipot the potential clear-sky solar radiation and rðtÞ the daily ra-
tio of observed to potential global radiation derived from the mea-
surements at Zermatt. If QM is greater than zero, the melt rate is
obtained with the latent heat of fusion.

The temporal change in snow albedo asnow is calculated after
Oerlemans and Knap (1998) as

asnow ¼ afirn þ ðasnow;0 � afirnÞ exp
d
d�

� �
; ð5Þ

where we assume afirn ¼ 0:5 the albedo of firn, and asnow;0 ¼ 0:92
the albedo of fresh snow (e.g., Cuffey and Paterson, 2010). d is the
number of days since the last snowfall and d� ¼ 22 is a typical time
scale (Oerlemans and Knap, 1998).

Glacier geometry change occurring in response to surface mass
balance forcing is calculated based of the Dh-parameterization
(Huss et al., 2010b). With a simple empirical function, glacier sur-
face elevation change is related to the altitudinal range of the gla-
cier yielding maximum ice thickness changes at the glacier snout
and small variations in the accumulation area. Prescribing mass
conservation, the annual change in ice volume calculated with
the mass balance model is distributed across the glacier surface
using the non-dimensional elevation change pattern as observed
in 1982–2010. The glacier disappears where ice thickness becomes
smaller than zero. This straight-forward approach has been shown
to yield results for 21st century glacier front variations that com-
pare well to higher-order 3D ice flow modeling (Huss et al., 2010b).
3.2. Daily meteorological series until 2100

We generate transient series of future air temperature and pre-
cipitation from the monthly ‘delta changes’ computed by Bosshard
et al. (2011) based on RCM results for three 30-year periods in the
21st century. We first interpolate the monthly changes linearly be-
tween the center points of the periods (i.e. 1995, 2035, 2060 and
2085). After 2085, changes are extrapolated with the rate of
2060–2085. This provides continuous series of monthly mean tem-
perature and precipitation for the period of future modeling
(2013–2100). Assuming no change in daily meteorological variabil-
ity, we randomly select years in the period 1982–2012 from the
Zermatt station, and shift the monthly means of the measured
meteorological variables to the scenario results (see also Huss
et al., 2008). Applying this method, continuous daily series of tem-
perature and precipitation for 2013–2100 are obtained that pre-
serve the characteristic meteorological variability of the observed
series used for model calibration, and include trends in monthly
climatic changes as prescribed by the RCMs. Finally, ten model
runs for each scenario simulation are performed in order to filter
variability originating from the characteristics of the randomly se-
lected years used for the generation of the future daily meteorolog-
ical series.

We do not consider global radiation data given by the RCMs for
the future modeling and use monthly means of rðtÞ (Eq. (4)) as ob-
served in the past for the model runs until 2100. Climate models
generally have a limited skill in reproducing changes in global radi-
ation and cloudiness (e.g., Wild and Schmucki, 2011). Furthermore,
evaluation of RCM-based global radiation series for the study re-
gion showed neither significant nor consistent trends between
1950–2100 for the summer months.

3.3. Model calibration and validation

GERM is calibrated and validated in a multi-objective approach
over 1982–2012. For this period, various field measurements allow
us to constrain all components of the water balance in the drainage
basin of Findelengletscher. The measured glacier volume change
1982–2007 is chosen as the main calibration data source. This
observation accurately integrates the glacier mass budget at a mul-
tidecadal scale. Correctly capturing the dynamics of long-term ice
storage change is most critical to assessing future catchment water
balance. In addition, winter snow observations are used for calibra-
tion allowing us to unambiguously separate accumulation and
melt components of total discharge. Observed glacier front varia-
tions, annual mass balance measurements and monthly/daily run-
off are used for model validation. Model parameters are calibrated
manually due to constraints with computation time and the need
for consistency between parameter sets obtained for the different
experiments (see chapter 3.4).

The catchment precipitation is calibrated to match spatially dis-
tributed snow accumulation measured in five years using the fac-
tor cprec (Eq. (2)). The parameters of the energy balance model, k0

and k1, are tuned to the long-term ice volume change. The albedo
of bare glacier ice is set to aice ¼ 0:25 (e.g., Klok et al., 2003).
Tthres ¼ 1:5 �C is based on literature values (Rohrer, 1989). The tem-
perature lapse rate dT=dz ¼ �0:0065 �C m�1 was derived from sta-
tions in the vicinity of Findelengletscher (inset in Fig. 1) as a mean
for the melting season (June–August). The adjusted parameters of
GERM are given in Table 2.

GERM is initialized with the glacier geometry of 1982 and is run
until 2012 using meteorological data from Zermatt. The change in
glacier length, area and ice surface elevation is accurately repro-
duced over the 30-year period (Fig. 2). The retreat of the terminus
of Findelengletscher since 1982 is captured, as well as the detach-
ment of Adlergletscher from the main glacier branch. Calculated



Table 2
Important parameters of the melt-accumulation model for the reference calibration.

Parameter Value Unit

k0 �33.5 W m�2

k1 12.0 W m�2 �C�1

aice 0.25 –
asnow;0 0.92 –
afirn 0.50 –
cprec 4.0 –
Tthres 1.5 �C
dT/dz �0.0065 �C m�1
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surface elevation matches the DEM of 2009 within a root-mean-
square error of 7.1 m over all grid cells. No spatial trends in the ele-
vation bias were detected.

The cumulative ice volume loss in the drainage basin of Finde-
lengletscher agrees with the glacier volume change 1982–2007
determined based on the geodetic method (Farinotti et al., 2012),
but is slightly more negative compared to the observed volume
change 2005–2010 (Joerg et al., 2012, Fig. 3a). The altitudinal dis-
tribution of winter accumulation and annual mass balance is cap-
tured by the model (Fig. 3b), but ablation is overestimated
systematically for 2005–2012. Monthly summer runoff volumes
are reproduced with a model efficiency criterion after Nash and
Sutcliffe (1970) of R2 ¼ 0:89, and the bias between measured and
simulated runoff is within 4% for each month (Fig. 3c).
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Observed and simulated daily runoff hydrographs at the gaug-
ing station agree well (Fig. 4). From 1982 to 2010, Nash and Sutc-
liffe (1970)-values for daily discharge range between 0.76 and 0.96,
with an average of 0.88. This result is satisfying given that the
model has not been specifically tuned to the discharge series but
to the storage change components (accumulation, ice volume loss)
that ensure the closure of the water balance (see e.g., Schaefli and
Huss, 2011).
3.4. Experiments

In order to evaluate the integrated uncertainty in future glacier
retreat and runoff, a set of ten experiments is defined. Each exper-
iment addresses one component of model uncertainty. The
description of the related process is individually modified in the
model implementation. By comparing the result of each experi-
ment to a reference simulation based on the model and the param-
eters described above, the effect of the considered model
modification on calculated runoff for the period 2013–2100 can
be assessed.

Key characteristics of all experiments are compiled in Table 3
and are described in more detail below. The experiments are sep-
arated into the driving climatological input given by the RCMs
(Exp. I), and its treatment in the glacio-hydrological model (Exp.
II–X). The runoff model uncertainties can be further divided into
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the downscaling of the RCM data (Exp. II), the accuracy and avail-
ability of glaciological data for model calibration or initialization
(Exp. III to V), and the description of glacio-hydrological processes
(Exp. VI to X).

3.4.1. Experiment I: Climate scenario
The calibrated model is driven by changes in air temperature

and precipitation given by nine RCMs based on evaluations within
the CH2011 project (Bosshard et al., 2011, Table 1). Differences in
runoff between the model runs are detached from the glacio-
hydrological model and depict the a priori uncertainty resulting
from the use of different RCM outputs. The short-term meteorolog-
ical variability as observed in the past is preserved for the model-
ing in the 21st century, and the RCM provides the long-term
trends.

3.4.2. Experiment II: Direct use of RCM data
Climate models run at high temporal resolution and directly

provide series of meteorological variables that include calculated
internal changes in short-term variability and extreme values. By
applying the ‘delta change’ approach, this potentially important
Table 3
Experiments to assess different uncertainty components in future glacier runoff projection

Exp. Topic Short description

I Climate scenario Model driven with results from nine d
II Direct use of RCM data Model directly driven by downscaled d
III Calibration data Model calibration restricted to a short
IV a Ice volume Measured ice thickness reduced by 30

b Measured ice thickness increased by 3
V a Snow accumulation No spatial variability in snow accumul

b Model purely calibrated on discharge;
VI Glacier retreat Glacier surface updated in 10-year ste
VII a Melt model Calculation of snow and ice melt using

b Calculation of snow and ice melt using
VIII a Snow albedo param. Snow albedo constant at asnow ¼ 0:7

b Brock-parameterization for snow albed
IX Ice surface albedo Bare-ice albedo reduced to aice ¼ 0:1
X Supraglacial debris Prescribed debris-coverage dynamicall
information on the characteristics of future climate is not ac-
counted for. However, the direct use of climate model results for
driving impact models is not trivial and requires a careful data
treatment (Kotlarski et al., 2010; Salzmann et al., 2012). The gener-
ation of future meteorological time series in hydrological studies is
thus often based on the ‘delta change’ approach (e.g., Farinotti
et al., 2012; Bavay et al., 2013). Experiment II investigates whether
the procedure of downscaling RCM data has an impact on calcu-
lated glacier retreat and runoff.

For this experiment we generate a future daily meteorological
time series different from the reference model. Daily air tempera-
tures 1982–2012 directly given by each RCM for the grid point
closest to Findelengletscher are first compared to the Zermatt
weather station data, and a monthly bias between modeled and
observed temperature is computed. Assuming the monthly bias
to remain constant in time, continuous series for 1982–2100 are
generated. Their daily temperature variability is given by the
RCM and the series have the same long-term trends as for the ‘del-
ta change’ approach. This experiment only addresses one part of
the uncertainty introduced by the direct use of RCM data as climate
model results on precipitation and radiation are not used. For these
variables the series are identical to the reference model run. The
ability of the RCMs to yield local short-term variations in precipi-
tation and radiation are not judged as high enough. This is sup-
ported by the evaluations by Salzmann et al. (2012) who found
that RCMs often fail to reproduce observed daily precipitation pat-
terns in the Alpine region. In this experiment, the parameter k1 (see
Eq. (3)) of the reference model is re-calibrated over 1982–2012
using the bias-corrected daily RCM series as input.
3.4.3. Experiment III: Calibration data
In Experiment III, we exclude the primary calibration source of

the glacio-hydrological model (volume change 1982–2007), and
calibrate the model for a shorter period (2005–2010) to ice volume
change observations. This allows assessing the impact of limited
data availability and a short calibration period on calculated runoff.
Only the parameter k1 (Eq. (3)) was re-calibrated and no other
changes were applied to the model geometry, and the parameters
of the reference model.
3.4.4. Experiment IV: Ice volume
Measurements of ice thickness are scarce and glacier volume

estimates are associated with considerable uncertainties. Based
on different approaches, the uncertainty in glacier volume calcula-
tions without a priori knowledge on ice thickness has been esti-
mated as about �30% (e.g., Gabbi et al., 2012; Huss and Farinotti,
2012; Linsbauer et al., 2012). To assess the impact of this uncer-
tainty source, the observation-based ice thickness distribution of
s. See text for more detailed descriptions.

Related studies

ifferent RCMs (‘delta change’ approach) Bosshard et al. (2011)
aily RCM output Salzmann et al. (2012)
period (2005–2010) Joerg et al. (2012)

% Gabbi et al. (2012)
0% Gabbi et al. (2012)
ation distribution (Dðx; yÞ ¼ 1, Eq. 2) Sold et al. (2013)
snow accumulation and melt data not considered Verbunt et al. (2003)

ps using the AAR-method Paul et al. (2007)
a distributed degree-day model Hock (1999)
an enhanced temperature-index model Pellicciotti et al. (2005)

Machguth et al. (2006b)
o change Brock et al. (2000)

Oerlemans et al. (2009)
y thickening and expanding Anderson (2000)
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Findelengletscher is scaled with a factor f = 0.7, mimicking a 30%
ice volume underestimate (Exp. IV-a), and f = 1.3, corresponding
to an ice volume overestimate (Exp. IV-b). The model is run with
the reference settings.

3.4.5. Experiment V: Snow accumulation
Several studies show that the unambiguous calibration of

hydrological models in glacierized basins requires the incorpora-
tion of data on glacier mass balance, as measured discharge alone
does not carry sufficient information on the source of runoff, i.e.
melt or precipitation (Konz and Seibert, 2010; Schaefli and Huss,
2011; Mayr et al., 2013). Experiment V addresses the impact of
lacking information on winter snow accumulation, which is a com-
mon problem in many glacio-hydrological studies (e.g., Verbunt
et al., 2003; Finger et al., 2012; Uhlmann et al., 2013a).

Sub-Experiment V-a assumes that the total amount of winter
snow is equal to the reference simulation, but that the spatial dis-
tribution of accumulation is unknown. To this end, Dðx; yÞ (Eq. (2))
is set to 1 everywhere on the glacier, assuming that there is no spa-
tial variability in snow accumulation. For sub-Experiment V-b, no
information on winter snow accumulation at all is assumed to be
available for model calibration. The model is calibrated to dis-
charge data only, without validating against seasonal mass balance
or glacier front variations. This re-calibrated parameter set yields
significantly less snow (cprec ¼ 2:0, see Table 2 for comparison),
and less melt (k1 ¼ 10 W m�2 �C�1) which compensate for each
other in terms of runoff.

3.4.6. Experiment VI: Glacier retreat
Some hydrological studies in glacierized basins calculate glacier

retreat based on mass-conserving parameterizations (Huss et al.,
2008; Weber et al., 2010; Ragettli et al., 2013), or physical ice flow
modeling (Immerzeel et al., 2012). The glacier modules of most
hydrological models, however, are static and do not allow a tran-
sient simulation of the ice melt contribution (e.g., Schaefli et al.,
2005; Rössler et al., 2012; Bavay et al., 2013). In these studies, gla-
cier area is updated in discrete time steps assuming the glacier to
be in equilibrium with current climate conditions according to the
so-called Accumulation Area Ratio (AAR)-method (Paul et al.,
2007). Glacier surface elevation is kept constant.

In Experiment VI, glacier area A is updated in 10-year time
intervals based on the calculated area of the accumulation zone
Aacc and AAR0 ¼ 60% (Paul et al., 2007) as

A ¼ Aacc=AAR0: ð6Þ

All other model settings correspond to the reference simulation.

3.4.7. Experiment VII: Melt model
Experiment VII investigates differences in calculated runoff

based on several widely used melt model formulations driven with
the same input data. Experiment VII-a employs a distributed tem-
perature-index model proposed by Hock (1999). The model is cal-
ibrated over the period 1982–2012 based on the same data as the
reference model. Melt M ¼ Mðx; y; tÞ is calculated using the empir-
ical factors fM ¼ 1:59 mm w.e. d�1 �C�1, rsnow ¼ 0:0127 and
rice ¼ 0:0254 mm w.e. m2 W�1 d�1 �C�1, the potential solar radia-
tion Ipot, and air temperature T as

M ¼ ðfM þ rsnow=ice � IpotÞ � T T > TM: ð7Þ

For T below a threshold TM ¼ 0 �C no melting occurs.
In addition, we apply an Enhanced Temperature-Index (ETI)

model (Pellicciotti et al., 2005) which is based on the degree-day
approach, but is closer to the energy balance formulation of the ref-
erence model (Eq. (3)). The parameters fT ¼ 2:1 mm w.e. d�1 �C�1

and rsw ¼ 0:2256 mm w.e. m2 W�1 d�1 are fitted to the field data,
and melt M above TM ¼ 1 �C (Pellicciotti et al., 2005) is obtained as
M ¼ fT � T þ rswð1� aÞ � G T > TM; ð8Þ

where the calculation of the global radiation G, and the albedo a
correspond to the reference model (Eqs. (4) and (5)).

3.4.8. Experiment VIII: Snow albedo
To test the impact of the snow albedo parameterization on

modeled future glacier retreat and runoff, asnow is set to 0.7 as a
constant in time and space for Experiment VIII-a (see e.g., Mach-
guth et al., 2006b). For Experiment VIII-b, we use an alternative
snow albedo parameterization after Brock et al. (2000). This ap-
proach evaluates asnow as a function of the accumulated daily max-
imum temperatures Tm;acc since the last snowfall as

asnow ¼ asnow;0 � calog10Tm;acc; ð9Þ

with asnow;0 the albedo of fresh snow, and ca ¼ 0:106 an empirical
constant (Brock et al., 2000). For both supplementary approaches
to calculate snow albedo, the parameter k1 of the reference model
is re-calibrated.

3.4.9. Experiment IX: Ice albedo
With ongoing glacier wastage, the darkening of bare-ice sur-

faces due to accumulation of mineral dust, black carbon and the
growth of algae is observed (e.g., Oerlemans et al., 2009). The asso-
ciated decrease in ice surface albedo represents a significant addi-
tional forcing term. For the terminus of Vadret da Morteratsch,
Switzerland, Oerlemans et al. (2009) found a local albedo change
from 0.32 to 0.15 over the first decade of the 21st century. Exper-
iment IX addresses this potential albedo change by drastically
decreasing aice from 0.25 to 0.1 for the entire future modeling
period.

3.4.10. Experiment X: Debris coverage
Supraglacial debris is observed on a considerable number of al-

pine glaciers and is the dominant surface type in the ablation area
of some regions (e.g., Kayastha et al., 2000; Scherler et al., 2011). As
soon as debris thickness is larger than a few centimeters, ice melt is
reduced substantially (e.g., Nicholson and Benn, 2006; Hagg et al.,
2008). With glacier retreat both a thickening of the supraglacial
debris layer and an expansion of the debris-covered area is ex-
pected (Anderson, 2000).

Although Findelengletscher only has a minor debris-coverage,
we test the influence of supraglacial debris on future glacier retreat
and runoff by artificially prescribing debris-covered ice below an
elevation of 3000 m a.s.l., i.e. about 50% of the ablation area. In
Experiment X, calculated melt for debris-covered ice is multiplied
by a reduction factor fdebris ¼ 0:5 (Huss et al., 2007) corresponding
to a debris thickness of 0.1 m (Reid and Brock, 2010) that is typical
for Alpine glaciers. In the model run until 2100, debris cover is
treated as a dynamic layer that progressively thickens to a maxi-
mum of about 0.3 m by 2100. This is described by a continuous de-
crease in fdebris of 0.002 yr�1. The outward propagation of debris
coverage in space and time is simulated according to an approach
proposed by Jouvet et al. (2011). Feedback effects due to ice cliffs
and ponds that increase melt in the debris-covered area (Benn
et al., 2012) are not included; our experiment thus represents an
upper bound for the debris-cover effect.

4. Results

We perform model runs for the changes in climate forcing given
by each of the nine RCMs (Exp. I, Table 1). For Experiments II–X
(Table 3) the model is run with changed input data, different sets
of calibrated parameters, or modifications in the model structure
for the median RCM. The results are compared to the reference
simulation. The reference model is based on the ECHAM5 driven
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REMO regional climate model, the model set-up is described in
Section 3.1, and the values of the most important parameters are
given in Table 2.

Based on the reference model we expect a significant mass loss
of Findelengletscher over the 21st century (Fig. 5). A total glacier
terminus retreat of 1.5 km until 2030 is calculated. Between
2010 and 2060, ice volume is reduced more than 50% (Fig. 5),
resulting in a glacier area of less than 2 km2 by the end of the
21st century (Fig. 6a).

The reference model indicates an increase in annual runoff until
about 2055 (Fig. 6b) due to release of water from long-term glacial
storage. Afterwards, the smaller glacier area can no longer main-
tain increasing flow. A slight increase in evapotranspiration is cal-
culated by GERM. Together with the reduced excess runoff from
glacier wastage, this causes a decrease in annual runoff until
2100 (Fig. 6b). Strong shifts in the hydrological regime are found
resulting in a significant decrease in summer runoff, and a peak
melt discharge occurring about 1.5 months earlier in the season
(Fig. 6c).

Forcing the glacio-hydrological model with different changes in
air temperature and precipitation as prescribed by the nine RCMs
leads to a considerable spread in the results (Fig. 6). Calculated gla-
cier area loss by 2100 varies between �68% and �98% relative to
2007. The peak in annual runoff volume is reached between 2040
and about 2065 (Fig. 6b). Differences in modeled glacier area and
runoff relative to the observation period mean are shown in
Fig. 7. Whereas the uncertainties in calculated annual runoff
volume due to the choice of the RCM remain within �20% of the
reference model throughout the modeling period, August runoff
by 2100 deviates from the reference by �62% (+51%) for the RCM
providing maximum (minimum) changes in air temperature.
This confirms that considering multi-model GCM-RCM-chains in
projections of future runoff is indispensable to render a plausible
spread in the results due to the intrinsic climate model
uncertainty.

According to Experiment II, the approach for generating a daily
temperature time series from the RCM output for driving the
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Fig. 7. Changes in (a) calculated glacier area relative to 2007, (b) annual runoff and (c) August runoff relative to observations (mean 1962–2010) by 2050 and 2100. Bars show
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hydrological model has a limited impact on the results (Fig. 8a).
Glacier area and runoff change calculated with the bias-corrected
daily RCM time series are within �10% of the results based on
the ‘delta change’ approach and no systematic differences are evi-
dent except for a spin-up effect in the first decade of the modeling.
Considering monthly to seasonal changes in the mean of meteoro-
logical variables (‘delta change’ approach) and daily variability as
observed in the past seems to be sufficient for capturing the gov-
erning processes. This conclusion might however not be valid for
applications other than glaciers where the short-term variability
or extreme events (also in terms of precipitation) are more
important.

The calibration data used for constraining the hydrological
model have a considerable effect on calculated glacier change
and runoff (Fig. 8b). In Experiment III, the rate of modeled glacier
mass loss is reduced, and the expected August runoff in 2100 is
higher by 17% relative to the reference model (Fig. 7). This indi-
cates that runoff projections over the 21st century are sensitive
to the availability of calibration data, and the time period covered
by these data.

For an ice thickness underestimate (Exp. IV-a), glacier area loss
is accelerated leading to annual runoff volumes 14% below the ref-
erence model by 2075 (Fig. 9). In contrast, glacier response to the
same changes in climate is delayed in the case of an ice thickness
overestimate (Exp. IV-b). Runoff volumes remain higher than today
throughout almost the entire 21st century, and no water shortage
– even during the summer months – is expected (Fig. 9). Experi-
ment IV emphasizes the importance of knowledge about the ice
volume presently stored in glacierized basins to correctly model
future runoff, and consequent impacts on the management of
water resources.

Experiment V demonstrates that information on winter snow
accumulation is highly important for correctly simulating future
changes in runoff for several reasons. If data on the quantity of
accumulation are available but the spatial snow distribution is
not accounted for (Exp. V-a), Findelengletscher retreats
considerably faster and shifts in the hydrological regime are accel-
erated (Fig. 10). For example, a decrease in August discharge by
22% is expected until 2075, whereas the reference model predicts
almost stable runoff (�3%). In this experiment the model ignores
spatial accumulation patterns on Findelengletscher that have been
detected based on measurements.

A complete lack of snow accumulation data (Exp. V-b), and a
calibration of the hydrological model on measured discharge alone
has drastic consequences on projected runoff (Fig. 10). A complete
disintegration of the glacier is found for 2080. No transient dis-
charge increase (as for all other experiments) is simulated, and a
long-term reduction in annual runoff by more than 50% is evident
(Fig. 10b). Simulated runoff in August is smaller by 80% in this
experiment at the end of the 21st century compared to the refer-
ence model (Fig. 7). The mistakes in setting the accumulation
and the melt parameters for this model experiment are obvious;
a compensation of too little precipitation by additional ice melt re-
mained undetected in the calibration period as no data on the com-
ponents of runoff (winter accumulation, glacier melt) were
considered. Experiment V shows that including data on storage
change components for constraining long-term hydrological pro-
jections is crucial to their accuracy.

The AAR-method to update ice surface extent (Exp. VI) is not
mass conserving, i.e. ice volume can be lost without contributing
to discharge, and assumes the glacier always to be in equilibrium
with climate. This leads to underestimated glacier areas through-
out the 21st century and annual runoff values systematically below
(up to 30%) the reference model (Fig. 7 and Fig. 8c). According to
this experiment, the general evolution of future runoff characteris-
tics in glacierized basins is strongly affected by the glacier retreat
calculation, which is still rudimentary in many glacio-hydrological
models.

The degree-day model (Hock, 1999) leads to slightly faster gla-
cier mass loss compared to the reference (Exp. VII-a). An earlier
peak in annual runoff is found (Fig. 8d). This indicates a higher sen-
sitivity of this model to air temperature change. The ETI-model
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(Pellicciotti et al., 2005) results in moderately slower glacier re-
sponse to prescribed climatic conditions. The uncertainties in
terms of August runoff due to the choice of the melt model are
in the range of �5–10% (Fig. 7). This issue is thus less important
compared to Experiments III–VI.

The parameterization to calculate snow albedo (Exp. VIII) has a
relatively small effect on calculated future runoff (Fig. 8e).
Although the differences in snow albedo used in the modeling
are considerable and strongly alter the energy balance, errors seem
to cancel each other out, and the uncertainties in projected annual
runoff remain within �3% (Fig. 7). Assuming temporally constant
snow albedo, a decelerated glacier area change is found, which is
attributed to a likely snow albedo decrease over the next decades
due to reduced frequencies of fresh snow falls and warmer winter
temperatures.

Drastically decreasing albedo in the bare ice region (Exp. IX)
leads to an acceleration of glacier area loss and an earlier shift in
the hydrological regime (Fig. 8f). This crucial parameter in the en-
ergy balance of ice surfaces does however only trigger relatively
moderate differences in calculated runoff (around �7%) compared
to the reference model (Fig. 7).

The extensive supraglacial debris coverage prescribed in Exper-
iment X delays the calculated area loss of Findelengletscher
(Fig. 8g). Peak annual runoff occurs 10 years later, and discharge
in August is 10% higher by 2100 compared to the reference model
(Fig. 7). Debris-covered ice is only found in the ablation area, and
its modeled propagation in space is slower than the rise in equilib-
rium lines over the 21st century. Even the about threefold thicken-
ing assumed does not completely stop the melting process (e.g.,
Nicholson and Benn, 2006). The importance of accounting for the
feedback of supraglacial debris in runoff projections strongly de-
pends on the characteristics of the investigated glacier. The effect
lies in the range of the processes investigated in Experiments
VII–IX, and is thus relatively small given that our assumptions
rather represent an upper bound for the potential impact.
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Fig. 11. Combined multi-experiment uncertainties in calculated (a) annual runoff
and (b) mean monthly runoff by 2050 and 2100 (hatched). Light-shaded bars show
runoff uncertainties due to the spread in RCM results (‘RCM uncert.’), and dark-
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to the web version of this article.)
5. Discussion

Uncertainties in runoff projections from high-mountain drain-
age basins need to be addressed in an integrative way in order to
provide reasonable error bars for the management of water re-
sources. Basically, uncertainties due to (1) the climate models
and (2) the approach to translate the changes in climate into a run-
off response, i.e. the glacio-hydrological impact model, can be dis-
cerned. Different trends in air temperature, precipitation and other
variables provided by the climate models represent the a priori
uncertainty. Additional uncertainties due to simplifications and
imperfect input data are inherent to all models used in environ-
mental sciences. These effects are difficult to assess as in most
cases no alternative (or ‘better’) model and/or more accurate input
data are available. Therefore, the integrative uncertainty of the gla-
cio-hydrological model is relatively poorly known.

For calculating a combined overall uncertainty in modeled fu-
ture runoff, Experiments II to X were repeated by forcing the model
with two extreme RCMs (Table 1) defining a lower and an upper
bound of expected climate change. Thus, runoff time series includ-
ing both the maximal effect of RCM uncertainty and each individ-
ual impact model uncertainty were obtained. Note that we did not
superimpose Experiments II to X as we consider them to be inde-
pendent of each other. This overall uncertainty assessment merges
the results of Experiment I (RCM uncertainty) with each compo-
nent of the hydrological model uncertainty (Exp. II to X) and allows
(i) judging the importance of uncertainties in the impact model rel-
ative to the range given by the nine RCMs, and (ii) provides a com-
bined multi-experiment uncertainty in future runoff.
Fig. 11 shows the overall uncertainties in calculated annual and
monthly runoff separated into the contributions of the RCM and
the glacio-hydrological impact model. Over most of the 21st
century, the spread in the climate model results accounts for
20–50% of the total uncertainty in annual runoff. The remaining
uncertainty is explained by the description of individual processes
in the hydrological model (Fig. 11a). The intermediate drop in the
importance of the RCM uncertainty around 2050 is site-specific
and can be attributed to the timing of runoff changes related to
the transition from a glacierized to a non-glacierized catchment
(see e.g., Baraer et al., 2012).

For monthly discharge around 2050, the hydrological model ac-
counts for around 90% of the total uncertainty range in July and
August (Fig. 11b). This indicates that for providing well founded
projections of transient runoff changes over the next decades, a
careful quality assessment of the glacio-hydrological model is
indispensable. By 2100, the overall monthly runoff uncertainty
ranges are similar as in 2050 but they are dominated to a stronger
degree by the RCMs (Fig. 11b). After an almost complete loss of the
glacierized area, some feedback effects – presently still an impor-
tant source of model uncertainty – are less important.

Although results of all experiments show some consistent pat-
terns (see e.g., Fig. 6), the uncertainties are remarkable. The RCM
forcing and the uncertainties in the glacio-hydrological model



Table 4
Overall uncertainty range of the change in annual runoff Q annual, and monthly runoff.
All numbers are relative to the observed mean 1962–2010. The ranges refer to the
combined uncertainty due to the spread in RCM results and the glacio-hydrological
model (see also Fig. 11).

Year Qannual (%) Q July (%) QAugust (%)

2025 �18 to +48 �15 to +40 �23 to +35
2050 �22 to +56 �38 to +34 �47 to +30
2075 �53 to +50 �70 to +27 �89 to +22
2100 �57 to +25 �80 to +7 �94 to �5
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often dictate the sign of the runoff change (Table 4). Annual runoff
by 2100, for example, varies between �57% and +25% relative to
1962–2010. The runoff change calculated for August 2075 ranges
from �89% to +22% among the experiments (Table 4). The same
model driven with the output from different RCMs and realistic
uncertainties in the input data and the description of relevant pro-
cesses can thus predict conditions between severe water shortage
and a considerable runoff surplus for the same time horizon. Note
that for calculating these ranges, individual uncertainties in the
glacio-hydrological model have not been superimposed. We thus
provide a lower bound of the estimated uncertainty. These evalua-
tions clearly highlight the importance of better investigating and
communicating the high uncertainties in runoff projections.

The various model experiments allow quantitatively assessing
the impact of individually considered uncertainty factors. We are
aware, however, that the set-up of the experiments, i.e. the defini-
tion of input data uncertainty, is in some cases arbitrary and is spe-
cific to the investigated drainage basin. Our uncertainty estimates
are still relatively conservative; individual components of the over-
all uncertainty might even be less constrained for catchments with
poorer data availability. Furthermore, it was not possible to take
into account all processes that potentially have systematic effects
on the model results. Additional uncertainties might arise from
subglacial ice melting, the interaction with proglacial lakes, in-
creased long-wave radiation forcing from deglaciated mountain
flanks and rock outcrops, or daily climate model outputs that were
not specifically analyzed (precipitation, radiation). Thus, although
its configuration is assumed to be optimal throughout the paper,
the reference model only represents one possible evolution of gla-
cier runoff over the 21st century.

The results presented here refer to one specific catchment in the
Swiss Alps and the relative relevance of the individual components
of uncertainty might vary for different climatological settings. The
uncertainties calculated for the Findelengletscher catchment are
thus not quantitatively transferable to other study sites. However,
we presume that the ranking of the investigated processes regard-
ing their potential uncertainty in runoff projection remains valid
for a wide range of glacierized drainage basins.
6. Conclusion

Ten model experiments were performed to address various
uncertainties in the modeling of future runoff response of glacier-
ized drainage basins. Uncertainties in calculated discharge over the
21st century are considerable and hamper the reliability of projec-
tions. Accounting for the spread in climate model results and typ-
ical uncertainties related to input data quality and model structure,
we find that calculated changes in August runoff from the catch-
ment of Findelengletscher, Switzerland, can range between �94%
and �5% by 2100 compared to observations over the last decades.
Also the overall uncertainties in glacier area (�100% to �63%), and
annual runoff (�57% to +25%) are noteworthy. These high uncer-
tainty ranges in 21st century runoff projections from glacierized
drainage basins indicate that model results need to be interpreted
with care. Field measurements, in-depth process studies and new
model approaches are required in order to reduce the uncertain-
ties. Despite the major differences in simulated future runoff time
series, some consistent patterns emerge from all experiments. A
major glacier retreat is found and an initial increase in total catch-
ment discharge is expected. Peak water is reached between 2035
and 2075 depending on the selected climate model and the set-
tings of the runoff model.

Our model experiments show which uncertainties are most rel-
evant for projecting future runoff in high-mountain catchments.
The spread in the results of individual RCMs (Exp. I) determines
one of the most important uncertainties in calculated future glacier
retreat and discharge. It can only be taken into account by per-
forming ensemble simulations instead of runs with only one cli-
mate model. Knowledge about the initial glacier ice volume
(Fig. 9), and the quantity of winter snow accumulation and its spa-
tial distribution (Fig. 10) is crucial for correctly capturing the future
runoff response within a glacio-hydrological model. A lack of data
on these variables can lead to considerable errors in predicted fu-
ture runoff change. The approach to calculate glacier retreat is
important as well (Fig. 8c); simplified models assuming immediate
glacier response to changed climate conditions are likely to yield a
strong underestimation of discharge. Our experiments indicate
that the downscaling procedure of RCM data, the calibration data
quality, the snow and ice melt model, the description of surface al-
bedo and debris coverage have a secondary importance for shaping
modeled future glacier runoff regimes. However, these factors still
require additional research and a careful treatment in the glacio-
hydrological models.
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