Experiential Hierarchical Datasets for Granular Route Directions

Martin Tomko
Cooperative Research Centre for Spatial Information, Department of Geomatics, University of Melbourne, Email: m.tomko@pgrad.unimelb.edu.au

Stephan Winter
Department of Geomatics, University of Melbourne, Victoria 3010, Email: winter@unimelb.edu.au

Problem: Extraction of experiential hierarchies in the urban street network for the generation of route directions with varying granularity.

- **Administrative hierarchies** are incoherent with human experience of the hierarchical structure of the environment.
- **Granular route directions** use hierarchical urban models to select appropriate elements of the city to provide directions to familiar wayfinders. References are made to prominent – well known – elements of the network.
- Grounded in the relevance-based communication theory, granular route directions require the **assessment of the shared knowledge** of a spatial entity in a given context.
- Experiential hierarchies reflect the likelihood of shared knowledge of those elements.

Hypothesis: The streets in the street network can be ranked by their prominence, quantified through measures of network connectivity reflecting the likelihood of shared experience among locals.

Method: Network analysis based on named paths

<table>
<thead>
<tr>
<th>Rank</th>
<th>Street name</th>
<th>Betweenness value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Victoria St.</td>
<td>0.3117</td>
</tr>
<tr>
<td>2</td>
<td>King St.</td>
<td>0.161</td>
</tr>
<tr>
<td>3</td>
<td>Spencer St.</td>
<td>0.141</td>
</tr>
<tr>
<td>4</td>
<td>Latrobe St.</td>
<td>0.1277</td>
</tr>
<tr>
<td>5</td>
<td>Nicholson St.</td>
<td>0.1022</td>
</tr>
</tbody>
</table>

Streets are concatenations of street segments with the same label – street name. They are recognisable parts of the street network which can be referred to in route directions.

Structural properties of a street in the street network may not related to its administrative classification.

Network analysis based on streets allows the quantification of structural properties for each individual street, and cohesive groups of streets (see figure above).

Experiential hierarchies of streets reflect their ranking by structural prominence in the urban structure, as experienced by frequent wayfinders.

Betweenness centrality was chosen as the measure best reflecting this ranking, free of distortions from individuals’ wayfinding behaviour.

Analysis of Melbourne’s street network. Named paths of high prominence are highlighted.

Future work: Integrated hierarchical datasets
Experiential hierarchies of **suburbs** and **landmarks** complement that of the street network. **Integrated hierarchies** of the urban structure allow for a transition between references of different types and are consistent with navigators’ experience.