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Abstract: The long-standing issue of hydrological predictions in ungauged basins has received increased attention due to the recent
International Association of Hydrological Sciences (IAHS) decade on predictions in ungauged basins (PUB). Since the outset of PUB,
many have noted that the best way to confront an ungauged basin is to first make some basic streamflow measurements. This study explores
the value of a rudimentary gauging campaign for making predictions in an ungauged basin. The well-studied Maimai watershed in
New Zealand was used as a hypothetical ungauged basin, and this study was designed to start with no runoff data and add iteratively different
subsets of the available data to constrain the calibration of a simple three-reservoir conceptual catchment model. These subsets included single
runoff events or a limited number of point values—in other words, what could be measured with limited, campaign-like field efforts in an
ungauged basin. In addition, different types of soft data were explored to constrain the model calibration. Model simulations were validated
using the available runoff data from different years. It was found that surprisingly little runoff data were necessary to derive model parameter-
izations that provided good results for the validation periods, especially when these runoff data were combined with soft data. The relative
value of soft data increased with decreasing amount of streamflow data. The findings from the Maimai watershed suggest that, when starting
with no flow information, one event or 10 observations during high flow provide almost as much information as three months of continuously
measured streamflow for constraining the calibration of a simple catchment model. DOI: 10.1061/(ASCE)HE.1943-5584.0000861. © 2014
American Society of Civil Engineers.
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Introduction

Making predictions in ungauged basins is a grand challenge for
hydrology (from Sivapalan 2003). The first International Hydrolog-
ical Decade (IHD, 1965–1974) resulted in the gauging of over
3,500 catchments around the world (Falkenmark and Chapman
1989). For the modeler, these data were a boon to model develop-
ment, testing and validation, but left a legacy of reliance on data for
model calibration. In the past decade, the modeling community has
recognized the limitations of model calibration based on stream-
flow data with its associated uncertainty, issues of parameter
identifability and equifinality (Beven 2001). Furthermore, models
relying on calibration are usually restricted to catchments where
a long series of runoff data already exists. Along the way, some
modelers have assumed that more physically based, fully distrib-
uted approaches might overcome the need for model calibration.
This assumption has been increasingly questioned due to the dif-
ficulties of measuring the relevant parameters at the relevant
scale. A consensus is emerging that simple models of catchment

hydrology can play an important role if the requirement of long
data series for calibration can be relaxed (Beven 2002).

For the experimentalist, the IHD was a formative period during
which most of the main post-Hortonian runoff formation processes
were defined (Beven 2006). While its legacy is that of intense
hydrological discovery, the IHD provided little instruction on
what to measure, in what order and why. Most gauging was aimed
either at rainfall-runoff description or very detailed point-based
measurements aimed at process discovery in certain zones within
a study watershed. Indeed, these two extremes characterize water-
shed gauging even today—where rather than a systematic diagnosis
of catchment function and behavior, studies often jump from
whole-watershed mass balance analysis to hillslope trenching or
plot-scale macropore flow monitoring (Weiler and McDonnell
2007).

Indeed, one might characterize current—experimental ap-
proaches to catchment gauging as ad hoc (McDonnell et al.
2007). There is little post-IHD consensus as to where to locate
a weir or rain gauge, let alone where to take any other supplemental
measurements to aid in the development of a local model structure
or test information. Only slowly has the dialog between experimen-
talist and modeler begun (Woods and Rowe 1996).

Here the challenge of how to gauge the ungauged basin by
exploring the value of limited streamflow measurements and addi-
tional soft data is addressed. Soft data are data that can be obtained
in the field during limited field campaigns and represent qualitative
knowledge from the experimentalist that cannot be used directly
as exact numbers. Soft data can be made useful through fuzzy
measures of model-simulation and parameter-value acceptability
(Seibert and McDonnell 2002). Soft data may be based on hard
measurements, but these measurements require some interpretation
or manipulation by a hydrologist before being useful in model test-
ing. While fuzzy, these soft measures can be exceedingly valuable
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for indicating how a catchment works. Fuzzy measures, which im-
plement the concept of partial truth with values between completely
true and completely false, have been found to be useful in hydro-
logical model calibration (Aronica et al. 1998; Hankin and Beven
1998; Seibert 1997). Pappenberger et al. (2007), for instance, used
a fuzzy-rule based calibration motivated by uncertain remotely
sensed flood inundation information. A fuzzy measure varies be-
tween zero and one and describes the degree to which the statement
x is a member of Y or, in this case, this parameter set is the best
possible set is true. Soft data are a rather different type of informa-
tion than traditional hard data measures. Soft data are often spotty,
discontinuous, and numerically approximate.

Since the concept of soft data was introduced (Seibert and
McDonnell 2002), it has proved useful in augmenting data in
gauged catchments for model structural development (Weiler and
McDonnell 2007) and multicriteria model calibration (Vache and
McDonnell 2006; Winsemius et al. 2009). In many ways, soft data
can be seen as the quintessential PUB data. When encountering an
ungauged basin for the first time, the hydrologist’s perceptual
model of the site is often a highly detailed yet qualitative under-
standing of dominant runoff processes. Thus, there exists in addi-
tion to any limited hard data (e.g., limited streamflow gauging) soft
data about catchment hydrology. Recently, Seibert and Beven
(2009) have shown that a few runoff measurements can contain
much of the information content of continuous runoff time series,
showing that even limited efforts at stream gauging could yield use-
ful weighted ensemble means for modeling in poorly gauged catch-
ments. In similar studies the value of limited amounts of other types
of data, additional to runoff, has been demonstrated for ground-
water levels (Juston et al. 2009) and glacial mass balances (Konz
and Seibert 2010).

This paper goes beyond these analyses by asking: What is
the additional value of soft data relative to the value of limited
stream gauging? and, How might this guide gauging of ungauged
basins and the dialog between experimentalist and modeler?
The work is based on using the well-studied Maimai watershed in
New Zealand as a hypothetical ungauged basin, where the study
was designed to start with no runoff data and add different subsets
of the available data to constrain the calibration of a simple catch-
ment model. These subsets mimic and test different possible field
sampling strategies and include single runoff events or a limited
number of point values; in other words these data represent what
could be measured with limited efforts in an ungauged basin.
Besides these runoff data, different types of soft data were used
(also obtainable in a couple of weeks of field work) to constrain
the model calibration and to facilitate communication between
experimentalist and modeler for new ways to test models and to
improve parameter identifiabilty.

Material and Methods

Study Site

The Maimai research catchments are a set of highly responsive,
steep, and wet watersheds on the west coast of the South Island
of New Zealand. Maimai has a long history of hillslope hydrolog-
ical research [for a complete review see McGlynn et al. (2002)].
More importantly, unlike sites of other experimental work, Maimai
shows striking simplicity in catchment response. Several recent
model studies have used the Maimai dataset as the basis for the
development and testing of new model structures (Fenicia et al.
2008; Seibert and McDonnell 2002; Weiler and McDonnell 2007)
and multicriteria model calibration techniques (Freer et al. 2004;

Vache andMcDonnell 2006; Vache et al. 2004). Similarly steep and
wet catchments have been a focal point for experimental studies
and conceptual model development since the mid-1970s (Graham
et al. 2010; McDonnell et al. 1990, 1991; McGlynn et al. 2003;
McGlynn and McDonnell 2003; Mosley 1979, 1982; Sidle et al.
2000; Stewart and McDonnell 1991; Woods and Rowe 1996).
The simplicity in catchment response is driven largely by the lack
of seasonality and the chronically wet state of the system. Soils
rarely drain below 10% of saturation (Mosley 1979) and overlie
a effectively impermeable, compacted and cemented pliestocene
conglomerate. Quickflow [QF as defined originally by Hewlett and
Hibbert (1967) comprises 65% of the mean annual runoff and 39%
of annual total rainfall (P) (Pearce et al. 1986)].

Data from the three-month time series of McDonnell (1989)
were used—the same data series used in the aforementioned model
studies. These data cover the period mid-September to December
for the year 1987 and include 11 rainfall events that range in size
from 26 to 105 mm. Rainfall and discharge data collected for the
months August–December in 1985 and 1986 were used for valida-
tion. Discharge data was collected at the outlet of the 3.8 ha catch-
ment with a 90° v-notch weir at 10 min intervals. Rainfall data was
collected near the gauge with a tipping bucket gauge (Campbell
Scientific) accumulated over 10-min intervals.

Three-Box Model

A simple conceptual model developed by Seibert and McDonnell
(2002) was used in this study. This model builds on Hydrologiska
Byråns Vattenbalansavdelning (HBV) model concepts (Bergström
1992; Lindström et al. 1997), but represents different hydrolog-
ical and geomorphological zones through simple boxes or reser-
voirs: hillslope, hollow, and riparian zones (Fig. 1). A similar
modeling approach, with two boxes, has previously been used
for an application in Sweden (Seibert et al. 2003). While the present
three-box model was originally developed with the Maimai catch-
ment in mind, it is generic enough that one might use such a model
in any steep, humid catchment. In this conceptual hydrologic
model, the three reservoirs are characterized by different ground-
water dynamics (McDonnell 1990) and distinguishable by their
water isotopic characteristics (McDonnell et al. 1991). Water flow
is then simulated to occur from the hillslope box into the hollow
box and from the hollow zone into the riparian zone. Streamflow is
simulated as flow from the riparian zone. For each box, a coupled
formulation of the saturated and unsaturated storage was used,
which implies that the maximum space for unsaturated storage

Hillslope box

Riparian box
Runoff

Umax

U

P E

P E

Umin

P E

Hollow box

Fig. 1. Structure of the three-box model including hillslope, hollow
and riparian zone reservoirs (P: precipitation, E: evaporation, z:
groundwater level above bedrock, zmax: maximal groundwater level
above bedrock, U: unsaturated storage) (Seibert and McDonnell 2002)
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is determined by the simulated amount of saturated storage. For a
more detailed description and equations of the three-box model,
the reader is referred to Seibert and McDonnell (2002) and Seibert
et al. (2003).

Soft Data

For model evaluation based on soft data the same evaluation rules
as in the previous study (Seibert and McDonnell 2002) were used
here. These rules constrain model calibrations in two ways: by
evaluating the model with regard to simulations and by assessing
the acceptability of certain parameter values. Note that there might
be a range of values that fall between fully acceptable and not
acceptable, based on the experimentalist’s experience in the field
and other synoptic measurements. The rules were, thus, defined as
trapezoidal functions, where the experimentalist was asked to as-
sign values to four variables ai [Eq. (1)]. These fuzzy measures of
acceptance were used to compute the degree of acceptance, μ, for
a certain parameter set from the corresponding simulated quantity
or parameter value x. In other words, the trapezoidal function is
used to map the experimentalist’s knowledge into a quantity, which
then can be used for evaluation of model simulations

μðxÞ ¼

8>>>>>>><
>>>>>>>:

0 if x ≤ a1
x−a1
a2−a1 if a1 ≤ x < a2

1 if a2 ≤ x < a3
a4−x
a4−a3 if a3 ≤ x < a4

0 if x > a4

ð1Þ

Altogether, 15 evaluation rules were used and for each of these
the experimentalist provided the ai values defining the trapezoidal
function to the modeler (Seibert and McDonnell 2002, Table 3).
These rules evaluated model performance with regard to soft data
describing maximum and minimum groundwater levels for the dif-
ferent zones, frequencies of groundwater levels above and below
certain levels and the contribution of new (event precipitation)
water to event runoff. The overall acceptability of the model sim-
ulations with regard to soft data was evaluated as the arithmetric
mean of the 15 evaluation rule values.

As in the previous study the overall acceptability of a parameter
set was defined by three components: (1) the model efficiency
(Reff ) values (Nash and Sutcliffe 1970) for the hard runoff data
(calculated based on subsets of the total runoff series, see below)
(A1), (2) the acceptability of the model simulations with regard to
soft data (A2), and (3) the acceptability of the parameter values
based on the experimentalist’s understanding (A3). In each case,
a value of one for Ai implies a perfect fit (or full acceptability).
The overall acceptability, A, of a parameter set, which then
was used as the objective function, was computed as a weighted
geometric mean with the weights n1 (set to 0.4), n2 (0.4), and
n3 (0.2) [Eq. (2)]

A ¼ An1
1 An2

2 An3
3 with n1 þ n2 þ n3 ¼ 1 ð2Þ

Model Calibration and Validation

Different subsets of the available runoff data were tested from the
period mid-September to mid-December 1987 (pretending that the
full time series was not available). Different types of subsets were
used, as shown in Fig. 2, meaning different assumed field data
gathering campaigns with respect to flow. The first subset mim-
icked a field party would capturing one of four different runoff
events during the three-month period. The assumption was that

runoff was measured continuously for each of these four measured
events. Next, a scenario with one gauging outing per week with no
conditioning on flow situations (i.e., the uninformed observer sce-
nario) was created. Finally, a flexible flow-based gauging scenario
was used that might be typical for real cases with gauging during
high-flow conditions but missing the peaks by some hours. This
flexible scheme was tested for three different numbers of gauging
occasions: ten, four, and two observations (Fig. 2).

For each of the four gauging subsets, the three-box model was
calibrated using a generic algorithm (Seibert 2000). The sum of
squared errors was used as objective function for the optimization.
The generic algorithm has stochastic elements and might, thus, find
solutions at different locations in the parameter space when dif-
ferent parameter sets provide similarly good results. Therefore,
50 different calibration trials were performed for each subset of
runoff data. The calibrated parameter sets were then evaluated
based on their ability to reproduce the entire runoff series from
the different years. This was done both for data from 1987
(mid-September–mid–December), which represents the period
from which the different subsets of limited streamflow data had
been selected, and for two completely independent five-month
periods in 1985 and 1986 (August–December). Based on the
50 model runs with different parameter sets median values as
well as the 10 and 90% were computed.

The limited runoff data were combined with the soft data used
by Seibert and McDonnell (2002) for additional evaluation ac-
cording to a number of soft data criteria. While the particular soft
data used in this study were those used previously (Seibert and
McDonnell 2002) and admittedly based on several years’ fieldwork
in this catchment, in an ungauged basin context similar soft data
measures could be formulated based on expert knowledge from
similar catchments or that collected in a few weeks of field work.
These soft data include information on groundwater dynamics,
new-water contributions and parameter values based on field expe-
rience (such as soil depth, saturated area extent, etc.). Both using
all available soft data and using different subsets of the soft
data was tested, i.e., the different types of soft data were also
tested individually. For calibration, the combined objective func-
tion [Eq. (2)] was used, as suggested previously (Seibert and
McDonnell 2002).

For calibrations based only on streamflow data, 50 trials were
performed and the 50 parameter sets were evaluated based on their
runoff simulations for the periods described above. For model val-
idation the focus was on runoff simulations only, and the model
efficiency was used to evaluate model performance over the entire
observation period.

1-Oct 11-Oct 21-Oct 31-Oct 10-Nov 20-Nov 30-Nov
0

2

4

6

8

Q
 [m

m
/h

]

Weekly scheme
Flexible scheme

Event 2

Event 4
Event 3

Event 1

Fig. 2. Hydrograph showing in grey and with circle and diamond
symbols the different subsets of the 1987 runoff series used for model
calibration; for the flexible scheme with two respective four observa-
tions, the two and four observations latest in the series (i.e., to right)
were used
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Results

Significant differences were found in model performances for
the complete runoff series compared to the different scenarios. The
highest median model efficiency values were between 0.8 and 0.85.
These values, while high were lower compared to the highest values
obtained when using all runoff data for calibration, which were
0.92 for the scenario where calibration was made against runoff
only and 0.84 when also considering the soft data and optimizing
different criteria (Seibert and McDonnell 2002).

There was a clear performance difference between the differ-
ent scenarios of the runoff data for calibration (Fig. 3). When using
only subsets of runoff data for calibration, entire events generally
resulted in good model performances with a tendency for better
performances for the larger events. Using single weekly runoff
observations resulted in rather poor performances. The 10 flexibly
chosen observations resulted in good performances, whereas per-
formances decreased when using only two or four observation dates
(Fig. 3). Similar results were obtained when validating the different
model calibrations based on runoff simulation performance for the
two periods in 1985 and 1986 (Figs. 4 and 5).

Including soft data resulted generally in better model perfor-
mance during the different validation periods across all scenarios
(Fig. 3). The only exception was the 10 flexibly chosen days sce-
nario for which a slightly poorer model performance was obtained
when including soft data in the model calibration. For most cases
there was also less variation in performance between the different
parameter sets obtained in the 50 different calibration trials; in

other words, the calibrations were better constrained. Exceptions
included the largest event (Event 1) and the flexible scheme with
10 observation dates. Testing the different calibrations on runoff
data from the fully independent years 1985 and 1986 again resulted
in similar results (Figs. 4 and 5).

In terms of the different types of soft data it was found that using
soft data related exclusively to groundwater dynamics resulted in
better model performances overall as opposed to inclusion of all
soft data. Use of soft data related to new water contributions or
parameter values resulted, at least partly, in poorer model perfor-
mances (Fig. 3). Especially for the cases with only two or four
runoff observations, the soft groundwater data helped greatly to
improve model performances (as measured by median model effi-
ciencies), although some calibration trials also resulted in poorer
model performances. Again, results were confirmed when evaluat-
ing the model performance based on runoff simulation for the two
fully independent years, 1985 and 1986 (Figs. 4 and 5).

Discussion

Making hydrological predictions in ungauged basins remains a
grand challenge in catchment hydrology. Knowing what to mea-
sure, in what order and why is still an open question. The findings
in the current study suggest that when starting with no flow in-
formation, measurement of one event or 10 observations during
different high flow situations provide almost as much information
as three months of continuously measured stream flow for con-
straining the calibration of a simple catchment model. This is sur-
prising as it is normally assumed that much longer time series are
needed for good calibration. It is not necessarily that longer time
series are not beneficial, but the results of this study show that there
are alternative strategies in cases where such data are not available.
Within the PUB framework, these results suggest that much can be
accomplished with small amount of targeted, clever field work.

These findings build upon recent work of Seibert and Beven
(2009) that showed that a relatively small number of streamflow
measurements (∼6 to 16) helped to constrain model calibration.
Unlike Seibert and Beven (2009), additional hard and soft data
were also used here in combination with such a limited number
of streamflow observations and found that field-experience based
soft data on groundwater dynamics, new-water contributions and
parameter values could at least partly compensate for a smaller
number of stream flow measurements. These findings are consis-
tent also with studies that have used only hard data as additional
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data to runoff measurements (Juston et al. 2009; Konz and Seibert
2010). Both of these studies demonstrated that data in addition
to streamflow observations can provide useful information for
model calibration especially if only few streamflow observations
are available. Such soft data can help to obtain good streamflow
simulations.

Here, it has been demonstrated that soft data, in addition to
being of value to ensure internal model consistency, can also be
of similar value as other additional hard data in constraining model
calibrations and finding suitable parameter sets for streamflow sim-
ulations. These findings suggest that soft data are especially useful
if only few hard data observations are available. The value of soft
data increased with decreasing availability of hard runoff data avail-
able to be used for calibration. Like Seibert and Beven (2009), the
current findings suggest that low-flow observations—the subset
consisting of assumed weekly gauging in this case consisted mainly
of low-flow observations—provided relatively little information
content for the model calibration process.

In general, continuous measurements during one event were
more valuable for parameter value selection than single streamflow
observations distributed over a longer period. This is contrary to the
hypothesis going into this work, where it was expected that the less
autocorrelated data (in the latter case) would have provided more
information. The continuous data provided information for higher
flow conditions and also information on the shape of the recession
curve, resulting in a powerful combination for calibration.

The current findings suggest that using soft data as additional
information in the calibration process can affect model performance
in two ways: (1) this information might help to select better per-
forming parameter values, and (2) alternatively, optimizing against
different criteria may result in compromise solutions and, thus,
lower efficiency values for runoff. Which of these two effects
dominates depends on the amount of runoff data and its information
content. With much data, especially if high flow conditions are
included, the compromise-effect predominates, whereas with less
hard runoff data available the information effect gets more impor-
tant. These findings go beyond what Seibert and McDonnell
(2002) were able to show with soft data, where they used the entire
observed streamflow time series and the focus was the potential
of soft data for ensuring internal consistency and being right for
the right reasons. In the present study the focus is on the value of
soft data to support the selection of suitable parameter sets, in com-
bination with a limited number of streamflow observations, in order
to get as good streamflow simulations as possible.

Finally, the current findings suggest that a new, more thoughtful,
top-down approach to gauging ungauged catchments may be war-
ranted. The traditional approach implemented during the IHD—a
gauge it, and wait and see philosophy—appears to be less useful
for model development, calibration and use than targeted field
gauging aimed at high flow periods. The results here suggest that
a diagnostic approach to ungauged basins may be very fruitful and
tractable within a ∼2-week reconnaissance field campaign. Similar
to a medical diagnosis whereby a doctor would measure a patient’s
temperature, heart rate, blood pressure, cholesterol, etc., probing
of a catchment’s flow signal, flow source components, soil depth,
bedrock permeability etc., may be a better way to both constrain a
conceptualization of flow generation and most efficiently calibrate
and validate a catchment model. Much soft data exist even for
ungauged catchments. Within the PUB framework, one could
envisage other forms of soft data that may be gathered from locals
living/working in the area that may have an acute awareness of the
hydrology of their basin: how frequently a river floods, how exten-
sive surface saturation becomes during a rainy season, approximate
soil depth ranges, when fields are difficult/easy to plough, highest

or lowest water levels in a river, length of periods with little or
no flow, etc. Such approaches could for instance include historic
accounts of flooding (Brázdil et al. 2006; Glaser et al. 2010;
Schmocker-Fackel and Naef 2010) for model calibration. Such
creative use of soft data going forward, combined with a better
awareness of the value of hard streamflow data, will be a powerful
tool for work in ungauged basins.

Conclusion

The current study has shown the value of a rudimentary gauging
campaign for making predictions in an ungauged basin using the
well-studied Maimai watershed as a hypothetical ungauged basin.
When starting with no runoff data and adding different subsets of
the available data series to constrain the calibration of the simple
catchment model, it is found that one event or 10 observations dur-
ing high flow provided almost as much information as the entire
three-month flow time series. Within the PUB framework, these
results suggest that much can be accomplished with small amount
of targeted clever field work. The value of soft data increases when
streamflow measurements are limited, although the relative value of
soft versus hard data must be expected to change for other, often
more complex, catchments. It was found that soft data were impor-
tant for internal consistency of the simple conceptual rainfall-runoff
model. If few streamflow observations are available, then the use
of soft data leads to better streamflow simulations. Consequently,
soft data are most helpful when streamflow measurements are
most lacking. These findings suggest a new way forward to field
diagnosis and model use, guided by an improved dialog between
experimentalist and modeler.
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