Review

Review of constituent retrieval in optically deep and complex waters from satellite imagery

Daniel Odermatt a,⁎, Anatoly Gitelson b, Vittorio Ernesto Brando c, Michael Schaepman a
a Remote Sensing Laboratories, University of Zurich, Switzerland
b School of Natural Resources, University of Nebraska, Lincoln, Nebraska, United States
c CSIRO Land and Water, Environmental Earth Observation Programme, Canberra, Australian Capital Territory 2601, Australia

A B S T R A C T

We provide a comprehensive overview of water constituent retrieval algorithms and underlying definitions and models for optically deep and complex (i.e. case 2) waters using earth observation data. The performance of constituent retrieval algorithms is assessed based on matchup validation experiments published between January 2006 and May 2011. Validation practices range from singular vicarious calibration experiments to comparisons using extensive in situ time series. Band arithmetic and spectral inversion algorithms for all water types are classified using a method based scheme that supports the interpretation of algorithm validity ranges. Based on these ranges we discuss groups of similar algorithms in view of their strengths and weaknesses. Such quantitative literature analysis reveals clear application boundaries. With regard to chlorophyll retrieval, validation of blue–green band ratios in coastal waters is limited to oligotrophic, predominantly ocean waters, while red-NIR ratios apply only at more than 10 mg/m³. Spectral inversion techniques — although not validated to the same extent — are necessary to cover all other conditions. Suspended matter retrieval is the least critical, as long as the wavelengths used in empirical models are increased with concentrations. The retrieval of dissolved organic matter however remains relatively inaccurate and inconsistent, with large differences in the accuracy of comparable methods in similar validation experiments. We conclude that substantial progress has been made in understanding and improving retrieval of constituents in optically deep and complex waters, enabling specific solutions to almost any type of optically complex water. Further validation and intercomparison of spectral inversion procedures are however needed to learn if solutions with a larger validity range are feasible.

© 2011 Elsevier Inc. All rights reserved.

Contents

1. Introduction ... 116
2. Relevance of IOPs in models and algorithms 117
3. Relevance of AOPs in models and algorithms 117
4. Band arithmetic algorithms .. 117
5. Spectral inversion algorithms ... 117
6. Validation experiments ... 118
 6.1. Chlorophyll-a retrieval ... 119
 6.2. Suspended sediment retrieval 120
 6.3. Dissolved organic matter retrieval 121
 6.4. Spectral inversion applications 121
7. Discussion .. 122
Acknowledgements .. 124
References .. 124

1. Introduction

Optically deep and complex waters are referred to as case 2 waters, as opposed to phytoplankton dominated case 1 waters of the open

⁎ Corresponding author. Tel.: +41 446356517; fax: +41 446356846. E-mail address: daniel.odermatt@geo.uzh.ch (D. Odermatt).

0034-4257/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
ocean (Morel & Prieur, 1977). The variety within case 2 waters is large, because concentrations as well as specific inherent optical properties of chlorophyll (CHL), total suspended matter (TSM) and colored dissolved organic matter concentrations (CDOM) are subject to potentially large and independent variations. Satellite sensors such as SeaWiFS, MODIS, and MERIS are currently being used to deliver ocean color data, attaining the requirements necessary for ocean biogeochemistry and climate research (Dierssen, 2010; McClain, 2009). Alas, universally applicable algorithms for the retrieval of water constituents from case 2 waters are not known (IOCCG, 2006, 2009). Specific algorithms are thus optimized and validated for commonly understood but ill-defined water types, e.g. turbid (Gitelson et al., 2007) or clear water (Beltz et al., 2004). Other authors address trophic classes (Cheng Feng et al., 2009; Dekker & Peters, 1993; Iluz et al., 2003), for which several diverging definitions exist (Bukata et al., 1995; Carlson & Simpson, 1996; Chapra & Dobson, 1981; Nürnberg, 1996; Wetzel, 1983). Trophic thresholds vary however with ecosystem specific limitations to primary productivity, while the validity of remote sensing algorithms is determined only by the variability in optical properties.

Carder et al. (1999) and Morel (1980) distinguish empirical and analytical methods for water constituent retrieval, and in-between with the epithet “semi-“. Empirical algorithms are derived by statistical regression (Kabbara et al., 2008; Mahasandana et al., 2009) or endmember selection (Tyler et al., 2006), which implies effective data optimization but limited transferability (Austin & Petzold, 1981). Analytical algorithms are based on simplified solutions of the radiative transfer equation. This usually requires approximations or calibration with empirical coefficients (Carder et al., 1999), while statistical regression often leads to solutions that coincide with properties known from physical models (e.g. normalizing band ratios (Gitelson, 1992)), explaining the epithet “semi-“ from either side. Either type of algorithm is usually applied as a band arithmetic solution for one constituent at a time, although empirical solutions can also be found by other approaches (Gonzalez Vilas et al., 2011; Tyler et al., 2006).

In contrast, spectral inversion procedures match spectral measurements with bio-optical forward models by means of inversion techniques. The spectral inherent optical properties (IOPs, (Preisendorfer, 1961)) of all three constituents are thereby retrieved at once from one spectral apparent property (AOP). Several inversion techniques are applied for this procedure, whereby the investigated AOP is matched with simulated AOPs from bio-optical forward models, i.e. either analytical relationships (Albert & Mobley, 2003; Gordon et al., 1975; Lee et al., 2002; Maritorena et al., 2002; Park & Ruddick, 2005) or numerical radiative transfer models (Bulgarelli et al., 1999; Jin & Stammes, 1994; Mobley, 1989; Zhai et al., 2010).

By comprehensively reviewing the literature from 2006 to May 2011, we discuss in this paper recent studies reporting match-up validation results for water constituent retrieval in case 2 waters from satellite imagery using band ratio or spectral inversion algorithms. Accuracy assessments for band ratio or spectral inversion algorithms based only on in situ measurements, e.g. Kostadino, (2007), Moore et al. (2009) or Shanmugam et al. (2010) or simulated datasets, e.g. Qin et al. (2007) are not discussed. This work complements the review of the accomplishments in ocean color research in the last decade by McClain (2009), as well as the exhaustive review of empirical algorithms for case 2 waters (Matthews, 2011) extending earlier work by Dekker et al. (1995).

We group the paper in 7 sections, where the relevance of IOPs and AOPs in models and algorithms is discussed first, followed by a description of band arithmetic and spectral inversion algorithms. Recent validation experiments for either approach are then summarized and quantitatively analyzed for their range of applicability.

2. Relevance of IOPs in models and algorithms

Regarding IOPs, the volume scattering function β(ψ) is the elementary property for the integration of the scattering and backscattering coefficients b and b0, respectively, over scattering angle ψ. Measurements of β(ψ) (Chami et al., 2006; Freda & Piskozub, 2007; Freda et al., 2007; Lee & Lewis, 2003; Petzold, 1972; Sokolov et al., 2010; Sullivan & Twardowski, 2009) are normalized to the scattering phase function β(ψ). Several models of β(ψ) have been proposed to approximate these measurements (Fournier & Forand, 1994; Fournier & Jonasz, 1999; Haltrin, 2002; Mobyly et al., 1993). Their effect on calculated reflectance quantities is up to 20% (Chami et al., 2006; Gordon, 1993; Mobyly et al., 2002; Morel & Gentili, 1996; Morel et al., 2002). The ratio of molecular to total scattering, η, is a major proxy for the shape of β(ψ), since molecular βW is less anisotropic than particulate βTSM (Morel, 1974; Smith & Baker, 1981).

The absorption coefficient a in contrast is omnidirectional, but influences the intensity and anisotropy of reflectance through the single scattering albedo ω0 (Gordon & Brown, 1973; Gordon et al., 1975; Morel & Prieur, 1977) and the number of subsequent scattering events of a photon before reaching the interface, N (Loisel & Morel, 2001; Morel et al., 2002), respectively. An alternative term for the former is the single backscattering albedo ω0b. The latter indicates the blurring of β(ψ) in turbid water (Pfeiffer & Chapman, 2003; Piskozub & McKee, 2011; Sydor, 2007).

The ability to account for variations in these IOPs is limited for band arithmetic algorithms, while increasingly addressed by spectral inversion algorithms for radiative transfer simulations (Doerffer & Schiller, 2007; Schroeder et al., 2007b; Van Der Woerd & Pasterkamp, 2008) or specific semi-analytical models (Albert & Mobley, 2003; Park & Ruddick, 2005).

3. Relevance of AOPs in models and algorithms

The first widely used AOP is the bihemispherical irradiance reflectance Rf, which is related to ω0 in the earliest semi-analytical models for case 2 water by means of the linear coefficient f (Gordon et al., 1975; Morel & Prieur, 1977), which again varies with illumination zenith angle θz (Gordon, 1989; Kirk, 1991; Sathyendrana and Platt, 1997).

Subsequent experiments for case 1 (Morel & Gentili, 1991, 1993) and case 2 (Loisel & Morel, 2001) waters focus on anisotropy of the underwater light field, described by η, N and the anisotropy factor Q that relates diffuse upwelling irradiance Eu to directional upwelling radiance Lp. It is found that the directional variations in f and Q partly compensate each other, leaving the subsurface remote sensing reflectance Rf less sensitive to anisotropy effects than R′f (Morel & Gentili, 1993). Accordingly, semi-analytical models that relate ω0 directly to Rf by means of quadratic coefficients became more popular (Gordon et al., 1988; Lee et al., 1998).

Correction for air-water interface and normalization of the resulting Rf to zenith illumination and viewing geometry will then result in the normalized water-leaving reflectance Rfl, as well as estimation of the coefficients in semi-analytical models requires knowledge of atmospheric and aquatic parameters, which have to be retrieved through iterative procedures (Gordon & Franz, 2008; Morel & Gentili, 1996). Since such procedures are more computationally expensive for case 2 than for case 1 waters (Kuchinke et al., 2009), approximations find wide use in both cases, compromising the potential improvement due to such normalizations.

4. Band arithmetic algorithms

CHL retrieval band arithmetic algorithms make use of the pigment’s primary and secondary absorption maxima at 442 nm and 665 nm, respectively (Bricaud et al., 1995), a reflectance peak around 700 nm due to the minimum sum of absorption of phytoplankton, particulate and dissolved matter and water (Gitelson, 1992; Vasilkov &
Kopelevich, 1982; Vos et al., 1986) and its fluorescence emission band at 681 nm (Gower et al., 1999).

The primary feature is superimposed by CDOM absorption (Bricaud et al., 1981), and therefore widely used in case 1 waters, where CDOM and CHL correlate as CDOM is a phytoplankton degradation product (Möpel & Prieur, 1977). Sensor specific standard algorithms for primary CHL absorption bands exist for all medium resolution ocean color spectrometers (Aiken et al., 1995; Clark, 1997; Möpel & Antoine, 2007; Murakami et al., 2006; O'Reilly et al., 1998). They are referred to as OC2, OC3 and OC4 depending on the number of bands used.

Using the secondary feature is promoted by weak variations in the spectral properties of all other parameters apart from the increasing absorption by water (Dall’Olmo et al., 2003; Gitelson, 1992; Schalles et al., 1998). Its major limitation is the absence of the feature in oligotrophic and some mesotrophic lakes (Quanter et al., 2010).

Fluorescence line height (FLH) and maximum chlorophyll index (MCI) algorithms are linear baseline algorithms for <30 mg/m³ and >100 mg/m³ CHL ranges (Gower et al., 2005). They can be applied either with or without atmospheric correction (Binding et al., 2011; Matthews et al., 2010).

TSM and corresponding particle scattering is best quantified outside the CHL or CDOM features (Binding et al., 2010). Regression with a single band is possible if an accurate, possibly NIR Lw coupled atmospheric correction is applied (Stumpf et al., 2003). Multi band algorithms are however also used on uncorrected at-sensor radiances (Koponen et al., 2007). The choice of spectral bands in regression algorithms depends on the corresponding concentrations ranges, whereas appropriate wavelengths shift from 550 nm towards the red and NIR portions of the spectral range for increasing TSM (Wang & Liu, 2010). The increase in absorption of pure water towards the NIR will namely require increasing TSM to ensure a sufficient reflectance signal (Ruddick et al., 2006), while less absorbing portions of the spectrum are more suitable for low concentrations. Empirical regression of in situ TSM with all eligible bands of a spectroradiometric measurement is a simple way to test this hypothesis (Nechad et al., 2010), and provides the flexibility to derive suitable algorithms even for Landsat TM instruments (Wang et al., 2009; Zhou et al., 2006).

CDOM retrieval methods are restricted to short visible wavelengths, where absorptions of CDOM and CHL coincide (Babin et al., 2003; Ferreira et al., 2009) and inaccuracies due to NIR derived atmospheric correction are largest (Hu et al., 2000). Accordingly, most band arithmetic algorithms relate CDOM to a ratio of sensitive bands at <600 nm and normalization bands at >600 nm (Kallio et al., 2001).

The choice of suitable sensors is smaller than for the estimation of CHL and TSM, due to insufficient radiometric accuracy of Hyperion (Giardino et al., 2007) and Landsat Thematic Mapper (Kutser et al., 2005b) in the short wave domain of the spectrum.

5. Spectral inversion algorithms

The constitution of spectral inversion algorithms is more heterogeneous than band arithmetic algorithms, with differences in water, interface, atmospheric models and inversion techniques. Spectral inversion algorithms perform a simultaneous retrieval of IOPs and concentrations of the optically active constituents. One of the major weaknesses of these algorithms is related to the appropriate parameterization of the IOP spectral shapes (IOCCG, 2006).

Table 1 contains a list of recent studies reporting validation results for spectral inversion algorithms in case 2 waters. NN inversion techniques are dominant, probably due to their improved availability as MERIS level 2 products (Doerffer & Schiller, 2007) and by BEAM plug-ins (Doerffer & Schiller, 2008a; Schroeder et al., 2007b). Other inversion techniques include area minimization (Kutser et al., 2001), matrix inversion (Brando & Dekker, 2003), downhill simplex (Heege & Fischer, 2004), least-squares (Santini et al., 2010), spectral optimization (Kuchinke et al., 2009a) and Levenberg–Marquardt optimization (Van Der Woerd & Pasterkamp, 2008). Only one application of the SeaDAS semi-analytical algorithms (Carder et al., 1999; Lee et al., 2002; Maritorena et al., 2002) is listed in Table 1. This is however to a large extent due to their focus on retrieving IOPs rather than constituent concentrations.

Most algorithms are used together with specific atmospheric correction schemes. The use of standard level 2 reflectance products is only foreseen for two algorithms (Schuchman et al., 2005; Van Der Woerd & Pasterkamp, 2008). The inversion modules match atmospherically corrected Rfi or R− with Hydrolight simulated data (Brando & Dekker, 2003; Doerffer & Schiller, 2007, 2008a; Santini et al., 2010; Van Der Woerd & Pasterkamp, 2008), other numerical (Jerome et al., 1996; Pozdnyakov et al., 2005) or semi-analytical (Heege & Fischer, 2004; Kuchinke et al., 2009a) simulations. Findings from the validation experiments in Table 1 are discussed later.

6. Validation experiments

Recent ISI journals (2006–2011) comprise about 50 published papers reporting water constituent retrieval from satellite imagery for
optically deep and complex waters, among which about three quarter apply band arithmetic algorithms. Applied selection criteria are the availability of coinciding validation data, concentration ranges and statistical quality measures, namely R^2.

6.1. Chlorophyll-a retrieval

All recent band arithmetic CHL retrieval applications are depicted in Fig. 1, with corresponding sensors and concentration ranges. The three previously described major groups are distinguished: green/blue ratios defined for OC algorithms, red-NIR band ratios and further empirical algorithms.

The OC2-OC4 algorithms are successfully applied to retrieve 0–10 mg/m3 CHL in optically complex water. They are however considerably less accurate than red-NIR ratios at high CHL, which coincides with theoretical concerns that their use is limited to Open Ocean. This is because independently varying CDOM disturb the correlation between such short wavelengths and the primary CHL absorption feature. From top to bottom in Fig. 1, study areas are Lake Erie (OC2 and OC4), the Mississippi Delta (OC2), Lake Tanganyika (OC3) and the Northern Adriatic Sea (OC3 and OC4), and a lagoon in New Caledonia (OC4). Several of these examples indicate that the observed water optical properties resemble those in case 1 water to some extent. Mélin et al. (2007) mention that two thirds of their observations refer to case 1 water, and Horion et al. (2010) assume explicitly that even Lake Tanganyika is case 1. The data by D’Sa et al. (2006) follow a shifted but correlated mixture of constituents as found for case 1 water (Morel & Maritorena, 2001), which can be accounted for by regional adjustment as done by Witter et al. (2009). Dupouy et al. (2010) present a turbidity index for the preselection of applicable data points.

Atmospheric correction algorithms provide R_o^* and $[R_{o}]_n$ output for the application of the OC algorithms (Gordon & Voss, 2004; Gordon & Wang, 1994; Siegel et al., 2000; Stumpf et al., 2003; Toratani et al., 2007). Further OC applications to optically complex waters lack quantitative matchup validation (Gons et al., 2008; Wang et al., 2011; Werdell et al., 2009).

NIR-red algorithms using 2 or 3 bands are validated using MERIS data for up to 250 mg/m3 CHL in Zeekoevlei (Matthews et al., 2010), and suitable for the 10–100 mg/m3 interval represented by the Dnieper River, the Sea of Azov, the Gulf of Finland, Lake Dianchi and Kasumigaura, as in vertical order in Fig. 1. CHL <10 mg/m3 is only observed in Moses et al. (2009a; 2009b). Their calibration data and root mean square errors (RMSEs), as well as previous simulations (Dall’Olmo & Gitelson, 2006) indicate a minimum applicability threshold at 10 mg/m3 CHL although lower CHL is successfully retrieved from field spectroscopy measurements (Gitelson et al., 2009). Enhancement of NIR-red algorithms by CDOM and tripton derived coefficients from a look-up-table may even extend the applicable range, but are only validated for waters with high CHL (Yang et al., 2011). Advantages in the use of either 2 or 3 bands are inconsistent (Moses et al., 2009a; Moses et al., 2009b).

Fig. 1. Overview of recently (2006–2011) published ISI journal papers on the separate retrieval of chl-a from satellite imagery using matchup-validated semi-analytical and empirical algorithms. Hatched areas indicate disputed application ranges. The red-NIR 3 band application by Chen et al. (2011) is omitted since the variation range retrieved from Hyperion (21–27 mg/m3; $R^2 = 0.6$) is too small to display.
the Woods (Binding et al., 2011). Accuracy restrictions for low CHL are however similar as for the 2 and 3 band NIR-red algorithms as far as RMSE (5.7 and 7.3 mg/m³ for MCI and FLH, respectively) is concerned. FLH was also found inapplicable to oligotrophic water in the Laurentian Lakes, raising concerns over the fluorescence signal to noise ratio under unfavourable atmospheric conditions (Gons et al., 2008).

The empirical studies by Kabbara et al. (2008) and Mahasandana et al. (2009) consist of regression models for Landsat-7 ETM+ and Landsat-5 TM. They prove the feasibility of CHL estimation with high-resolution sensors, but need parameterization for each single image. In contrast, Gonzalez Vilas et al. (2011) train NNs for preclassified MERIS observations and in situ measured concentrations without the application of an explicit bio-optical model. Their approach achieves high accuracy and temporal stability at the expense of regional restriction.

The types of sensors used in the present experiments correlate clearly with the choice of applications; SeaWiFS and MODIS for the OC algorithms and low CHL concentrations, MERIS for the retrieval of high CHL by means of red-NIR band ratios and Landsat for empirical algorithms. The advantage of MERIS' 681 nm and 708 nm bands over comparable instruments that lack these bands is known (Gitelson et al., 2008; Gower et al., 1999), and demonstrated for MODIS by Moses et al. (2009a). Gitelson et al. (2011) use a set of hyperspectral HICO data to define optical band positions for a 3 band red-NIR algorithm at even higher accuracy.

Appropriate atmospheric corrections that preserve the NIR reflectance peak and allow for directional normalization to R_{w} are another prerequisite and asset, respectively. The SeaDAS toolbox for SeaWiFS and MODIS offers a large variety in this regard (Hu et al., 2000; Ruddick et al., 2000; Stumpf et al., 2003; Vidot & Santer, 2005; Wang, 2007), whereas occasional failure in retrieving the NIR peak is reported for MERIS' C2R atmospheric correction module (Guanter et al., 2010; Odermatt et al., 2010).

6.2. Suspended sediment retrieval

Recent TSM retrieval validation experiments are listed in Fig. 2, for increasing central wavelengths of chosen sensors and bands in vertical direction. The convergence in frequently applied methods is not as evident as among the CHL algorithms in Fig. 1. The advantage of semi-analytical over empirical algorithms is a matter of adaptivity and justification rather than accuracy. Application of semi-analytical algorithms implies a physically sound procedure with defined R_{rs} from atmospheric correction procedures as mentioned for CHL (Moore et al., 1999; Ruddick et al., 2000; Stumpf et al., 2003). Their configuration allows adjustment to other sensors or bands (Van der Woerd & Pasterkamp, 2004), and comparison of atmospheric corrections (Matthews et al., 2010) or reflectance models (Nechad et al., 2010). In contrast, empirical algorithms apart from Petus et al. (2010) and Mélín et al. (2007) are applied to uncorrected at-sensor radiances (Koponen et al., 2007) and physically undefined reflectance quantities (Chen et al., 2009; Wang et al., 2009), leaving them unjustified for applications beyond the data they are derived for. However, empirical algorithms are advantageous for evaluation experiments as with the validation of TSM from geostationary MSG-SEVIRI data by means of MODIS TSM (Neukermans et al., 2009).

An increase in spectral band position with observed TSM concentration range is found in Fig. 2 as well as in several discussions (Fettweis et al., 2011; Wang & Lu, 2010; Zhang et al., 2010). Maximum sensitivity thresholds are estimated at 30 g/m³ for SeaWiFS' 555 nm band (Eleveld et al., 2008) or around 150–200 g/m³ for bands at <650 nm (Fettweis et al., 2011; Wang & Lu, 2010). Only one recent quantitative validation experiment investigates such

Fig. 2. Overview of recently (2006–2011) published ISI journal papers on the separate retrieval of TSM from satellite imagery by means of matchup-validated semi-analytical and empirical algorithms. Hatched areas indicate disputed application ranges. The retrieval of tripton from MERIS band 10 (754 nm) at $R^2 = 0.3$ was omitted (Yang et al., 2011).
extreme turbidity, accordingly at 860 nm (Wang et al., 2009). In less turbid water, the accuracy variations for 8 MERIS bands between 620 and 885 nm are only $R^2 = 0.89$ to 0.93, and lower in absolute values but similar in variation for MODIS (Nechad et al., 2010). Multi band algorithms are recommended for low TSM concentrations due to the increasing superimposition by other constituents’ optical properties (Nechad et al., 2010). In this regard, Nechad et al. (2010) suggest a 1 g/m3 minimum threshold for single band algorithms, while Binding et al. (2010) mention that their RMSE increases to 47% of mean concentrations below 5 g/m3. Matchups in clear Adriatic coastal water, which is in two thirds of all matchups typically oceanic, confirm the challenges in retrieval of low TSM, with a relatively low R^2 (Mélén et al., 2007).

6.3. Dissolved organic matter retrieval

All CDOM retrieval band arithmetic algorithms in Fig. 3 are from empirical regression (D’Sa & Miller, 2003; Gitelson et al., 1993; Kallio et al., 2001; Kowalczuk et al., 2005), in the case of Yang et al. (2011) by means of bio-optical simulations (Ammenberg et al., 2002). The examples indicate that single band approaches and bands at less than 490 nm are only applicable to extremely high concentrations and correspondingly strong CDOM absorption variations as in Zeekoevlei (Matthews et al., 2010). The two best correlations are calculated for band ratios that apply a 442–490 nm band that is sensitive to both CHL and CDOM variations, and the CHL-sensitive 665 nm band of MERIS for normalization (Koponen et al., 2007; Matthews et al., 2010). In both cases no atmospheric correction is applied, although CDOM in the Gulf of Finland is already much less abundant than in Zeekoevlei. Ammenberg et al. (2002) uses the 665 nm band to normalize the 560 nm band rather than the 442–490 nm bands, whereas both the interference with CHL absorption and the CDOM signal are considerably weaker at 560 nm. The correlation of this ratio with intermediate CDOM in Lake Dianchi and Lake Kasumigaura remains however relatively low, in spite of the application of a look-up-table retrieved parameterization (Yang et al., 2011). A recent validation exercise with MERIS 1, 412 nm SeaWiFS, MODIS & SeaWiFS, and MERIS from SeaDAS semi-analytical algorithms (Carder et al., 1999; Garver & Siegel, 1997; Maritorena et al., 2002) in all cases (Kowalczuk et al., 2010). A SeaWiFS validation in the Mississippi estuary achieves an even higher correlation at lower concentrations (D’Sa et al., 2006). The two validation exercises are also the seasonally most representative ones given that data matchups from several years and seasons are analyzed.

6.4. Spectral inversion applications

13 or a quarter of the selected publications in 2006–2011 ISI journals refer to spectral inversion algorithms (Table 1), with several papers on new algorithms where validation is only a subchapter (Santini et al., 2010; Schroeder et al., 2007b; Van Der Woerd & Pasterkamp, 2008). The quantitative content is often less detailed than with band arithmetic algorithms, hindering an estimate of their applicability as shown in Table 1. The MERIS algal_2 product (Doerffer & Schiller, 2007) and CHL from C2R and its boreal and eutrophic version (Doerffer & Schiller, 2008a; Koponen et al., 2008) have been applied in several experiments. C2R is successfully validated for low to intermediate concentrations (< 16 mg/m3) (Cui et al., 2010; Minghelli-Roman et al., 2011; Odermatt et al., 2010), while C2R and even its eutrophic water version are found unsuitable for high CHL concentrations (Binding et al., 2011; Giardino et al., 2010; Matthews et al., 2010). C2R’s CDOM is found adequate in a eutrophic lagoon in the Baltic Sea, where concurrent CHL is strongly

![Fig. 3. Overview of recently (2006–2011) published ISI journal papers on the separate retrieval of CDOM from satellite imagery by means of matchup-validated, arithmetic algorithms. Where necessary, normalization to 400 nm is done with explicitly mentioned spectral exponents (Smith & Baker, 1981), i.e. 0.0157 (Yang et al., 2011), 0.0161 (D’Sa et al., 2006) and 0.0188 (Matthews et al., 2010), or an approximate average of 0.0213 (Mannino et al., 2008).](image-url)
underestimated (Giardino et al., 2010). In contrast, CDOM in oligotrophic pelagic and finish lakes is underestimated by both C2R and its boreal version while CHL is adequate (Koponen et al., 2008; Odermatt et al., 2010). C2R’s atmospheric correction failed at retrieving the red-NIR reflectance peak in several examples, while it outperforms other procedures with its accuracy at blue and green wavelengths (Giardino et al., 2010; Odermatt et al., 2008; Odermatt et al., 2010). TSM retrieved by the two NN is inapplicable to turbid water (Cui et al., 2010; Matthews et al., 2010), but accurate at about <15–30 g/m³ (Koponen et al., 2008).

Validation of the FUB MERIS NN algorithm is successful and thorough at low to intermediate concentrations of all constituents over a wide spatiotemporal range (Schroeder, 2005; Schroeder et al., 2007b). Even lower constituent concentrations are successfully retrieved from a single Hyperion image by means of matrix inversion (Giardino et al., 2007). All other applications do not meet the requirements for quantitative matchup validation. Ground truth comparisons are limited to spectral fits (Van Der Woerd & Pasterkamp, 2008), frequency distribution (Kuchinke et al., 2009b) and transect comparisons (Santini et al., 2010), or display occasional failure that prevent sufficient correlations (Odermatt et al., 2008; Shuchman et al., 2006).

7. Discussion

The assessed quantitative validation experiments using band arithmetic algorithms consist of comparisons of several methods where in situ data are acquired for exactly this validation purpose. They are numerous enough to synthesize several general conclusions based on individual findings and validation sites, e.g. the validity range for red-NIR CHL algorithms, the suitability of OC algorithms for low and intermediate CHL, the choice of TSM retrieval wavelengths according to expected concentrations ranges or the CHL variation normalization strategies in CDOM retrieval algorithms.

A sufficient number of studies with spectral inversion algorithms are only available for the MERIS NN algorithms. Only the algorithm by Schroeder et al. (2007b) has been successfully validated using matchup correlations of all three constituents over several image acquisitions and aquatic regions as given for many band arithmetic algorithms. We presume two main reasons for this difference, namely availability and complexity. The importance of the availability of algorithms is well represented by the frequent use of retrieval algorithms and corresponding atmospheric correction procedures in SeaDAS and BEAM. They lead to the use of OC algorithms, such as the most popular CHL retrieval methods based on SeaWiFS and MODIS data, while NN algorithms are evaluated in most experiments using MERIS data. The opposite cases are rare, although not hindered by sensor or data properties. Consequently, the (semi-)operational use of spectral inversion algorithms is mainly limited to their promoters unless other potential users find easier available methods unsuitable, which may again indicate challenging bio-optical conditions, complicating validation.

Crucial sensor and data properties are the red-NIR wavebands as used in MERIS, the spatial resolution of Landsat and ALI instruments and the temporal resolution of MSG-SEVIRI. In the first case, the red-NIR CHL retrieval experiments with MERIS outnumber and outperform corresponding experiments for most other sensors, rendering MERIS the preferred instrument for estimating CHL in meso- to eutrophic waters. In the case of MSG-SEVIRI, TM, ETM+, and ALI, radiometric accuracy, bandwidths and a lack of appropriate pre-processing tools complicate routine use, as established with dedicated ocean color instruments. However, experimental evidence is given that either of those instruments can be used for case 2 water constituent retrieval under certain circumstances. Simpler methods are however mostly empirical, providing rapid access to data and their correlations, but at the cost of being site specific and not expressing any cause–effect relationship.

On the opposite side, complexity in constitution, application and validation of spectral inversion procedures are clearly highest. They retrieve several aquatic and possibly atmospheric parameters from a larger number of spectral bands. Failure at any point in the procedure, i.e. the assumption of an inappropriate shape in CDOM absorption, may propagate errors in the estimates of other parameters, complicating a coherent validation or falsification. Band arithmetic algorithms on the contrary make use of known relationships between one aquatic parameter and 1–3 spectral bands that are sensitive to an optical property of the sought-after parameter or allow the normalization of other variations. The validation or falsification of such relationships is straightforward and reveals a good estimate of an algorithm’s validity range.

For a comparison of the known validity ranges for band arithmetic algorithms (Fig. 1 to Fig. 3), we apply a scheme that helps to further categorize applications for case 2 waters. Natural variations in each constituent are separated in a low, intermediate and high range. Low CHL is referred to as oligotrophic, and ranges up to 3 mg/m³, the integer average from ecological classification schemes (Bukata et al., 1995; Carlson & Simpson, 1996; Chapra & Dobson, 1981; Nürnberg, 1996; Wetzel, 1983). Previous definitions of the second threshold between mesotrophic and eutrophic waters differ from 5.6 to 20 mg/m³ and are supplemented with a hypereutrophic water in some schemes (Table 2). According to these sources and Fig. 1 we set the threshold to 10 mg/m³, which approximately limits the applicability of OC and red-NIR algorithms at the top and bottom of their concentration range, respectively. TSM thresholds are set at 3 and 30 g/m³ due to the experimental ranges in Fig. 2, corresponding water types are referred to as clear, cloudy or turbid. An analogous partitioning is carried out for CDOM according to Fig. 3, allowing the assignment of all collected validation experiments to one or several variation spaces with regard to independent variations in the other two constituents as in Fig. 4 (e.g. TSM retrieval in clear and cloudy water at given CHL and CDOM (Binding et al., 2010)).

Published validation experiments as used in Fig. 1 to Fig. 3 are depicted in Fig. 4 if variation ranges of all three constituents are given, even if only individual constituents are retrieved. Only two spectral inversion experiments from Table 1 can be positioned. Schroeder et al. (2007b) present simultaneous retrieval of all parameters at an accuracy that is comparable to corresponding band-ratio validations, while only CHL is retrieved accurately in Cui et al. (2010), but variations in TSM and CDOM are also given. The CHL retrieval column in Fig. 4 shows the suitability of red-NIR algorithms for eutrophic water, and the potential of OC algorithms for oligo- to mesotrophic waters at relatively low TSM and CDOM variations. Several different algorithms retrieve TSM accurately, but the relationship between sensitive wavelength and concentration range (Fig. 2) is no more visible. Relatively few experiments are assigned to turbid water, probably because measuring in situ TSM is much less of an effort than additional CHL and CDOM. The proof of successful CDOM retrieval is however generally scarce, similar as with low CHL concentrations.

The directional reflectance properties of water are often neglected. Spectral inversion algorithms that make use of directional radiative transfer simulations are the most adequate solution, as they can account for all influencing parameters assuming a given $\beta(\psi)$

<table>
<thead>
<tr>
<th>Author</th>
<th>Oligotrophic</th>
<th>Mesotrophic</th>
<th>Eutrophic</th>
<th>Hypereutr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapra and Dobson (1981)</td>
<td>0.2–9</td>
<td>2.9–5.6</td>
<td>>5.6</td>
<td>n.a.</td>
</tr>
<tr>
<td>Wetzel (1983)</td>
<td>0.3–4.5</td>
<td>3–11</td>
<td>3–78</td>
<td>n.a.</td>
</tr>
<tr>
<td>Bukata et al. (1995)</td>
<td>0.8–2.5</td>
<td>2.5–6</td>
<td>6–18</td>
<td>>18</td>
</tr>
<tr>
<td>Carlson and Simpson (1996)</td>
<td>0.6–2.6</td>
<td>2.6–20</td>
<td>20–56</td>
<td>>56</td>
</tr>
<tr>
<td>Nürnberg (1996)</td>
<td>0.3–5</td>
<td>3.5–9</td>
<td>9–25</td>
<td>>25</td>
</tr>
</tbody>
</table>
Regarding classical analytical approaches, directional effects are parameterized using coefficients (e.g., f, Q) that vary with constituent concentrations (Morel & Gentili, 1991, 1993). Their estimation requires iterative optimization, which needs an extension for band arithmetic analysis (Yang et al., 2011). More recent analytical models are even parameterized with a specific geometry (Albert & Mobley, 2003; Park & Ruddick, 2005). A corresponding application example is given in Nechad et al. (2010), where the retrieval of TSM from cloudy water using a classical model (Gordon et al., 1988) is surprisingly better than a directional model (Park & Ruddick, 2005). Nonetheless, an improvement is expected especially for water with less particle scattering, i.e., higher η and lower N, and thus with higher anisotropy. Atmospheric correction procedures that provide an accurate \(R_{\text{avo}} \) e.g., through iterative procedures are thereby eligible alternatives to more extensively parameterized reflectance models.

The prominence of band-ratio algorithms for the individual retrieval of CHL in case 2 waters reported in this study, warrants how-ever a note of caution. It has been suggested that changes on phytoplankton assemblages, as due to climate change, may shift phytoplankton composition in response to altered environmental forcing (e.g., Montes-Hugo et al., 2008). This process might uncouple CDOM and TSM concentrations from phytoplankton stocks and lead to further uncertainty in the retrieval of individual constituents, which is usually the case when using empirical algorithms, as opposed to the consolidated retrieval by inversion algorithms (Dierssen, 2010).

Extending from the intercomparison of algorithms performance based on synthetic and in situ data sets (IOCCG, 2006), a series of intercomparison and benchmark exercises including application to

![Fig. 4. Case 2 water classes for CHL (left column), TSM (center) and CDOM (right) concentrations, with high to low concentration classes from top to bottom, and the remaining two constituents varying in x- and y-directions of each box. Class names and concentration ranges are titled in each box. Algorithm validation ranges are indicated as boxes and labeled with corresponding retrieval methods or center wavelengths. Bold labels indicate validation experiments with >10 images, hatched areas indicate simultaneous retrieval of all constituents. Reading example: Binding et al. (2011) validate the FLH and MCI algorithms for CHL in eutrophic waters with 0.85–19.60 g/m³ TSM and 0.26–7.14 m⁻¹ CDOM.](image-url)
satellite imagery and matchup analysis is recommended to shed light on the comparability of water constituent retrieval algorithms and identify their applicability constraints in the near future.

Acknowledgements

We appreciate early comments and discussions on this work, in particular by Young-Je Park, Arnold Dekker, Els Knaeps, Dries Raymaekers and Viacheslav Kiselev and two anonymous reviewers. This work was partly funded by CSIRO’s Wealth from Oceans Flagship and by NASA LCLUC program to AAC.

References

