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A Comparison of Range-Doppler and
Wavenumber Domain SAR Focusing Algorithms

Richard Bamler

Abstract— Focusing of SAR data requires a space-variant
two-dimensional correlation. Different algorithms are compared
with each other in terms of their focusing quality and their
ability to handle the space-variance of the correlation kernel: the
range-Doppler approach with and without secondary range com-
pression, modified range—Doppler algorithms, and four versions
of the wavenumber domain processor. The phase aberrations of
the different algorithms are given in analytic form. Numerical
examples are presented for Seasat and ERS-1. A novel systems
theoretical derivation of the wavenumber domain algorithm is
presented.

Keywords— Synthetic Aperture Radar (SAR) data processing,
range-Doppler algorithm, wavenumber domain algorithm, sec-
ondary range compression.

[. INTRODUCTION

PROCESSING of Synthetic Aperture Radar (SAR) data
requires a two-dimensional space-variant correlation of
the received echo data with the point scatterer response of
the SAR data acquisition system. Both the shape and the
phase history of the correlation kernel vary systematically in
the across-track (range) direction; a possible variation in the
along track (azimuth) direction shall not be considered here.
A full two-dimensional time domain correlator can handle the
space-variance, but is computationally inefficient. In order to
take advantage of fast frequency domain correlation techniques
several algorithms have been developed in the past that impose
different approximations on the correlation kernel.

For more than a decade the range-Doppler (RD) algorithm
[1] has been the basis of most precision SAR processors.
Several modifications of this algorithm exist [2]-[5], the
most important being the secondary range compression (SRC)
[2]. RD algorithms perform azimuth focusing after Fourier
transforming the range compressed SAR data in the azimuth
direction.

More recently, [6]-[11], a new class of algorithms has
been proposed and implemented. They are often referred to
as “wavenumber domain” or “w—k” processors and employ
the full two-dimensional Fourier spectrum of the data. Seismic
migration techniques {12] had stimulated the development of
the w—k algorithm. Its invention resembles the breakthrough
in optical SAR processing, when it was recognized that SAR
data can be focused like holograms by lenses and free-space
wave propagation—a procedure technologically superior to
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explicit matched filtering based on the technology available
at that time (see, e.g., [13]). The original w—k algorithm [6],
[7], [10] was formulated in terms of the wave equation: The
relationship with traditional focusing methods was not obvious
at all, which might have caused an initial scepticism against
the new approach. In [9], [11] approximations of the w-k
algorithm have been derived using Fourier calculus.

In this paper a systems theoretical derivation of the w—k
algorithm in its strict formulation—including the Stolt inter-
polation [6], [7], [10], [12]—is given, without employing the
wave equation reasoning. This allows a comparison of RD and
w—k algorithms with respect to the following two questions:

1. How accurately is the focusing correlation kernel ap-
proximated? This question is addressed by investigating
the phase aberrations of the implied transfer function,
i.e., of the two-dimensional Fourier transform of the ker-
nel. In this context it is sufficient to restrict the analysis
to a small range interval, in effect neglecting the space-
variant nature of the problem. A similar methodology is
used in [5].

2. How well is the space-variance of the correlation kernel
accounted for? Most algorithms incorporate interpola-
tion (also referred to as change of variables, reindexing,
or grid deformation) for this purpose. This raises the
question of the required accuracy of the interpolation
kernel and the possible artifacts introduced by a subop-
timum interpolation.

The paper is organized as follows: In Section II the as-
sumptions and the coordinate systems used in the paper are
summarized. The point scatterer response of the SAR data
acquisition system is derived in Section III. In Section IV the
optimum time domain focusing operator, i.e., the space-variant
correlation of the raw data with the point scatterer response, is
formulated. Together with the exact focusing transfer function
given in Section V this will serve as the reference for rating
the different algorithms. In Sections VI to X the algorithms are
investigated in a unified way. Section XI briefly describes a
novel aberration-free algorithm. Section XII shows experimen-
tal results for simulated point scatterer responses and Section
XIII summarizes the results of the analysis. The systems
theoretical derivation of the w-k algorithm is presented in
the appendix.

II. ASSUMPTIONS AND NOTATIONS

In order to keep the discussion and the formulas as concise
as possible a few simplifying assumptions are made:
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Fig. 1. Coordinate systems used in the paper.

+ The sensor trajectory is a straight line.

* Earth rotation and antenna mispointing are accounted for
by an effective squint angle.

+ The “start—stop” approximation is adopted, i.e., no sensor
movement is assumed between transmission and reception
of a pulse.

* Since we are only interested in the phase aberrations of
the processor transfer function the influences of the finite
pulse bandwidth, the antenna pattern, and any window
functions are not considered.

* Continuous variables will be used throughout.

» Constants are freely discarded or abbreviated.

We will use the following coordinate systems (Fig. 1):

* In the object space the location of scatterers is represented
as a function of « (along-track or azimuth) and r (across-
track or slant range).

* In the data space the received SAR data d(x, t) are repre-
sented as a function of = and ¢ (echo time). It is assumed
that d(«. t) has been already coherently demodulated and
range compressed.

¢ The image space of coordinates x and r is the space of
the focused (processed) complex SAR data u(z.r).

III. POINT SCATTERER RESPONSE

SAR image formation is a two-step process: The data
acquisition performs the transformation from the object space
to the data space and “smears out” the energy of a single
point scatterer 6(x — xg.7 —rp) to a two-dimensional function
h(x — xg.t:7), the point scatterer response (PSR). The
processor tries to focus the PSR back to a single point (Fig. 1).

Let

p(t) - exp{j - wo -t} €))]

be the pulse transmitted by the sensor and wq the carrier
angular frequency. Then the echo from a scatterer a distance
R away is after coherent demodulation (besides a constant)

p(t = 2R/c) - exp{~j - wo - 2R/c)}. @)

The pulse envelope p(.) is regarded as narrow (after range
compression) and will be approximated by a é-impulse in the
following. While the sensor is passing by a point scatterer
located at x = 0 and r = r( the distance R varies according
to

9

‘ 22
R(zirg) = \/r3 + 22 = ro+ CT 3)
2ro
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The ensemble of all echoes received from the scatterer, is
. 2 . 2
r‘)(tf - -H(a::ro)) -exp{—]wo- - -R(.r:ro)}. 4)
c

In the following, a normalized version of (4) will be referred
to as the PSR:

hz.tir) =
é(t - % AéR(m:r)) ~exp{—ng . % . 6R(a:;r)}. Q)
with
AR(z:r) = R(x:7) — r = 2%/ (27) )

being the range migration (RM). The 6-line in h(x.t:r)
follows the RM trajectory and makes SAR processing a
nonseparable two-dimensional problem. In (5) the apex of this
curve has been located at the origin of the (z,¢)-coordinate
system; the phase of the azimuth chirp exp{.} has been
normalized to zero for x = 0. The parameter r accounts for
the space-variance of h{.) with respect to t. In the azimuth
direction h(.) is assumed to be space-invariant.

In the following the quadratic approximation of AR(z:7)
from (6) will be preferred. This is sufficent for our analysis.
The full hyperbolic form of AR(x;r) can be accounted for
by all of the algorithms.

IV. OpTIMUM TIME DOMAIN FOCUSING

For the purpose of comparison the “optimum” focusing of
the SAR data d(x. t) is taken to be the space-variant correlation
with the PSR h(.), i.e., a phase correction and an integration:

. pdoc
w(x,r) = / / d(',t)-h* (2’ —z.t = 2r/c;r)dz’ dt

+oo
= / d(x.t) @, bz, t — 2r/c;r)dt (7)
where the symbol “®,” denotes correlation in the z-direction.

Only the fact that (7) is a space-variant and two-dimensional
operation makes SAR processing a challenge: If the RM could
be neglected, i.e., h(.) were effectively one-dimensional, (7)
would degenerate to a set of one-dimensional correlations.
If, on the other hand, only a narrow range segment around
7 = 1o is to be focused, (7) can be replaced by a two-
dimensional space-invariant correlation [14] followed by a
change of variables from ¢ to r:

w(z.r =t-¢/2) = d(z.t) ®: ®ch(z,t:10). (8)

This approximation allows efficient SAR data focusing using
two-dimensional FFT’s [8], [15], [16]. Such simple algorithms,
however, will not be considered here, since they do not acco-
modate the space-variant nature of SAR data appropriately.
Equations (7) and (8) together with (5) will serve as a
reference for the following analysis. The algorithms under
discussion will be judged according to how accurately they
perform these operations. Whether the achieved accuracy is
sufficient or not depends on the sensor parameters and on the
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user’s requirements. In order to gain an idea of the phase aber-
rations introduced by different algorithms, numerical values
will be given for the Seasat and the ERS-1 cases. A slant range
of 850 km+20 km and an effective squint angle corresponding
to a Doppler centroid of 1500 Hz and 8000 Hz, respectively,
are assumed. The processed Doppler bandwidth is 1200 Hz.

V. THE EXACT TRANSFER FUNCTION

To judge the focusing quality at one specific range r = g
the space-invariant formulation of (8) is sufficient. Taking
Fourier transforms of (8) with respect to z, r, and ¢ gives

Ulky, kr = 2w/c) = D(ky,w) - H* (kg ,w;ro) )

where capital letters denote two-dimensional Fourier trans-
forms; k, and k, are the x- and r-wavenumbers (spatial
angular frequencies), respectively, and w is the time frequency.
k. will be referred to also as the Doppler wavenumber in the
following. It is related to the Doppler frequency fp and the
sensor velocity v via fp = v - k;/(27).

H*(k;,w;ro) is the optimum transfer function for focusing
points located at a constant range of r = 7. This transfer func-
tion can be easily obtained by Fourier transforming h(z, t; o)
of (5): A transform in the ¢-direction gives

exp{—j(w + wo) - 2AR(z;7)/c}.

A second transform in the z-direction, using the principle
of stationary phase, results in (see also [11], [16], [17]):

H* (ky,wiro)

2
. w4 w W+ w
Ay -exp{ joro- ( 6/20) ol Rl

&

Al-exp{—ng‘ (10)

m-Cc-7T
A=,/ ——mM8—.
YTV wtwo)

A, is a slowly varying function of w, which will be approx-
imated here by a constant. An interesting property of H*(.)
is that the range ro shows up as a proportional constant in
the phase. This allows to cascade the transfer functions and to
focus “forth and back,” a procedure often referred to as “field
continuation” (6], [7], [10] or “back propagation.”

=0

€
PSS
(=)
——

with

VI. RANGE-DOPPLER ALGORITHM

The RD approach works in the (k,,¢)-domain and consists
of two steps:

1. RM correction is performed as a k,-dependent time shift
by:

At(krgr)zg-r- (1—
c

1 )
\/1 — (km . c/(2w0))2
k

c ke
R —— T .
4 wi

This operation implies a time domain interpolation which
can cause artifacts in the image. If the interpolation is
carried out with sufficiently high precision and only a
single range position » = constant is considered, RM
correction is equivalent to a k-dependent linear phase
factor in the two-dimensional Fourier domain:

: . c k2
exp{—j - At(ky;7r) w}mexpqj-r = —5 wr.
4 wj

2. After RM correction a one-dimensional filter function is
applied for azimuth compression

wo

2
. wo
o 20y 2o 2
R R (c/2) £ 2

kZ
zexp{—j-'r- <. —”} (13)
4 wo
The overall two-dimensional transfer function implicit to
the RD approach is finally found as the product of (12) and
(13) (within the quadratic approximation):

k2
exp{—j-r-—-—m~(wo—w)}.
“o

A comparison between this equation and the exact transfer
function from (10) shows that the RD algorithm introduces a
two-dimensional phase aberration of

. € g2 (wo—w 1
e —_ T — . f—
P/ 4 " w2 w+ wp
]C2 2
:exp{j-r~£-—z- d } (15)

For high Doppler wavenumbers k., i.e., highly squinted
SAR'’s, this term causes defocusing in the range direction.
For the Seasat and the ERS-1 cases mentioned in Section
IV the maximum values for k, are 1.86 m~! and 7.61 m~!,
respectively. The maximum quadratic phase errors at the edge
of the range bandwidth are thus

1.56 rad = 0.50 - 7
024 rad =0.08 - 7

(14)

for Seasat
for ERS-1.

A quadratic phase error of 7/4 is usually accepted as an upper
limit for good focusing quality when only detected images are
considered and phase is not of concern.
The above phase aberrations can be easily corrected for, if
the following approximations are justified:
1. The bandwidth of the transmitted pulse is small com-
pared to the carrier frequency:

w+ wp = wo (16)
2. The Doppler wavenumber can be replaced by the Doppler

centroid wavenumber k.:
ke = kyo 17)
3. The range interval to be focused is small compared to
the total range distance:

r & rg = const.

(18)
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Then the above aberration term takes the following form:

, c k2
exp{j-rg-z-;—sg-uﬁ} (19)
0

and can be eliminated, e.g., during range compression by
properly adjusting the frequency modulation rate of the range
reference chirp, a procedure known as secondary range com-
pression (SRC) [2], [3].

The residual phase errors after SRC introduced by the
approximations of (16) and (18) are below 7/100 for both
Seasat and ERS-1. The approximation (17), however, leaves
us with a phase error of

0.75rad =0.24 -7 for Seasat
0.03 rad =0.01 -7 for ERS-1

for the maximum Doppler frequencies to be processed. See
also 3] for the case of even higher squint.

VII. MODIFIED RANGE~-DOPPLER ALGORITHMS

A further improvement of the RD algorithm is possible by
considering the residual aberrations due to the approximations
(16), (18), and especially (17). In [4] an algorithm for squint
imaging mode SAR (SIM SAR) is proposed that corrects the
phase from (15) directly in the (k,,w)-domain, i.e., after a
two-dimensional Fourier transform of the data.

In 3], [5] it is proposed to compensate for the aberrations
during RM correction in the range—Doppler domain by using
interpolation kernels, whose spectra have the desired phase
behavior. By this method it is possible to adapt the SRC in
both r- and k,-directions. The cost for this adaptivity is a more
complicated interpolation scheme, because several different
and complex kernels have to be generated.

In summary, the RD algorithm with SRC models the two-
dimensional transfer function within the validity of the ap-
proximations (16)—(18). The aberrations can be kept arbitrarily
low by appropriate modifications at the cost of computing
efficiency. The algorithm has the potential to consider the
space-variance perfectly by updating the RM correction and
the azimuth compression filter for every output sample. It
is able to accomodate high Doppler centroid variations over
range, even if several PRF bands are covered. Its draw-
back is the need of an interpolation in the (k,,t)-domain
for RM correction. If short interpolation kernels, e.g., cubic
convolution, are used for this task, paired echoes of point
targets will be observed in the image. However, any range
resampling before detection or slant-to-ground projection can
be performed within RM correction conveniently.

VIII. WAVENUMBER DOMAIN ALGORITHM

In [6], [7], [10] an algorithm is proposed using the reasoning
and the mathematics from the field of wave propagation. In the

U'(kz-ky) x S{D' (ks w)} ‘eXp{ —JTo-
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appendix it is shown that this w—k algorithm can be derived
directly from the time domain formulation of (7) without
explicitely using the wave equation. From that, the basic w—&
algorithm proceeds as follows:

1. Two-dimensional Fourier transform of the data:

d(z,t) = D(ky,w)
2. Change of variables (Stolt mapping):
Ulks, k)

x D(kI‘ % “V{kr + 2w /c)? + k2 — wg) (21)

3. Inverse two-dimensional Fourier transform:
Uke, kr) — u(z,r).

The algorithm proposed in [9] is in effect an w—k algorithm,
but uses a parabolic approximation of the Stolt mapping from
step 2).

For implementing the Fourier transforms from steps 1) and
3) it is necessary to consider that both the echo receive time
interval and the imaged range swath are highly offset from the
origins of their coordinate systems. Let the echo data window
be positioned around a time offset ¢o and define as the raw
data:

(20)

(22)

d'(z,t) = d(z,t + to) (23)
and the image:
u'(x,r) = ulz, 7+ 10) (24)
with
To = % “to. (25)
Hence:
D'(ky,w) = D(ky,w) - exp{j - 70 - 2w/c}. (26)
and
U'(keykr) = Ulky k) -exp{j - 7o - kr}. (27)

Further define the Stolt mapping operator S{.} as a k,-
dependent point-by-point mapping from w to &, via

w= s b 2] P - (9)

Then step 2) takes the following form:
U' (ke ki) o S{D' (k. w)-exp{—j-ro-2w/c}}-exp{j-ro-ky }.
29

Equation (29) can be modified in two ways to accomodate
different implementations: The first phase function of (29) can
be moved out of the Stolt mapping operator. Then:

(\/(kT-l-?u)o/(:)?-Fk% —(kr+2wo/c))}. 30)




710 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 30, NO. 4, JULY 1992

2
U'(kp k) xS D'(kyw)-expj-ro- (w+w0> — k2~

wp +w
c/2

7 (32)

This is the original version of the w—k algorithm [6], [7], [10].
Here the raw data spectrum is multiplied by a two-dimensional
phase function after the Stolt mapping.

A second version follows from moving the right-hand phase
function from (29) into the Stolt operator by applying the
substitution (see Appendix)

ko= (‘“*“’0)2 g o
c/2 T oef2
Then equation (32), shown on the top of this page, is obtained.
In this version, from which the processors proposed in [9], [11]
can be derived, the data spectrum is multiplied by a phase
function prior to Stolt mapping. Note, that this function is
identical to the “exact” transfer function from (10)!
Equations (29), (30), and (32) are equivalent from the
systems theoretical point of view. Henceforth, we will refer
to (32) as the w—k algorithm, because it fits better into the
methodology of this paper. Obviously, the w—k processor
described by (32) first focuses all the data by using the exact
transfer function tuned to r = ro. The Stolt mapping takes care
of the space-variance, i.e., eliminates aberration for v # rq.
In summary, the w—k algorithm is indeed optimum, since it
is a direct Fourier transform pendant to (7). It uses neither of
the approximations (16)—(18). The major drawback, however,
is the interpolation necessary for changing the variables. This
frequency domain interpolation is by far more critical than
RM correction. It can cause shading and multiple images
in the focused data. Since the w—k processor uses a global
two-dimensional Fourier representation of the data the accom-
modation of Doppler centroid variations in range or azimuth
exceeding the margin between the processed bandwidth and
the PRF needs additional effort [18].

D

IX. MONOCHROMATIC WAVENUMBER DOMAIN ALGORITHM

In order to avoid the explicit Stolt mapping several ap-
proximations of the w—k algorithm have been proposed. A
most elegant solution is based on replacing the nonlinear Stolt
mapping by a simple w-independent shift which, in turn, is
implemented in the range—Doppler domain by means of linear
phase functions. By this approximation only the wavenumbers
corresponding to a single frequency w = 0 are mapped
correctly, hence the term “monochromatic” w—k processor.
The phase factors are applied in the range-Doppler domain
either before [7] the data are range Fourier transformed to the
(kz.w)-domain or after [11] the data have been transformed
back from this domain, depending on whether (30) or (32)
is adopted. In both cases, the phase factors are given by
(quadratic approximation):

k2
3

exp {—j Ar—ry)- (33)

=0

with » = ¢ - ¢/2. Although this represents a linear phase
function in the r- or t-direction, it is a quadratic phase in k.
as well. This allows an interpretation of the monochromatic
w—k algorithm in the terminology of RD processors:

1. The exact transfer function from (10) is applied in the
(k,.w)-domain, i.e., points at r = 7o, €.g., at the center
of the illuminated swath, are perfectly focused.

2. After inverse Fourier transform with respect to w, differ-
ent residual azimuth compression phase filters from (33)
are applied in the range—Doppler domain to compensate
for the space-variant nature of the azimuth chirp.

Obviously, the algorithm performs both RM correction and

azimuth compression optimally for » = r¢ even with highly
squinted SAR geometries. For r # ro, however, ie., for
wide swath applications, a coma-like phase aberration can be

observed:
j O rmrgy R (34)
exp 4 —j - {r=ro o0 Wt
corresponding to a residual RM of
e k2
Ar(k,:r) = T (r—rg) - 2 (35)

0

This is equivalent to a linear scaling factor different for each
Doppler wavenumber k, and can cause the following image
degradations:
* A residual blurring in range direction at the edges of the
swath due to uncompensated RM. In our Seasat and ERS-
1 examples the uncompensated RM within the 1200-Hz
processed bandwidth is:

+ 4.95 m for Seasat

+ 1.5 m for ERS-1.

* If the Doppler centroid frequency is high, a range variant
shift of image samples in range direction will be present,
resulting in a linear scale factor slightly larger than
unity. In the Seasat and ERS-1 examples this scale factor
introduces a pixel misregistration at the far end of the
swath of

6.2 m for Seasat
10.2 m for ERS-1.

The main advantage of the monochromatic w— algorithm
is, that it needs no interpolation at all.

X. CCRS WAVENUMBER DOMAIN ALGORITHM

In [11] a modification of the monochromatic w—k processor
is proposed. This CCRS algorithm corrects the residual RM
from (35) in the range—Doppler domain. Hence, this processor
needs a time domain interpolation like the RD algorithm.
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Since the residual RM is very small, neither SRC nor further
corrections as described in Section VII are necessary. As
already mentioned, the required residual RM correction is
a k,-dependent rescaling of the data. This is equivalent to
scaling the data in the (k,,w)-domain by the inverse scaling
factor. Hence, the CCRS algorithm approximates the Stolt
mapping not only by a constant shift but also by a scaling
term. It can be shown that this approximation is sufficient
even for high squint SAR’s.

The CCRS algorithm shows an interesting similarity with
the SIM SAR algorithm from [4] as briefly sketched in
Section VII. Both algorithms use the (k,,w)- and the (k,,t)-
domains. In the CCRS approach focusing is performed in
the (k,.w)-domain and only residual RM is corrected in the
(kz.t)-domain. The SIM SAR algorithm, however, follows the
RD approach, i.e., performs focusing in the (k.,t)-domain,
while the (k,.w)-domain is only used for correction of the
phase error term from (15).

XI. CHIRP SCALING ALGORITHMS

A novel algorithm for RM correction has been proposed in
[19]-[22]. It uses the fact that RM shows up as a k,-dependent
range scaling factor in the range—Doppler domain. This applies
both to the full RM from (11) and for the residual RM from
(35). Let us assume that the SAR system transmitted linearly
frequency modulated (FM) chirps and that the data were not
range compressed before being azimuth Fourier transformed.
Then the chirp scaling theorem (see, e.g., [23, pp. 203-206])
can be employed: Each range line is multiplied by a quadratic
phase function in the range—Doppler domain. This causes the
range chirps to be slightly altered in their FM rates and their
mean frequencies. After the subsequent range compression
(using the modified FM rate) the correlation maxima are
displaced by an amount proportional to the mean frequency
shift.

This method can be easily incorporated into RD and w—k
processors. In the latter case it approximates the strict w—k
algorithm in the same way as the CCRS approach. However,
it avoids any interpolation, or in other words, it uses the entire
range chirp as an interpolation kernel.

XII. SIMULATIONS

To illustrate the aberrations of the different algorithms, three
point spread functions for the squinted Seasat case have been
simulated: Range and azimuth cuts through the maxima of
these functions are depicted in Figs. 2 and 3. The plots show
the magnitude of the focused data. Matched filter weighting
has been assumed, i.e., a rectangular window in range and a
sinc? window together with a sinc? antenna pattern in azimuth
have been applied. In particular, it is shown:

1) The optimum, i.e., aberration-free, point spread function,
as it is expected from the strict w—k algorithm, the CCRS
algorithm, the monochromatic w—k algorithm at r = ro,
and an w-k processor equipped with the chirp scaling
method. Also the RD algorithm with SRC approaches
this focusing quality within the accuracy of the presented
plots.
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Range sections of simulated point spread functions (arbitrary units),
see text.
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Fig. 3. Azimuth sections of simulated point spread functions (arbitrary units),
see text.

2) The RD point spread function without SRC. The loss
in focusing quality and the sidelobe energy increase are
obvious. Also, there is a minor azimuth misregistration.

3) The point spread function of the monochromatic w—k
processor at the edge of the full swath, i.e., at r—rg = 20
km. The loss in the mainlobe energy and the range
misregistration can be observed.

XIII. CONCLUSION

Different SAR algorithms have been compared with the
direct (ideal) time domain approach. Both the RD and the
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TABLE 1
SUMMARY OF PHASE ABERRATIONS AND REQUIRED INTERPOLATIONS OF THE ANALYZED ALGORITHMS (ABERRATIONS ARE GIVEN AS PHASE
ARGUMENTS. ONLY THE MAIN CONTRIBUTIONS WITHIN THE QUADRATIC RANGE HISTORY APPROXIMATION ARE CONSIDERED)

Algorithm Phase Aberrations Interpolation

RD o K22 time domain
e . f;f ) wtwo

RD with SRC res. f’;‘ (k2 = k2,) time domain

RD, modified none time domain

RD with SRC and chirp scaling | negligible none

«—K, strict none frequency domain

«—K, monochromatic . k2 - none
—lr—ro) 308 L

«—k, CCRS negligible time domain

«-k with chirp scaling negligible none

wavenumber domain algorithms have been treated in a unify-
ing signal theoretical way. (A complementary methodology,
i.e., the description of the RD processor in the terminology
of the wave equation, can be found in [24]). The focusing
errors of the algorithms have been quantified in terms of
phase aberrations and uncompensated RM for the Seasat and
in ERS-1 cases. In Table I the aberrations are summarized
as well as remarks concerning the required interpolations.
The well-known fact is confirmed that the conventional RD
processor introduces range defocusing in images from Seasat-
like sensors even at moderate squint. The gap in focusing
accuracy between RD processing and the optimum w-k al-
gorithm is filled to a high degree by SRC, especially if this
correction is adapted to the Doppler frequency. There is no
evidence that a carefully designed RD processor is not as
phase preserving as an w—k processor (see also [24] for an
experimental comparison).

XIV. APPENDIX

In this appendix, the w—k algorithm will be derived from
the time domain formulation of (7) using a few basic Fourier
theorems applicable to space-variant operations (see also [9],
[17]). The wave equation will not be used explicitly. We start
from (7):

w(z.r) = /j:c

Fourier transforming with respect to = changes the correla-
tion to a multiplication:

u® (kp.1) = /:O

where superscripts indicate Fourier transforms with respect to
that variable. Parseval’s theorem can now be applied to (A2)
in order to transform from the ¢- to the w-domain:

d(z,t) &, h(x,t — 2r/c;r)dt. (A1)

A (kg t) - h® (kp t — 2r/cir)dt  (A2)

u(ky,r) = %/D(kxiw)-H*(k,,w;r)-exp{j-Zr/c-w}dw

(A3)
where D(.) and H(.) are the two-dimensional spectra of d(.)
and h(.), respectively.

Before we proceed with the derivation we calculate the
Fourier transform in r-direction of the integration kernel

H*(ky,w;r) -exp{y - 2r/c-w}

w + wo
c/2

2 W
k2 _
) ks c/2

We denote its Fourier transform by E(k,,w;k,):

=A;-expgj-r- (

2
B =2 Ay 8 (L0 e _ Lo
E(ky,wik,) =2n- A1 -6 |k, < o2 ) k2 o2
(A4)

Note that this three-dimensional Fourier spectrum contains
already the information about the “change of variables”: The
4-function in E(.) describes a semicircle, the two-dimensional
pendant to the Ewald sphere:

o = (w+w°)2—k2—ﬂ (A5)
c/2 T oe/2
that is
w = 2/l + 200 K - wo. (A6)

Hence E(.) can be rewritten as
Bk, wi k)
=27 Ay -5(w — %\/(kr + 2wo/c)? + k2 +w0) (A7)

where A, slightly depends on &, and w but will be considered
as a constant here:
2 k
Ay =4, .|
4 |(w+ wo)
With the result of (A7) we finally transform (A3) from the
r- to the k,-domain:

= constant. (A8)

+oc

Uk, ky) = As - D(kz,w)-a(w—g-\/f+wo)dw

—oc

~ A, .D(k,. g\/(k,, ¥ 2wo/c)? T RZ — wo).

(A9)
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Fig. 4. Illustration of the Stolt mapping operation from . to A, according

to equations (AS) and (A6).

This is the basic operation of the w-k processor, the Stolt
change of variables [12] in the two-dimensional frequency
domain. It is a polychromatic extension (i.e., for w # constant)
of the Fourier diffraction theorem, well-known in the field of
diffraction tomography [25]-[29]. Fig. 4 depicts the relation-
ship between w, k., k.. Obviously, the Stolt mapping “bends”
the straight lines w = constant to arcs of circles centered at
(kz = 0.k, = —2wq/c). In [9] a parabolic approximation of
(A9) has been developed and referred to as “grid deformation.”
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