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Abstract 

Navigation was an essential survival skill for our ancestors and is still a fundamental 

activity in our everyday lives. To stay oriented and assist navigation, our ancestors had a long 

history of developing and employing physical maps that communicated an enormous amount 

of spatial and visual information about their surroundings. Today, in the digital era, we are 

increasingly turning to mobile navigation devices to ease daily navigation tasks, surrendering 

our spatial and navigational skills to the hand-held device. On the flip side, the conveniences 

of such devices lead us to pay less attention to our surroundings, make fewer spatial decisions, 

and remember less about the surroundings we have traversed. As navigational skills and spatial 

memory are related to adult neurogenesis, healthy aging, education, and survival, scientists 

and researchers from multidisciplinary fields have made calls to develop a new account of 

mobile navigation assistance to preserve human navigational abilities and spatial memory. 

Landmarks have been advocated for special attention in developing cognitively 

supportive navigation systems, as landmarks are widely accepted as key features to support 

spatial navigation and spatial learning of an environment. Turn-by-turn direction instructions 

without reference to surrounding landmarks, such as those provided by most existing 

navigation systems, can be one of the reasons for navigators’ spatial memory deterioration 

during assisted navigation. Despite the benefit of landmarks in navigation and spatial learning, 

long-standing literature on cognitive psychology has pointed out that individuals have only a 

limited cognitive capacity to process presented information for a task. When the learning 

items exceed learners’ capacity, the performance may reach a plateau or even drop. This leads 

to an unexamined yet important research question on how to visualize landmarks on a mobile 

map to optimize navigators’ cognitive resource exertion and thus optimize their spatial 

learning.  
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To investigate this question, I leveraged neuropsychological and hypothesis-driven 

approaches and investigated whether and how different numbers of landmarks depicted on a 

mobile map affected navigators’ spatial learning, cognitive load, and visuospatial encoding. 

Specifically, I set out a navigation experiment in three virtual urban environments, in which 

participants were asked to follow a given route to a specific destination with the aid of a mobile 

map. Three different numbers of landmarks—3, 5, and 7—along the given route were selected 

based on cognitive capacity literature and presented to 48 participants during map-assisted 

navigation. Their brain activity was recorded both during the phase of map consultation and 

during that of active locomotion. After navigation in each virtual city, their spatial knowledge 

of the traversed routes was assessed.  

The statistical results revealed that spatial learning improved when a medium number 

of landmarks (i.e., five) was depicted on a mobile map compared to the lowest evaluated 

number (i.e., three) of landmarks, and there was no further improvement when the highest 

number (i.e., seven) of landmarks were provided on the mobile map. The neural correlates 

that were interpreted to reflect cognitive load during map consultation increased when 

participants were processing seven landmarks depicted on a mobile map compared to the 

other two landmark conditions; by contrast, the neural correlates that indicated visuospatial 

encoding increased with a higher number of presented landmarks. In line with the cognitive 

load changes during map consultation, cognitive load during active locomotion also increased 

when participants were in the seven-landmark condition, compared to the other two 

landmark conditions.  

This thesis provides an exemplary paradigm to investigate navigators’ behavior and 

cognitive processing during map-assisted navigation and to utilize neuropsychological 

approaches to solve cartographic design problems. The findings contribute to a better 

understanding of the effects of landmark depiction (3, 5, and 7 landmarks) on navigators’ 

spatial learning outcomes and their cognitive processing (cognitive load and visuospatial 

encoding) during map-assisted navigation. Of these insights, I conclude with two main 
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takeaways for audiences including navigation researchers and navigation system designers. 

First, the thesis suggests a boundary effect of the proposed benefits of landmarks in spatial 

learning: providing landmarks on maps benefits users’ spatial learning only to a certain extent 

when the number of landmarks does not increase cognitive load. Medium number (i.e., 5) of 

landmarks seems to be the best option in the current experiment, as five landmarks facilitate 

spatial learning without taxing additional cognitive resources. The second takeaway is that the 

increased cognitive load during map use might also spill over into the locomotion phase 

through the environment; thus, the locomotion phase in the environment should also be 

carefully considered while designing a mobile map to support navigation and environmental 

learning.   
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Chapter 1: Introduction 

1.1 Motivation and problem statement 

“I move, therefore I am” (Murakami, 2011). All living creatures, including humans, 

move in space. Goal-oriented movement through space is defined as “navigation”, which 

consists of wayfinding and locomotion (Montello, 2005). For our human ancestors, 

movement and navigation were vital for survival; they moved to hunt, to forage, and to return 

home safely. Similarly, in modern society, we navigate to work, to shop, to recreate, and more. 

Therefore, navigation is a fundamental activity and an essential skill in our everyday lives.  

When humans navigate, they acquire spatial knowledge about the traversed space. 

Navigation and spatial knowledge acquisition, especially in novel environments, are 

cognitively challenging tasks that involve numerous cognitive processes, including perception, 

memorization, and reasoning about places and orientation(Montello, 2005). These cognitive 

processes are supported by multiple brain regions (Chrastil, 2013; Do et al., 2021; Ekstrom et 

al., 2014), and are important not only for navigation but also for healthy brain development, 

including healthy aging (Coughlan et al., 2018), and spatial reasoning in education (Uttal & 

Cohen, 2012).  

In the digital age, geographic location-based services are available at our fingertips in 

real time, providing automatic self-localization, route planning, and turn-by-turn directions. 

With these convenient amenities available in an instance, we whip out our smartphones the 

moment we start to navigate. In fact, individuals are increasingly using global positioning 

system (GPS)-enabled mobile devices (Ishikawa, 2019) to find their way and offload the 

cognitive tasks associated with navigation onto their devices. However, on the flip side of the 

coin, the frequent use of GPS-based navigation aids leads to “mindless” movement in an 
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environment and has a negative impact on spatial knowledge acquisition of the traversed 

environment, as has been shown by a large body of literature (Dahmani & Bohbot, 2020; 

Ishikawa, 2019; Münzer et al., 2012; I. T. Ruginski et al., 2019). Overreliance on GPS-enabled 

navigation systems may also be detrimental to users’ navigational skills (e.g., self-localization 

and sense of direction (Aporta & Higgs, 2005)), and their spatial transformation skills, such 

as mental rotation and perspective taking (I. T. Ruginski et al., 2019). Dependence on 

navigation systems and failure to learn the environments could further negatively affect brain 

development, such as neurogenesis in the hippocampus—a brain region highly associated 

with spatial navigation and spatial memory formation (Dahmani & Bohbot, 2020; Toda et al., 

2019).  

This question, serving as the main research motivation, has been the driving force 

throughout my doctoral research. Hereafter, I present how I tackled this question by applying 

neuropsychological and cognitive cartographic approaches.  

1.2 Research gaps and research questions 

It would be helpful for readers to begin this section with a real-world wayfinding 

scenario1. Imagine that you have just arrived in the city where your friend used to live, and you 

wish to dine at her favorite restaurant. You call your friend and ask for directions from your 

hotel to the restaurant, which is a few blocks away. Your friend answers the phone and gives 

you the following directions, such as “turn left at the red building at the corner”, “turn right 

at the Metropolitan Museum with a glass facade”, or “go straight and pass the building with 

 
1 This scenario is based on a real-life experience during my stay in Germany. Some details are modified 

to make the scenario more general. 

How can we counteract the negative effects of GPS use on users’ 

spatial knowledge acquisition? 

https://www.zotero.org/google-docs/?broken=2dH5AZ
https://www.zotero.org/google-docs/?broken=2dH5AZ
https://www.zotero.org/google-docs/?broken=2dH5AZ
https://www.zotero.org/google-docs/?broken=2dH5AZ
https://www.zotero.org/google-docs/?broken=2dH5AZ
https://www.zotero.org/google-docs/?broken=2dH5AZ
https://www.zotero.org/google-docs/?broken=2dH5AZ
https://www.zotero.org/google-docs/?broken=2dH5AZ
https://www.zotero.org/google-docs/?broken=2dH5AZ
https://www.zotero.org/google-docs/?broken=2dH5AZ
https://www.zotero.org/google-docs/?broken=2dH5AZ
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the shape of a honeycomb structure”. Following her instructions, you successfully arrive at 

the restaurant. After dinner, you want to visit the night exhibition at the Metropolitan 

Museum you have passed, but you cannot recall the buildings and the route directions. You 

probably open a popular commercial mobile map app on your smartphone to search for the 

route. However, there are hundreds of labels (e.g., businesses, commercial stores, street names) 

along and off the streets popping on the map. You get frustrated, because you cannot find 

those buildings at the intersections you have passed over on the map. In the end, you must call 

your friend again to find the same route back to the museum.  

In this scenario, colorful buildings and museums are examples of salient features in an 

environment known as landmarks. Previous studies have shown that landmarks in an 

environment help navigators to stay oriented, remember a route, and structure an 

environment (Evans et al., 1982; Richter & Winter, 2014; Sorrows & Hirtle, 1999). Despite 

the long-standing literature on the important role of landmarks in human navigation and 

spatial knowledge acquisition, ubiquitous mobile navigation assistance provided by the big 

tech industry (e.g., Google, Apple, Meta, and Baidu) typically does not explicitly refer to 

landmarks–neither visually on the mobile map display nor when providing wayfinding 

directions. The omission of landmarks in navigation assistance systems may be one reason why 

navigation systems are often found to negatively affect spatial knowledge acquisition (Anacta 

et al., 2017; Denis & Fernandez, 2013; Ligonnière et al., 2021; Wenig et al., 2017).  

In fact, some researchers have called for the inclusion of landmarks in navigation aids 

for use cases of pedestrian navigation, citing their ability to help a navigator build a cognitive 

map and/or to facilitate landmark and route learning (Brügger et al., 2019; Raubal & Winter, 

2002; Wunderlich & Gramann, 2021). Despite the proposals of landmark inclusion, few 

studies have empirically analyzed how landmark depiction on a mobile map influences 

navigation and spatial learning (Li, 2020; Münzer et al., 2012). 

One understudied yet important aspect of map-assisted navigation is the number of 

landmarks displayed on mobile maps that optimize navigators’ spatial learning. As maps are a 

spatial array containing multiple visual elements that support navigation and spatial learning, 
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they require the activation of cognitive resources, such as visual and spatial working memory, 

to be utilized effectively. The literature on cognitive capacity suggests that there are limited 

cognitive resources available for the task at hand (Baddeley, 2003; Sweller, 1988); learning 

performance reaches a plateau (even drops) when the amount of information to be learned 

exceeds the learners’ limited cognitive capacity. 

As described in the aforementioned scenario, insufficient landmark information 

depicted on a mobile map does not support wayfinding and spatial learning. An 

overabundance of visualized objects on the mobile map, on the other hand, frustrates 

navigators in searching for and remembering useful landmarks and thus leads to cognitive 

overload and failure in orientation and wayfinding. 

Hence, to design a mobile map that supports users’ spatial learning while ensuring 

navigation efficiency and success, it is necessary to investigate the relationship between the 

numbers of landmarks depicted on a mobile map, spatial learning, and cognitive load. This 

leads to the first two research questions (RQs) of this thesis, defined for the purpose of these 

text boxes as RQ: 

Furthermore, previous research has demonstrated that cognitive load for one attended 

task may spill over to another subsequent task (Bednar et al., 2012; Felisberti & Fernandes, 

2022; T. X. Liu et al., 2019). Cognitive load related to consulting landmarks and route 

directions displayed on a mobile map during navigation may also influence cognitive load 

RQ1: How does the number of landmarks depicted on a mobile map 

influence navigators’ spatial learning during navigation? 

RQ2: How does the number of landmarks depicted on a mobile map 

influence navigators’ cognitive load during wayfinding while consulting the 

map? 
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during active locomotion through the environment, even if the navigator is not attending to 

the mobile map display. Similarly, the cognitive load during active locomotion may in turn 

affect the cognitive load during map consultation. Thus, it is also important to examine 

cognitive load during location through the environment separately from the phase of viewing 

the mobile map. This leads to the third research question: 

1.3 Thesis approach 

To investigate the three foregoing research questions, I used neuropsychological 

research methods. Specifically, I set out one navigation experiment in virtual reality (VR) 

using a within-participant design and recruited participants to complete the experiment. 

During navigation, participants were asked to follow a given route on a mobile map and learn 

landmarks in three different virtual urban environments. I visualized three sets of landmarks 

on mobile maps, based on the previous literature on cognitive capacity. I assessed participants’ 

spatial learning performance after navigation in the virtual environment (RQ1), and their 

brain activity during wayfinding while viewing the mobile map (RQ2) and during active 

locomotion without consulting the map (RQ3). Participants’ brain activity was recorded by 

a 64-channel electroencephalogram (EEG) device during the experiment. 

To answer the question on how the number of landmarks depicted on a mobile map 

influences spatial learning during navigation (RQ1), participants’ spatial knowledge was 

assessed immediately after each map-assisted navigation trial. Three spatial learning tests (i.e., 

a landmark recognition test, a route direction test, and judgments of relative directions) were 

used to assess landmark knowledge, route knowledge, and survey knowledge, respectively 

(Montello, 2011; Siegel & White, 1975; Wiener et al., 2009).  

RQ3: How does the number of landmarks depicted on a mobile map 

influence navigators’ cognitive load during active locomotion through the 

environment? 
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To answer the question on the effect of the number of landmarks depicted on a 

mobile map on cognitive load during map consultation (RQ2), participants’ brain activity 

while viewing maps was examined using event-related brain potentials and power spectral 

analysis (PSA). Following the findings of previous studies (e.g., Gevins & Smith, 2003), the 

cognitive load was indexed by 1) theta event-related synchronization at fronto-central leads; 

2) alpha event-related desynchronization at parieto-occipital leads; and 3) amplitude of a slow 

positive wave (i.e., P3) at parieto-occipital leads.  

To answer the question on the relationship between the number of depicted 

landmarks and cognitive load during active locomotion in the environment without 

consulting the map (RQ3), participants’ brain activity while moving through the 

environments was analyzed using eye blinks as EEG event markers. Based on the findings of 

previous literature on blink-related brain activity, I examined cognitive load by analyzing the 

blink-related N2 amplitude at frontal-central leads and the blink-related P3 amplitude at 

parieto-occipital leads.  

The obtained spatial learning outcomes and EEG measures were tested at a level of 

statistical significance between the three landmark conditions using linear mixed-effects 

modeling. 

The results in relation to RQ1 and RQ2 are reported in the journal article published 

by Frontiers in Virtual Reality in November 2022, available online: 

https://doi.org/10.3389/frvir.2022.981625. The results in relation to RQ3 are reported in 

the journal article published by Frontiers in Neuroscience in January 2023, available online: 

https://doi.org/10.3389/fnins.2023.1024583.  

1.4 Relevance  

Why do we still care about spatial learning and navigational skills when mobile 

navigation devices can take over all navigation tasks and provide all information about how to 

https://doi.org/10.3389/frvir.2022.981625
https://doi.org/10.3389/fnins.2023.1024583
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get there? Do our spatial and navigational skills still have a role to play in our lives in the face 

of digital transformation? 

First, navigational skills and spatial knowledge are still critical to our survival in many 

circumstances, where GPS devices have no satellite reception, run out of battery, or 

malfunction in some way. Without being equipped with navigational skills and spatial 

knowledge, we easily experience disorientation and loss, which leads to anxiety and 

frustration. These circumstances due to the failure in technology can further cause extreme 

examples of “death by GPS” in humans, including loss of life (Aporta & Higgs, 2005).  

Second, we either “use it or lose it”. London taxi drivers, with intensive navigation 

experience and extensive spatial knowledge of the city, have a larger hippocampus than 

London bus drivers (Maguire et al., 2006). In contrast, if we surrender the navigation tasks to 

GPS technologies, our biological hardware (the related brain regions, e.g., hippocampus) and 

functional software (spatial skills) do not receive enough practice and become less active 

(Shors et al., 2012).  

Moreover, spatial navigation is associated with cognitive aging (Allison et al., 2016; 

Coughlan et al., 2018). Emerging evidence from behavioral, cognitive, and neurological 

research has demonstrated that spatial orientation and navigation deficits are reliable cognitive 

indicators for preclinical Alzheimer’s disease and mild cognitive impairment (Allison et al., 

2016; Coughlan et al., 2018, 2020). The brain regions (e.g., hippocampus, retrosplenial cortex, 

and entorhinal cortex) involved in spatial navigation strongly overlap with the brain regions 

affected by AD dementia (Coughlan et al., 2018; Kunz et al., 2015). 

Finally, navigation and spatial memory are one of the elements that made us human. 

Navigation is about more than just getting from one place to another; navigation is about life 

experiences and memory of those experiences in relation to space and time (i.e., episodic 

memories). The activations and connections inside our hippocampi enable our long-term 

memory—not only cognitive maps of the places we have traveled, but also the narratives of 

the life we have lived: people we have met, emotions we have experienced, and fantasies we 

have imagined (Ekstrom & Ranganath, 2018).  
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Therefore, in this thesis, I attempt to leverage effective map design on mobile 

navigation devices to complement our brain functions with the ultimate goal of supporting 

people’s spatial memory as they navigate in environments.  
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Chapter 2: Related Work 

2.1 Navigation and spatial learning 

2.1.1 Navigation 

Montello (2005) defined navigation as the coordinated and goal-directed movement 

of one’s body through space. According to this definition, navigation consists of two major 

components: locomotion and wayfinding.  

Locomotion refers to motor and sensory coordination and body movement through 

an environment (Montello, 2005). For pedestrian navigation, walking in an environment is a 

representation of locomotion (O’Mara, 2020). Locomotion in pedestrian navigation is critical 

not only for avoiding obstacles and traveling safely, but also for translating spatial information 

into individuals’ body-based cues, such as proprioceptive and vestibular body signals, and 

directing our bodies to correct landmarks and routes (Montello, 2005). Locomotion thus 

plays an important role in self-orientation, spatial updating, and spatial memory acquisition 

while moving through an environment (Huffman & Ekstrom, 2021; Philbeck et al., 2001). 

Locomotion can be distinguished as active or passive mode (Montello, 2005). Actively 

locomoting individuals control their heading and speed of movement (Montello, 2005). They 

tend to be more visually attuned to spatial information in the environment (Frissen et al., 

2011), and acquire more spatial knowledge of the environments they traverse by adapting 

their heading and movement, compared to their passively locomoting counterparts (Klatzky, 

1998; Yan et al., 1998).  

Wayfinding, on the other hand, represents the cognitive process of navigation and 

does not refer broadly to movement of any kind but rather to the strategic and tactical 

elements that direct wayfinders’ movement (Darken & Peterson, 2002). More specifically, 

wayfinding refers to a series of planned movements and decisions in the local and distal 
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surroundings (Montello, 2005). Wayfinding typically involves a destination place that is often 

located in a remote area. Humans frequently rely on internal knowledge and/or external 

assistance to assist wayfinding (Ekstrom & Ranganath, 2018; Wiener et al., 2009). For 

example, we can retrieve our internal cognitive map of the environment to reach the 

destination, often referred to as unaided wayfinding (Wiener et al., 2009). We can also use 

externalized representations to guide us along the route to the destination—this is often called 

aided wayfinding (Wiener et al., 2009). In fact, most everyday wayfinding cases in urban and 

built environments are aided by some kind of external assistance—paper maps, mobile 

navigation apps, and visual and verbal signage in space, to name a few (Allen, 1999). As such, 

the cognitive processes involved in aided wayfinding, such as planning, decision-making, and 

memory, are partially offloaded onto the device or signage. Therefore, the cognitive efforts 

during aided wayfinding could be notably different from that of unaided wayfinding (Wiener 

Figure 2.1 Proposed taxonomy of navigation tasks, classified by locomotion and wayfinding 
components (Montello, 2005). Locomotion tasks are classified by the mode of 
locomoting power (Montello, 2005); wayfinding tasks are classified by the existence of 
an external aid (Wiener et al., 2009). The figure is adapted from Wiener et al. (2009). 
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et al., 2009); the cognitive efforts could increase or decrease depending on the design of and/or 

the interaction with external assistants.  

Figure 2.1 summarizes the preceding discussion in Section 2.1.1 and illustrates the 

taxonomy of navigation tasks and the classification of locomotion (passive vs active 

locomotion) and wayfinding (unaided vs aided wayfinding). The current thesis focuses on the 

components of active locomotion and aided wayfinding.  

2.1.2 Spatial knowledge acquisition during navigation 

When we navigate through space, spatial knowledge is acquired. As navigation usually 

involves getting to an unseen place, route planning and spatial memory of the environment 

occurs at every moment during navigation.  

 In the 1960s, developmental psychologists provided preliminary evidence that 

children first noticed and remembered landmarks, then learned routes by connecting these 

landmarks, and finally established a configuration of a series of routes (Piaget & Inhelder, 

1967). This sequence of spatial representation development is supported by follow-up 

developmental studies (e.g., Jansen-Osmann & Fuchs, 2006; Jansen-Osmann & Wiedenbauer, 

2004; Tonucci & Rissotto, 2001). 

Siegel and White (1975) adopted this tripartite framework from the developmental 

psychologists and extended the macrogenesis of spatial knowledge acquisition (i.e., 

chronological skill development in childhood) to its microgenesis level (i.e., the course of 

spatial knowledge development during adult navigation). They classify spatial knowledge into 

three general aspects: landmark knowledge, route knowledge, and survey knowledge. The 

three types of spatial knowledge are acquired in a serial manner.  

Navigators first acquire landmark knowledge: they remember the presence of 

prominent objects (i.e., landmarks, such as train stations and rivers) along the path in the 

environment. These objects can serve as beacons or points of reference for navigators. Once 

the landmark knowledge is achieved, navigators proceed to learn route knowledge. Route 

learning typically involves a sequence of decisions at intersections. This sequence is usually 
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coded as place-action associations, such as “turn right at the church, then turn left at the 

school” (Chrastil, 2013; Kuipers, 1978). This sequence can be also coded in spatial and 

temporal information, such as “first turn right, then turn left”, as most existing GPS-enabled 

navigation devices guide wayfinders. After the route knowledge is established, navigators then 

acquire survey knowledge. Survey knowledge is defined as an allocentric representation of an 

environment that is independent of one’s own body position (Klatzky, 1998). Survey 

knowledge is the most sophisticated among the three types of spatial knowledge, generates an 

overall layout of the environment, and connects the relations between landmarks and routes. 

The generated cognitive map of the environment enables navigators to take novel routes and 

shortcuts between locations (O’Keefe & Nadel, 1978; Tolman, 1948).  

The threefold stage concept from Siegel and White (1975) has been influential and 

has become the standard in human navigation research. However, emerging empirical 

evidence has challenged the stage framework by showing that all three types of spatial 

knowledge can be acquired in parallel, rather than in a sequential order, and that successful 

spatial knowledge development interacts with navigators’ spatial abilities, navigational 

strategies, and working memory capacity (Ishikawa & Montello, 2006; Kim & Bock, 2021; 

Thorndyke & Hayes-Roth, 1982; Weisberg & Newcombe, 2016, 2018; Zhang et al., 2014).  

For example, Ishikawa and Montello (2006) conducted a real-world navigation study 

and found that a few of their participants were able to acquire relatively accurate survey 

knowledge after only one navigation trial. Only about half of the participants gradually 

acquired more accurate survey knowledge with increasing exposure trials. Some participants 

with very poor spatial skills were unable to develop accurate survey knowledge. These results 

suggested that the acquisition of route and survey knowledge does not follow a strict serial 

order and depends on individuals’ spatial abilities. A more recent study by Kim and Bock 

(2021) asked the participants to navigate through a virtual urban environment and then 

assessed their acquisition of landmark, route, and survey knowledge after each of ten 

wayfinding trials. The authors found that all three types of spatial knowledge gradually 

improved from trial to trial and suggested that the three aspects of knowledge may start out 
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independently in the first wayfinding trial and gradually increase their interaction and 

cooperation during the subsequent trials.  

Figure 2.2 illustrates the three categories of spatial knowledge acquisition: landmark 

knowledge, route knowledge, and survey knowledge, as discussed in Section 2.1.2. The thesis 

addresses all three aspects of spatial learning. 

2.2 Navigation assistance 

To aid navigation and orientation in space, humans have a long history of creating and 

using maps (Montello, 2002). As early as 20,000 B.C. our ancestors may have already drawn 

geographic features of their surroundings (e.g., mountains, rivers, and valleys) on mammoth 

tusks and bones (Schøyen Collection; Wolodtschenko & Forner, 2007). Ancient 

Figure 2.2 A model of three aspects of spatial knowledge acquisition during navigation. 
The figure provides a visual summary of Section 2.1.2. Source: own graphics. 
Graphics style: Wiener et al. (2009) 
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civilizations—Babylon (c. 600 BC), Greece (c. 611–546 BC), and China (c. 400 BC)—

produced extensive maps to represent and communicate spatial information. One of the most 

influential maps in history was created by Henricus Martellus, a German cartographer, in 

1491 (Figure 2.3). With the assistance of this map, Christopher Columbus planned his voyage 

and made the first crossing of the Atlantic Ocean. In a similar time period (1402-1424) but on 

the other side of the globe, the Chinese voyager Zheng He established the maritime Silk Road 

and sailed the distant seas of China, South Asia, and Africa. Zheng He’s sailing routes were 

depicted as a set of maps and compiled as a collection of navigational maps by Mao Yuanyi in 

1621, now known as the Mao Kun map (Figure 2.4). 

Since the time of Columbus and Zheng, cartographic techniques and design have 

evolved substantially, and spatial information has been represented on a flat map more 

sophisticatedly, precisely, and accurately. Physical maps have been a powerful tool, helping 

our ancestors to explore and travel territories for centuries. Only in the past two decades, 

Figure 2.3 The 1491 map made by the German cartographer Henricus Martellus. Photo by Lazarus 
Project / Megavision / RIT / EMEL, Courtesy of the Beinecke Library, Yale University. 
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digital and satellite technologies have transformed geographic information communication 

from static and paper-based maps to interactive and digital media. 

Unlike our ancestors who used paper maps, in the digital era we increasingly use 

mobile navigation systems that are integrated with global positioning systems (GPS; Pew 

Research, 2011, 2015). As GPS technology has become inexpensive and can be embedded in 

smartphones, smartwatches, and various vehicles (e.g., bicycles, cars, boats, etc.), we use such 

GPS services not only for strolling in urban areas, but also for hiking in mountains, sailing at 

sea, and more (Montello, 2002). According to a survey in the United States in 2015, 67 percent 

of smartphone owners use some type of location-based service on their phones at least 

occasionally for navigation, while this number was 28 percent in 2011 (Pew Research, 2011, 

2015). Given that the number of smartphone owners continues to grow (Pew Research, 

2021), especially outside of Europe and North America, nearly everyone on the planet could 

soon own a GPS device (O’Connor, 2019, p. 3).  

Compared to paper maps, GPS-enabled navigation devices provide us with automatic 

services in an instant: our locations in space can be tracked in real time without knowing where 

we actually are; the shortest route to a novel destination can be automatically planned and the 

turn-by-turn directions can be vividly presented to us; the information on and behind the 

small screen can be searched, zoomed in/out, and panned left/right.  

Figure 2.4 One map chart of the map collection booklet Mao Kun Map (1621). The interactive 
version of this map was created by Prof. Barbieri-Low, University of California, Santa 
Barbara. 
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However, before we get too excited about how a hand-sized GPS device can make our 

lives easier and more convenient, let us think twice: do such instant conveniences also take 

something away from us? 

2.2.1 GPS use and spatial learning 

In fact, abundant evidence across many disciplines has pointed out that the use of 

GPS-enabled navigation systems can affect navigators’ attention to the environment, impair 

their spatial learning of the traversed environment, and degrade their spatial skills (Dahmani 

& Bohbot, 2020; Gardony et al., 2013, 2015; Münzer et al., 2012; I. T. Ruginski et al., 2019). 

Turn-by-turn directions on the screen splits navigators’ attention between the device and the 

traversed environment and navigators pay less attention to the traveled environment (Brügger 

et al., 2019; Gardony et al., 2013, 2015). In addition, travelers tend to passively follow the 

given route shown on GPS devices and do not actively make spatial decisions at intersections 

(Clemenson et al., 2021; Fenech et al., 2010). As a consequence, navigators are not supported 

to actively encode environmental information (e.g., landmarks and routes) into their memory 

(Dahmani & Bohbot, 2020; McKinlay, 2016; Parush et al., 2007; M. Sugimoto et al., 2021). 

Ishikawa et al. (2008) conducted a real-world study to examine the effect of GPS use 

on pedestrians’ wayfinding behavior and spatial knowledge acquisition, compared to paper 

map use and direct experience of routes. The results revealed that GPS users had lower 

wayfinding efficiency—they traveled longer distances and more slowly and they stopped more 

during wayfinding, compared to map users and direct-experience wayfinders. GPS users also 

showed poorer spatial knowledge acquisition—they made more errors in the direction-

pointing task and in the map-sketching task, compared to direct-experience wayfinders. One 

possible reason, suggested by the authors, for the decline in navigation efficiency and spatial 

learning was that the small size of the GPS screen limited effective communication of large-

scale environmental information.  

A cross-sectional and longitudinal study conducted by Dahmani and Bohbot (2020) 

established a causal relationship between GPS use and poor spatial memory in a dose-
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dependent manner—that is, using GPS leads to a decline in spatial memory, and the greater 

the use of GPS, the greater the decline in spatial memory over time. The authors suggested 

that using GPS to navigate from one point to another removes the need to pay attention to 

our environments and the need to internally update our position in space as we travel.  

Ruginski et al. (2019) performed structural equation modeling to examine whether 

and how everyday GPS use adversely affected individuals’ spatial transformation abilities (i.e., 

perspective taking and mental rotation). The authors found that long-term habitual use of 

GPS negatively and directly affects spatial learning through degraded object-based (i.e., mental 

rotation) and egocentric (i.e., perspective-taking) spatial abilities.  

2.2.2 Cartographic design of mobile map displays 

The aforementioned societal problem of spatial deskilling caused by individuals’ 

reliance on GPS technologies has caught the attention of some geographic information 

scientists (GIScientists) and psychologists, who have approached the problem from an 

interdisciplinary perspective by asking how GPS-enabled mobile map design influences 

navigators’ behavior and spatial learning (e.g., Keil et al., 2020; Liao et al., 2017; Münzer et al., 

2012, 2020; Stevens & Carlson, 2019).  

For example, Liao et al. (2017) empirically examined different mobile map design 

choices with different spatial detail levels of the environment visualized on mobile maps, such 

as abstract 2D cartographic maps versus realistic-looking 3D satellite image maps. The results 

demonstrated that satellite image maps impeded spatial memory building due to visual 

information overload, while visualized landmarks on both types of mobile map displays 

benefited navigators’ route direction memory at complex intersections. Münzer et al., (2012, 

2020) investigated the different alignment choices of mobile maps by comparing the dynamic 

track-up orientation (i.e., egocentric perspective) with the static north-up orientation (i.e., 

allocentric perspective) of a mobile map during wayfinding. The authors concluded that the 

acquisition of different types of spatial knowledge, such as egocentric and allocentric spatial 

knowledge, can be facilitated by appropriate map visualization. Credé et al. (2019, 2020) 
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examined different landmark visualization choices on a mobile map, such as visualizing local 

landmarks (located on route at intersections with or without a direction change) versus global 

landmarks (located off route, distant but visible from the route). The authors suggested that 

the depiction of global landmarks on mobile maps supported survey knowledge acquisition 

during navigation under stress.  

Cartographers and cognitive scientists have recently proposed to counteract the 

negative effects of GPS-enabled navigation systems on spatial learning. Among the calls 

proposed, appropriate inclusion and effective visualization of landmarks on a GPS-enabled 

mobile map have drawn particular attention in navigation research (Duckham et al., 2010; 

Keil et al., 2020; J. Liu et al., 2022; Raubal & Winter, 2002; I. T. Ruginski et al., 2019; Wenig 

et al., 2017).  

2.3 Landmarks  

An early definition of landmarks by Lynch (1960) states that landmarks 1) are 

prominent features in an environment, 2) serve as points of reference, and 3) allow people to 

easily identify them from their background. This definition remains influential in landmark 

research. A more recent definition made by Richter and Winter (2014) refers to landmarks as 

cognitive anchors in an environment which help navigators to structure mental 

representations of the environment. This definition emphasizes the role of landmarks in space 

representation and in humans’ minds. Stankiewicz & Kalia (2007) defined three landmark 

properties that help wayfinding and navigation processes: (1) persistence, that is a landmark 

should be present when navigators return to the same location later; (2) salience, that is a 

landmark should be easily detectable and identifiable from their background in an 

environment; and (3) informativeness, that is a landmark needs to provide information about 

the navigator’s position and/or what action should be taken when observing the landmark.  



 

19 

2.3.1 Functions of landmarks  

Landmarks are recognized to hold high practical importance for navigation and spatial 

learning (Epstein & Vass, 2014; Yesiltepe et al., 2021). Chan et al. (2012) discussed a taxonomy 

of landmark functions and presented four main functions of landmarks in spatial navigation: 

landmarks as 1) navigational beacons that indicate reliable cues to a nearby target location, 2) 

orientation cues that help navigators to stay oriented and know the direction to the target 

location, 3) associative cues that are critical for navigators to remember the traversed routes, 

and 4) a frame of reference for encoding spatial information and building survey knowledge. 

Ample empirical studies have provided behavioral and neural evidence and supported these 

proposed functions of landmarks in navigation and wayfinding (for a review of behavioral 

studies, see Yesiltepe et al., 2021; for a review of neural studies, see Epstein & Vass, 2014). 

Landmarks help navigators to determine their current location (Stea, 1973), remember key 

decision points on routes (Liao et al., 2017; Raubal & Winter, 2002), and navigate to a 

destination by accessing stored spatial knowledge of landmark relations (Ligonnière et al., 

2021).  

2.3.2 Landmark visualization on mobile maps 

Despite the importance of landmarks for human navigation, very few existing 

navigation systems communicate landmarks efficiently and effectively while providing 

wayfinding instructions. At one extreme is that no landmark is referred to in wayfinding 

instructions (Raubal & Winter, 2002). For example, most existing navigation systems use 

turn-by-turn instructions that only refer to direction and distance (e.g., turn left in 200 

meters). The omission of landmarks on GPS-enabled navigation systems could explain why 

these devices are often found to have a negative effect on spatial learning (e.g., Ruginski et al., 

2022), as discussed in Section 2.2.1; omitting landmarks may lead navigators to overly rely on 

turn-by-turn route directions on the device, and to pay less attention to the surroundings. As 

a consequence, they cannot create a visual representation of the traversed environment and 
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thus fail to acquire spatial knowledge of the environment (Denis & Fernandez, 2013). At the 

other extreme is providing too much landmark information, including all points of interest 

that are not even visible from the navigation route, as many commercial mobile maps do. 

Excessive landmark information may overload travelers and thus impede their wayfinding 

efficiency and spatial encoding of the environment (Liao et al., 2017; Münzer et al., 2012), 

given that there is limited cognitive capacity available to process information (Baddeley, 2003).  

2.4 Cognitive capacity 

Classic cognitive psychology literature has suggested that individuals have a limited 

capacity for information processing—typically four units (or chunks) during a task (for a 

review, see Baddeley, 2003; Luck & Vogel, 1997; Vogel et al., 2001). The learning performance 

reaches a plateau (or even drops) when the number of learning items exceeds learners’ limited 

cognitive capacity.  

According to Baddeley (2003), there are two major components in the working 

memory systems: verbal working memory (VWM) and visuospatial working memory 

(VSWM) that process verbal and visuospatial information, respectively. Landmarks seen in 

the environment and visualized on maps possess both visual features (e.g., color, shape, 

texture, etc.) and spatial features (e.g., geometries, distance, density, etc.), which require the 

activation of VSWM processes. Thus, VSWM has particular importance in map-assisted 

navigation.  

2.4.1 Visuospatial capacity for real-world objects 

VSWM capacity refers to the number of visual items that one is able to effectively 

remember in a spatial array, including the number and position of those items (Baddeley, 

2003). The majority of VSWM capacity research has been done using simple and low-level 

visual stimuli, such as oriented lines or colored triangles on a black background. The advantage 

of using simple visual stimuli is that no, or minimal, background knowledge of participants is 
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required, while at the same time invaluable insights are provided into the nature of cognitive 

capacity (Brady et al., 2016, 2019). Yet, in real-world scenarios, higher-level meaning and 

knowledge play an important role in VSWM (Brady et al., 2019). In this case, WM capacity is 

often not a fixed number and is dependent on the learning context. Recent literature has 

demonstrated that learners are able to remember a higher number of meaningful and complex 

real-world objects (e.g., cookies, chairs), compared to simple and meaningless visual items (e.g., 

colored squares; for a review, see Brady et al., 2016, 2019; Endress & Potter, 2014; Sahar et al., 

2020). Brady et al. (2019) suggested that for real-world objects, VSWM stores not just 

individual features, but ensemble information of object features. Similarly, landmarks are real-

world and meaningful entities in an environment containing multiple visual, spatial, and 

semantic features (e.g., color hues, shape, orientation, etc.). As such, navigators may 

demonstrate a different VSWM capacity while learning landmarks during naturalistic 

navigation. 

2.4.1 Visuospatial memory in spatial navigation 

In wayfinding and environmental learning, VSWM processes and maintains visual 

and spatial cues, such as maps, environmental features, and spatial patterns (Coluccia et al., 

2007; Garden et al., 2002; Gras et al., 2013; Meneghetti et al., 2021). These features and 

patterns are crucial for holding and manipulating the integrated mental representations of an 

environment and provide the foundation for effective wayfinding (Hund, 2016; Meneghetti 

et al., 2021; Nori et al., 2009) and spatial learning (Blacker et al., 2017; Gras et al., 2013; Knight 

& Tlauka, 2018; Labate et al., 2014; Münzer et al., 2012). Moreover, navigation and spatial 

learning require binding visual and spatial information from different parts of the route 

together into temporal episodes. This is, earlier information must be maintained in VSWM, 

in order to bind new information to the event, such as the relational properties between places 

and actions that link them—route knowledge and directional relations between places—

survey knowledge. Given that individuals have limited VSWM capacity, it is thus important 
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to investigate how the different amount of information displayed on mobile maps along the 

route utilizes VSWM during navigation.  

2.4.3 Cognitive load 

When visual and spatial information is processed, learners’ cognitive resources are 

deployed, and cognitive load is generated. Cognitive load represents the total amount of 

cognitive resources being exerted in the task at hand (Sweller, 1988; Sweller et al., 1998) and 

cognitive load theory is constructed based on working memory theory. Based on cognitive 

load theory, cognitive resources are available during information processing for three different 

types of cognitive load (Chandler & Sweller, 1991; Sweller, 1988; Sweller et al., 1998). 

Intrinsic cognitive load is related to the nature of the task itself. In a navigation task, a traveler’s 

intrinsic cognitive load is induced by locomotion and wayfinding processes, such as avoiding 

obstacles for safe locomotion and visually scanning the route to search for the correct 

directions. Extraneous cognitive load is generated when cognitive resources are operated for 

irrelevant information, such as irrelevant pop-ups on the mobile map device during map-

assisted navigation. Germane cognitive load is associated with learning relevant information 

during the task, such as learning landmarks that are relevant to the navigation task. For 

example, a traveler learns the landmarks to stay oriented (e.g., a high tower visible along the 

route) during wayfinding or to remember the linked route direction (e.g., turn left at the 

museum).  

2.4.4 Cognitive load measurement 

Cognitive load during navigation has been mostly assessed by three different 

measurements in the literature (e.g., Armougum et al., 2019). The first refers to behavioral 

measures by evaluating behavioral performance. Such experiments commonly adopt a dual-

task paradigm, in which case participants complete a secondary (working memory) task while 

navigating through an environment. The different levels of working memory tasks are used as 
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a manipulation of the different levels of cognitive load, and their effects on navigation and 

spatial learning performance (i.e., behavioral performance) are examined (Meneghetti et al., 

2021). The second is related to subjective measures, namely self-reported cognitive load (e.g., 

NASA-Task Load Index, Hart & Staveland, 1988). Participants are explicitly asked about 

their subjective cognitive load after completing the task (Armougum et al., 2019). The third 

refers to physiological measures, including electroencephalography (EEG), eye tracker, and 

electrodermal activity (EDA), which measures brain activity, eye movement, and skin 

conductance response, respectively. During the experiment, participants are equipped with a 

device to track their physiological signals while completing the navigation task.  

Physiological measures have the advantage of capturing cognitive load during 

navigation in real time without interrupting the spatial learning and navigation processes, 

compared to the self-report questionnaires and the dual-task paradigm. Among the 

physiological measures, EEG allows neural activity in the brain to be directly assessed with 

high temporal resolution (milliseconds), and precisely captures the dynamics of cognitive 

processing. Thus, EEG is a more sensitive and precise approach to understanding the cognitive 

processes and their subcomponents, compared to behavioral, subject, and other physiological 

measures. 

2.5 Electroencephalography (EEG) 

EEG is an established method to measure human electrocortical activity and allows 

brain dynamic features to be assessed without interrupting the task at hand. EEG data reflect 

rhythmic neural oscillations that are fluctuations in the excitability of populations (e.g., tens 

of thousands) of neurons (Cohen, 2014). Synchronous activation across the populations of 

neurons generates powerful electrical fields that can be captured by EEG electrodes placed 

outside the head (Figure 2.5 A). The electrodes placed in different positions on the head can 

capture the brain activity in the corresponding cortical regions (Figure. 2.5 B). For decades, 

EEG has been employed to assess different cognitive processes, such as visual processing (Y. 
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K. Wang et al., 2018), working memory processing (Maurer et al., 2015; Onton et al., 2005), 

spatial orienting (Gramann et al., 2010, 2021), and spatial learning (Gehrke et al., 2018). 

  

2.5.1 Event-related potentials (ERPs) 

ERPs analysis is a well-established and powerful EEG analysis method to investigate 

cognitive processing. ERPs represent neural responses to specific events during a task (Fu & 

Parasuraman, 2006). The ERPs are computed as an average of event-locked EEG sample 

points across these events. These EEG events can be stimulus presentations (e.g., pictures, 

sounds, etc.) or participant responses (e.g., a mouse click, a button press, etc.).  

Figure 2.6 depicts the process of obtaining ERPs in EEG activity (Ghani et al., 2020). 

Figure 2.6 A shows a typical EEG waveform with event markers (i.e., auditory tones). The 

waveforms in the orange windows represent the brain activity responding to the events. As 

Figure 2.5 A) A 64-channel EEG headset measures a participant’s brain activity during a task. B) 
Nomenclature of the 64 EEG electrodes displayed on a head diagram; from Nasion to 
Inion are: Fp, Fronto-polar; AF, Anterior-frontal; F, Frontal; FC, Fronto-central; C, 
Central; CP, Centro-parietal; P, Parietal; PO, Parieto-occipital; O, Occipital. Picture A is 
credited to Bingjie Cheng; Picture B is adapted from Tang et al. (2019), 
https://doi.org/10.31083/j.jin.2019.01.103 . 
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depicted in Figure 2.6 B, the event-locked EEG data is averaged across multiple EEG channels 

and across all the event windows. This results in an event-locked grand average ERP waveform 

illustrated as a solid black line in Figure 1 B. The step of averaging event-locked EEG sample 

points can average out the invariant components covarying with the cognitive processes of 

interest (e.g., stimulus processing) and can cancel out random electrical noise as well as 

enhance reliability and statistical power (Luck & Gaspelin, 2017). Figure 2.6 C illustrates the 

ERP components, including N1, P2, and P3, in the ERP waveform. ERP components are 

generally named using the polarity (N for negative and P for positive) and then either the order 

(1 for the first, 2 for the second, etc.) or the average expected latency of a specific component 

in the ERP waveform (Woodman, 2010). The N1 (or N100) component represents the first 

negative potential with an expected latency of around 100 ms: approximately 100 ms in the 

auditory cortex or around 160 ms in the visual cortex after stimulus onset (Näätänen, 1992). 

Figure 2.6 Panel A plots the EEG signals with the marked events (tones) and the event-locked time 
windows in the orange rectangles. Panel B plots the ERP waveform averaged across all 
event windows after the stimulus onset. Panel C plots the ERP components (N1, P2, P3) 
in an ERP waveform. The figure is adapted from Ghani et al. (2020). 

https://www.zotero.org/google-docs/?broken=6UzWZ9
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The P2 (or P200) component is the second positive deflection with a peak latency of around 

200 ms. The P3 (or P300) component is a relatively large and slow positive-going component 

with a peak latency of around 300–800 ms (Watter et al., 2001). The early ERP deflections 

that appear before 50 ms represent evoked neural activity and are relatively insensitive to 

changes in the psychological states of the participant. The later components are associated 

with the significance of a stimulus and the cognitive demands of a task (Hillyard & Kutas, 

1983; Hillyard & Picton, 2011). These “endogenous” ERP components have been researched 

widely in different settings as indices of specific modes or stages of information processing. In 

the visual modality, participants attending to the visual and spatial stimuli in the visual field 

elicit ERP waves between 100 and 300 ms after stimulus, including N1 and P2, distributed 

over the occipital and parietal areas (Hillyard & Kutas, 1983; Hillyard & Picton, 2011). These 

ERP components likely reflect an early bottom-up selective attention mechanism that directs 

attention to the focused visual field. The late positive P3 component, one of the most studied 

components, has been considered to respond to the later top-down stage of selective attention 

and other cognitive processing, including memory storage and retrieval, decision-making, and 

linguistic processing (Hillyard & Kutas, 1983; Hillyard & Picton, 2011). 

2.5.2 Frequency-domain analysis 

In contrast to ERPs looking at the time-domain EEG signals, frequency-domain 

analysis leverages frequency decomposition techniques, such as Fast Fourier Transform 

(FFT), to convert time-domain EEG signals (amplitude versus time) to frequency-domain 

signals (amplitude versus frequency; (S. Liu et al., 2021). The frequency-domain analysis is 

also known as spectral analysis. Among all spectral methods, PSA is used most commonly, 

because power spectral density is a straightforward way to reflect the distribution of signal 

power over frequency (Dressler et al., 2004). Changes in the power spectrum reflect changes 

in oscillations of neurons at different frequencies and thus represent different aspects of 

cognitive-affective processes (Hudspeth & Pribram, 1990). The major oscillatory components 

in the EEG power spectrum and their frequency ranges are identified as follows: delta (1-3.9 
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Hz), theta (4-7.9 Hz), alpha (8-12.9 Hz), and beta (13-29.9 Hz). Figure 2.7 shows the different 

neural oscillations and their assigned frequency ranges. To note, the precise frequency ranges 

of the different oscillatory components continue to be under debate.  

2.5.3 Visual and spatial encoding measured by EEG 

Visual and spatial encoding manifests through the modulation of components in 

ERPs. Previous ERP literature has found that the early ERP component P1/N1 amplitude 

measured at the parietal and occipital regions frequently underlies early visual and spatial 

attention (for a review, see Fu & Parasuraman, 2006). For example, S. A. Hillyard and Anllo-

Vento (1998) provided empirical evidence that the P1/N1 is associated with the early visual 

encoding of the presented stimuli, and its amplitude in the occipital region increases with 

Figure 2.7 Four frequency bands of neural oscillations (i.e., delta, theta, alpha, and beta) and their 
assigned frequency bands, as shown in the ten seconds of the EEG signal.  The figure is 
adapted from  https://en.wikipedia.org/wiki/Neural_oscillation 
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greater visual attention allocation to these visual stimuli. In one study by Awh et al. (2000), 

the amplitude of the posterior P1/N1 has been shown to increase with the increasing load of 

encoding objects’ spatial locations. 

Visual and spatial information encoding also manifests in power modulations of 

neural oscillations. EEG studies have found that larger theta oscillations in the parietal and 

occipital leads are often elicited by spatial and visual information encoding, respectively. The 

increased theta oscillations in the parietal region have been shown to implicate spatial 

information processing during computerized spatial tasks with simple stimuli (Moran et al., 

2010; White et al., 2012) as well as during naturalistic spatial navigation tasks in visually 

complex and ecologically valid environments (Bohbot et al., 2017; Delaux et al., 2021; Do et 

al., 2021). Neuropsychological evidence has suggested the theta oscillations in the parietal 

cortex during spatial navigation result from the oscillations in subcortical regions related to 

spatial memory encoding, such as retrosplenial complex (RSC) and hippocampus (Bohbot et 

al., 2017; Do et al., 2021; Epstein & Vass, 2014).  

Increased theta oscillatory activity in the occipital region has been shown to be 

associated with visual encoding and visual attention to presented stimuli (Gladwin & De Jong, 

2005; McDermott et al., 2017; Y. K. Wang et al., 2018). By contrast, decreased power of alpha 

oscillations in the occipital region has been frequently found during visual and spatial 

encoding (Delaux et al., 2021; Klimesch et al., 1998; Nelli et al., 2017; Y. K. Wang et al., 2018).  

2.5.4 Cognitive load measured by EEG 

Cognitive load has been extensively studied in neurophysiological research (Fu & 

Parasuraman, 2006; Ghani et al., 2020; Kok, 2001; Polich, 2007). A large body of ERP 

research has suggested that posterior P3 amplitude is proportional to the intensity of a task on 

attentional and working memory resources and reflects cognitive load (for a review, see Fu & 

Parasuraman, 2006; Ghani et al., 2020; Kok, 2001; Polich, 2007). That is, more pronounced 

P3 amplitude in the parietal region is induced by greater task difficulty and greater stimulus 

complexity presented to participants (Ghani et al., 2020; Kok, 2001; Polich, 2007; Watter et 
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al., 2001). The relationship between P3 amplitude and cognitive load is studied in single-task 

and dual-task paradigms (Deeny et al., 2014; Ghani et al., 2020). In the single-task paradigm, 

participants focus on one primary task and are probed with different task difficulties, which 

can provide a more straightforward cognitive load estimation, compared to dual-task 

paradigms (Deeny et al., 2014; Ghani et al., 2020). For example, in attention-focused 

paradigms, P3 amplitude was greater when participants paid attention to target stimuli 

compared to unattended stimuli (Heinze et al., 1990; Van der Stelt et al., 1998). In contrast to 

single-task paradigms, dual-task paradigms provide a window to examine attentional resource 

allocation between tasks. In dual-task paradigms, participants perform a primary task as well 

as a secondary task. Studies have found that the P3 amplitude evoked by the secondary task 

decreases with the increasing difficulty of the primary task, indicating a reallocation of 

attentional resources away from the secondary task to the primary task (Isreal et al., 1980; 

Watter et al., 2001).  

Previous EEG research has found that cognitive load also manifests in power 

modulations in distinct frequency bands, especially in theta and alpha bands (for a review, see 

Klimesch, 1999). A large body of research has shown that task demands, visual attention, and 

visual working memory evoke theta oscillations and suppress alpha oscillations (Gevins & 

Smith, 2003; Jensen & Tesche, 2002; Ratcliffe et al., 2022; Scharinger et al., 2017; Smith et al., 

2001). A method calculating event-based synchronization (ERS) in theta oscillations and 

event-based desynchronization (ERD) in alpha oscillations is used to compute task-related 

changes in the synchrony of underlying neuron populations (Pfurtscheller & Lopes da Silva, 

1999). A number of studies have found that theta ERS recorded over the frontal cortex 

responds to visual stimulus presentation, implicating increasing cognitive resource 

expenditure (Ratcliffe et al., 2022; Scharinger et al., 2017; Smith et al., 2001). Specifically, 

theta oscillations are related to the integration and control of a variety of cognitive processes, 

such as visual and spatial working memory (Sauseng et al., 2010). Thus, theta ERS in frontal 

leads has been proposed as a neural indicator of cognitive load. Previous studies, by contrast, 

have found that the more demanding a task, the more pronounced is the alpha suppression or 

https://www.zotero.org/google-docs/?broken=UAhbiv
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ERD in parietal leads (Doesburg et al., 2009; Stipacek et al., 2003). Alpha ERD in parietal 

regions may implicate participants’ maintenance of attention and working memory during a 

cognitive task (Fukuda et al., 2015; Pfurtscheller et al., 1996; Sauseng et al., 2005). 

2.5.5 Examining brain activity during locomotion  

Cognitive load induced by one attended task may spill over into another successive 

task, as shown in the literature (Bednar et al., 2012; Felisberti & Fernandes, 2022; T. X. Liu et 

al., 2019). For example, Felisberti and Fernandes (2022) have found that participants’ 

cognitive load spilled over to subsequent tasks, in which they completed a simulated driving 

task in virtual environments. Similarly, during map-assisted navigation, the cognitive load 

related to viewing and learning landmarks depicted on a mobile map may impact cognitive 

load during locomotion through the environment, even if the pedestrians are not looking at 

the mobile map display. Furthermore, as discussed in Section 2.1, navigation consists of both 

a locomotion and a wayfinding component (Montello, 2005). Pedestrians spend most of their 

time in locomotion through the environment during navigation, compared to viewing a map. 

Moreover, map-assisted navigation consists of dynamic interaction between the user, the map, 

and the environment (see Figure 2.8). To attain a holistic understanding of navigators’ 

cognitive states during map-assisted navigation, it is also important to examine users’ cognitive 

load and visual encoding while they are locomoting in the environment while not consulting 

a mobile map. As discussed in Section 2.4.1, EEG recordings typically require event markers 

such as stimulus presentation or participant responses to allow event-related analysis. This is 

challenging in a naturalistic navigation context because visual inputs to navigators constantly 

change when they actively move through the environment, which results in little control over 

stimulus presentation or participant responses during EEG recordings. As such, new types of 

EEG markers are required to investigate brain activity during naturalistic locomotion.  
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Eye blinks as EEG events during naturalistic locomotion 

Researchers have leveraged spontaneous eye behavior—gaze fixation and blinks—

during EEG recordings and used it to generate notable EEG event markers and examine the 

related brain activity. A recent study used navigators’ gaze fixation on indoor navigational 

signs indicating directions (e.g., ambulatory care unit, information desk, etc.) as EEG event 

markers, to investigate the effect of interior designs (e.g., color patterns, graphics) on 

wayfinding efficiency in a virtual hospital (Kalantari et al., 2022). Such event markers (i.e., 

gaze fixation) are useful for wayfinding experiments in environments containing task-relevant 

signage used during wayfinding. This will generate long fixation durations (e.g., 1500 ms) as 

meaningful EEG event markers. Nevertheless, outdoor environments have little explicit 

labeling and/or navigation-relevant signage in open spaces, such as parks and residential areas, 

where pedestrian navigators yield shorter fixation duration (~290 ms; Enders et al., 2021).  

Figure 2.8 Interaction between the mobile map, the navigator, and the 
environment during map-assisted navigation. Each 
component needs to be considered and evaluated when 
discussing map-assisted navigation. Figure adapted from 
Ishikawa (2020, p. 157). 
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Using spontaneous eye blinks is another way to create useful event markers without 

interfering with the continuous tasks in naturalistic settings (Wascher et al., 2014, 2016, 

2022), given that eye blinks are generated by participants naturally and can be easily detected 

by EEG without an additional device. Moreover, eye blinks could be used as meaningful EEG 

event markers indicating cognitive load, as previous literature has suggested that spontaneous 

eye blinks do not occur randomly, but are considered to reflect cognitive load and information 

processing (Siegle et al., 2008; Stern et al., 1984). When participants open their eyes after a 

blink, they receive an influx of visual and spatial stimuli. This leads to the engagement of 

cognitive resources for visual and spatial working memory and elicits brain activity related to 

cognitive processing (Fukuda et al., 2015; Lee et al., 2018). A study by Valtchanov and Ellard 

(2015) analyzed participants’ eye-movement behavior when they were viewing photographs 

of nature and urban scenes. The authors found that participants’ lower blink rates were 

associated with a lower cognitive load during nature scene viewing, compared to urban scenes. 

Other literature has also proposed that blinks are associated with attentional resource 

allocation (Wascher et al., 2014, 2022). Blinks tend to occur after blink suppression when 

individuals have focused attention on presented stimuli or when their processing modes 

change and re-allocate their attention. 

Blink-related brain activity 

Previous research that assesses brain activity using eye blinks as event markers has 

identified that ERPs appear after eye blinks (Berg & Davies, 1988; Wascher et al., 2014, 2022; 

Wunderlich & Gramann, 2020). Specifically, blink event-related potentials (bERPs), 

including blink-related occipital N1—around 160 ms after blink maximum, fronto-central 

N2—around 200 ms after blink maximum, and parietal-occipital P3—around 300 ms after 

blink maximum, can discriminate different levels of task demands. 

For example, a recent study by Wascher et al. (2022) analyzed bERPs during different 

tasks (task load: standing < walking < walking while traversing obstacles) when participants 

were processing auditory information (i.e., the primary task). The results demonstrated a more 

https://www.zotero.org/google-docs/?broken=kS7RRh
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pronounced amplitude in the blink-related occipital N1 in the walking condition, compared 

to standing and traversing obstacles, indicating more pronounced bottom-up visual 

processing. Furthermore, the amplitude in the blink-related N2 at the fronto-central leads and 

in the blink-related P3 amplitude at the parietal leads reduced with increasing task load, 

suggesting that fewer cognitive resources were available for the primary task (i.e., processing 

auditory information). The blink-related fronto-central N2 has been suggested as an indicator 

of cognitive control and task demand (Wascher et al., 2014, 2022). The blink-related posterior 

P3 has been proposed as an indicator of cognitive resource allocation (Wascher et al., 2014, 

2022). In the domain of frequency power changes, two blink-related EEG studies conducted 

by Wascher et al. (2016, 2022) found that fronto-central theta power increased and parieto-

occipital alpha power decreased with increasing task demands. 

In this thesis, I leveraged spontaneous eye blinks as EEG event markers to brain 

activity and cognitive states during active locomotion in ecologically valid urban 

environments. 

2.6 Virtual reality as a tool to investigate naturalistic navigation 

Studying naturalistic navigation and recording EEG during navigation in the real 

world are challenging, because there is little control over individual factors (e.g., participants’ 

familiarity with the environment, walking speed, etc.) and external environmental factors 

(e.g., traffic, weather, etc.) in real-world settings. To tackle these challenges, VR has been 

adopted over the last decades.  

VR has the following unique advantages for spatial navigation research. First, it 

displays three-dimensional (3D) dynamic images with high quality (Sanchez-Vives & Slater, 

2005) and reproduces real-life environments. In addition, researchers can manipulate 

environmental features based on their research questions. For example, researchers can create 

a novel environment, augment specific landmarks at specific locations, and easily compare 

environmental styles (e.g., urban versus natural; grid-like versus curvilinear roads). This is 

https://www.zotero.org/google-docs/?broken=ZVVuyc
https://www.zotero.org/google-docs/?broken=ZVVuyc
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virtually impossible in the real world. The environments and the tasks created in VR can be 

openly shared, such as Virtual Silcton (Weisberg et al., 2014), which enhances the replicability 

of navigation studies (Jeung et al., 2022).  

Another important feature of VR technology is that it provides naturalistic 

experiences and sensory feedback by integrating with locomotion interfaces (e.g., joysticks, 

foot pedals, treadmills, etc.) or even real-walking during navigation (Gramann, 2013). This is 

crucial for navigation research, as navigation is an embodied experience and active locomotion 

is its major component. Moreover, VR technology is compatible with physiological and 

neuroimaging tools, such as EDA (Armougum et al., 2019), EEG (Delaux et al., 2021), and 

functional magnetic resonance imaging (fMRI; Maguire et al., 2006).  

With these unique characteristics, VR offers high ecological validity for investigating 

naturalistic navigation processes (Darken & Peterson, 2002; Jeung et al., 2022). Indeed, 

previous research has reported that cognitive load (Armougum et al., 2019)), navigation 

strategy (Clemenson et al., 2021)), and spatial knowledge acquisition (Pastel et al., 2022) in 

virtual environments are fairly correlated with those aspects in the real world.  

2.7 Summary 

To summarize this chapter, navigation and spatial learning are two closely related 

processes. As individuals locomote and find their way through an environment, they acquire 

spatial knowledge, including landmark, route, and survey knowledge. The acquired spatial 

memory in turn supports navigational processes. GPS-enabled navigation devices provide 

many conveniences that ease navigation tasks (e.g., automatic self-localization and route 

planning), but on the other hand, they impair spatial learning by reducing navigators’ active 

spatial decisions, and their attention to and memorization of the environment. To counteract 

the negative consequences of GPS use on spatial learning, landmark inclusion is proposed to 

design a cognitively assistive navigation system. Navigation literature shows that landmarks 

bestow properties and functions that help navigators to structure and learn an environment. 
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Meanwhile, cognitive psychology literature suggests a limited cognitive capacity to process 

presented information, and a learning performance plateau/decline when the learning items 

exceed a learner’s capacity. As map-assisted navigation and landmark memorization utilize 

visual and spatial processing resources, one unexamined yet important research gap arises: 

what is the usable amount of landmarks to present to a navigator to optimize their cognitive 

resource exertion and thus support spatial learning? To tackle this research gap, an accurate 

measure of cognitive load and visuospatial processing during navigation is crucial. EEG is a 

well-established neurophysiological tool to measure cognitive load and visuospatial 

processing, through two commonly used EEG analysis techniques: ERP analysis and PSA. To 

facilitate the navigation experiment equipped with EEG, VR technology offers the unique 

advantages of stimulating naturalistic environments and integrating body and motion cues.
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Chapter 3: Experiment  

The literature and research reviewed in Chapter 2 laid solid theoretical and 

methodological foundations for designing a hypothesis-driven and empirical navigation 

experiment that aims to address the research gap—what is the “appropriate” number of 

landmarks visualized on a mobile that optimizes navigators’ cognitive resource exertion and, 

therefore, their spatial learning. This research gap is distilled into three concrete research 

questions in Chapter 1, which are revisited in the following sections along with three related 

hypotheses. With this research gap in mind, I first determined the independent and dependent 

variables for my experiment.  

3.1 Independent and dependent variables 

I determined the independent variable in the experiment—the number of landmarks 

visualized on a mobile map during assisted navigation. I chose three, five, and seven landmarks 

as the induction of low, medium, and high cognitive load, respectively. The selection of the 

three sets of landmarks was based on the cognitive psychology literature, which suggests that 

individuals’ cognitive capacity is around four items/chunks (Baddeley, 2003) and that their 

memory capacity may be higher for real-world objects (Brady et al., 2016, 2019), as discussed 

in Section 2.4. A within-participant design was adopted to reduce inter-subject variability and 

produce more statistical power for the dependent variables compared to a between-subject 

design. The dependent variables consisted of navigators’ spatial learning performance after 

navigation, cognitive load, and visuospatial encoding during map consultation and during 

active locomotion. The details of the measurements of the dependent variables are presented 

in a subsequent section (Section 3.5). 
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In the next section, I revisit the three research questions mentioned in Chapter 1 and 

form the hypotheses, based on the findings of the literature on navigation, cognitive 

psychology, and neuroscience, reviewed in Chapter 2.  

3.2 Hypotheses 

RQ1: How does the number of landmarks depicted on a mobile map influence 

navigators’ spatial learning during navigation? 

H1 (Spatial learning): I expected navigators’ spatial learning to be improved when 

the number of landmarks depicted on the map increases from three to five, because of 

the benefits of landmarks in spatial learning. I also hypothesized that depicting seven 

landmarks would exceed navigators’ cognitive capacities and thus counter the benefit 

of presenting landmarks on the mobile map. Thus, participants’ spatial learning 

would not be expected to further increase when the number of landmarks increased 

from five to seven.  

 

RQ2: How does the number of landmarks depicted on a mobile map influence 

navigators’ cognitive load and visuospatial encoding while consulting the map during 

wayfinding? 

H2.1 (Cognitive load): I expected that when participants consulted the mobile map, 

1) P3 amplitude at parieto-occipital leads would increase; 2) theta ERS would increase 

at fronto-central leads; and 3) alpha ERD at parieto-occipital leads would be more 

pronounced along with increasing numbers of landmarks presented on the mobile 

map. This is because navigators’ cognitive load increases when they have to process 

more landmarks.  

H2.2 (Visuospatial encoding): I expected theta ERS in posterior leads to increase, 

and P1 amplitude and alpha ERD in occipital leads to be more pronounced during 
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map consulting. This is because navigators have to encode more visuospatial 

information when more landmarks are depicted on the mobile map. 

  

RQ3: How does the number of landmarks depicted on a mobile map influence 

navigators’ cognitive load and visuospatial encoding during active locomotion? 

H3.1 (Cognitive load): Due to cognitive overspilling between map consultation and 

active locomotion, I expected that depicting more landmarks on a mobile map would 

increase navigators’ cognitive load during active locomotion even when they are not 

currently viewing the map. Increased cognitive load during active locomotion would 

be indicated by blink-related ERP (bERP) components—a more pronounced N2 

amplitude at fronto-central leads and a more pronounced P3 amplitude at parieto-

occipital leads. As an exploratory analysis on increased cognitive load, I additionally 

expected that blink-based theta power at fronto-central leads would increase and 

blink-based alpha power at parieto-occipital leads would decrease with increasing 

numbers of depicted landmarks. 

H3.2 (Visual encoding): I expected no difference in blink-related N1 amplitude at 

the occipital lead, which indicated no difference in early bottom-up visual encoding, 

as navigators traverse through the identical environment. This is because the number 

of assessed landmarks only differs on the mobile map displays and not in the traversed 

environments.  

 

To empirically test the above-mentioned hypotheses, I designed an experiment on 

map-assisted navigation. In the section that follows, I first discuss the concrete experimental 

manipulation of landmark presentation on a mobile map (i.e., the independent variable) 

during a navigation task. Next, I guide readers through the experimental stimuli and apparatus 

used to set up the navigation experiment in a VR lab, followed by the experimental 

measurements to assess spatial learning performance and brain activity—the dependent 

variables. Finally, I describe the profiles of tested participants and the overall experimental 
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procedure. The following sections are intended to provide readers with a clear picture of the 

experiment conducted and to enable researchers to replicate or extend the experiment for 

future research.  

3.3 Experimental design 

3.3.1 Landmark presentation on a mobile map 

The within-participant independent variable was empirically manipulated as the 

number of 3D landmark buildings (three, five, or seven) visualized on the map during 

navigation (Figure. 3.1). Participants navigated the routes through three different virtual 

cities. Each navigation route consisted of five intersections and seven salient 3D buildings as 

landmarks: one building at the start location (home), five salient buildings at the five 

intersections, and one landmark building at the destination (Figure 3.1). While participants 

were navigating, a map would appear on the screen at various locations along the route, 

simulating a view of a mobile map and showing the direction to take at the upcoming 

intersection (Figure 3.2).  

In the three-landmark condition, the starting building, one building at the 

destination, and the landmark at the third intersection were visualized on the mobile map 

(Figure 3.1: Three-landmark condition). In the five-landmark condition, in addition to the 

three buildings in the three-landmark condition, one landmark at the first and fourth 

intersections were also displayed on the map, respectively (Figure 3.1: Five-landmark 

condition). In the seven-landmark condition, in addition to the five landmarks in the five-

landmark condition, one landmark at the second and fifth intersections were displayed on the 

mobile map, respectively (Figure 3.1: Seven-landmark condition). The selection of landmarks 

followed the three criteria defined by Stankiewicz & Kalia (2007): persistence, salience, and 

informativeness, as discussed in Section 2.3.1. The building positions for each landmark 

condition were selected to ensure an equal spatial distribution of landmarks along the route. 

Figure 3.1 below depicts the three-landmark conditions along the predefined route (i.e., the 



 

40 

black line depicted in the figure) in three different virtual environments, labeled as City 1, City 

2, and City 3 in the figure.  

The three navigation routes, as depicted in Figure 3.1, consisted of five intersections 

with lengths between 800 m and 900 m. The selected route in City 1 consists of two left turns, 

two right turns, and one straight intersection. The selected route in City 2 consists of one left 

turn, two right turns, and two straight intersections. The selected route in City 3 consists of 

one left turn, one right turn, and three straight intersections.  

A certain route and seven selected landmarks along the route in the environment were 

linked to a certain city. The three landmark conditions were not linked to a certain route or a 

certain city. The three landmark conditions were assigned to a certain city with a 

counterbalanced approach. 
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Figure 3.1 The three different landmark conditions along the predefined route (i.e., the black 
line) in three different virtual environments. The left, middle, and right panels show 
the condition with three, five, and seven landmarks depicted on the mobile map 
during navigation, respectively. The figure is adapted from Cheng et al., (2022). 
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3.3.2 Mobile map display during navigation 

During navigation, a mobile map was displayed to participants to assist their 

wayfinding during the experiment (Figure 3.2). The mobile map that showed a predefined 

route and a landmark located at the intersection was presented to participants 17 times, 

distributed over three different location types: shortly before intersections, after intersections, 

and in the middle of a straight segment of the followed route, where the next intersection was 

visible (Figure 3.2 a, c). The map viewed from the participants’ perspective during navigation 

is depicted in the right panel of Figure 3.2 (b, d). The map indicated the current intersection 

and rotated along the direction in which participants were headed. It also showed participants' 

current location and provided turn-by-turn directions, depicted as a blue dot and a black line 

on the map, respectively. Depending on the landmark condition, a visually salient landmark 

(Figure 3.2 d) at the intersection was shown on the mobile map. The highlighted landmark 

was shown in 3D on the map, with the same viewing perspective as seen in the environment 

(Figure 3.2 d).  

The mobile map was shown for five seconds each time. When the map was displayed, 

the virtual urban environment faded away, and the participants’ movements through the 

environment were disabled. This was designed to simulate a real-life scenario of mobile map 

consultation during pedestrian navigation. Figure 3.3 shows the sequence of participants’ 

interaction between navigating in the environment and viewing the mobile map. The 17 map-

onset events during navigation were used for event-related EEG analyses, which are discussed 

in detail in Section 4.2.2.  
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Figure 3.2 The left panel, (a) and (c), represents the map condition with three landmark and seven 
landmarks, respectively. Red dots along the black navigation route indicate the 17 map 
pop-up spots during navigation. The right panel, (b) and (d), shows a mobile map 
presented to the participants during navigation. The map rotates along with the 
participant’s head direction, as seen by the participant at the location of the green dot in 
the left panel. The blue dot indicates the participant’s current location in the virtual city. 
The black line indicates the path the participant needs to follow. A highlighted 3D 
landmark building (d) of the building is shown on the map at a turning intersection, 
depending on the landmark condition. 

Figure 3.3 The three panels illustrate the sequence in which the participant 1) approaches the 
intersection in the virtual environment before the map is provided, 2) views the map for 
five seconds, and 3) turns at the intersection after viewing the map. 
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3.4 Stimuli and apparatus 

To simulate real-world navigation in naturalistic environments, three ecological 

virtual cities were created and a navigation task was implemented in a VR lab. The details of 

the designed virtual cities, VR lab, and the apparatus used in the lab are presented below.  

3.4.1 Virtual cities 

Three European-style urban city models for navigation were developed in ArcGIS 

City Engine 2018 (Esri, CA, USA). The three virtual urban environments included low-rise 

buildings with heights between 5 m and 25 m, streets, trees, and open spaces. The cities were 

flat without any slopes, hills, mountains, or any global landmarks visible in the distance. The 

virtual environments were lit using sunlight without showing the sun, clouds, or other 

weather features. Figure 3.4 depicts the bird’s-eye views and the first-person perspectives of 

the three virtual environments. 

3.4.2 Virtual reality lab 

The experiment was conducted in the GIVA CAVE (i.e., Cave Automatic Virtual 

Environment) Lab2 located in the Department of Geography at the University of Zürich. The 

display of the three virtual cities was rendered in the three-sided CAVE, with the three screens 

in the front, to the left, and the right side of the participants, respectively (see Figure 3.5 a). 

The stereoscopic vision was simulated using the frame sequential projection with 1280 pixel 

× 800 pixel resolution at 120 Hz frequency (see Figure 3.5 b). To simulate the viewpoint-

adapted stereoscopic image, participants wore a pair of 3D glasses that continuously tracked 

their head positions and orientations. The experimental tasks were programmed in C# and 

 
2 More information about the setup of the GIVA CAVE Labe can be found on the GIVA website: 

https://www.geo.uzh.ch/en/units/giva/services/cave-automatic-virtual-environment.html 
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rendered in Unity 3D 2018.4 LTS (Unity Technologies; San Francisco, CA, USA) and 

MiddleVR for Unity 1.0 (Truchtersheim, FR).  

  

Figure 3.4 Left panel depicts bird's-eye views of the three virtual cities. To note, the bird’s-eye view of 
the city was not presented to participants. Right panel depicts first-person perspectives in 
the three virtual environments during navigation. 
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Figure 3.5 The top panel (a) illustrates the CAVE setup including the three-side walls and 
participants’ sitting positions. The bottom panel (b) shows a participant wearing 
stereoscopic 3D glasses and placing her feet on a foot-operated controller to navigate 
through the virtual environment. The top panel (a) is adapted from Credé et al. (2019). 
The bottom panel (b) is adapted from Cheng et al. (2022). 
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Participants’ movement through the virtual cities was connected to a foot-operated 

controller (3D Rudder, Aix-en-Provence, FR; www.3drudder.com). Participants titled the 

controller with their feet towards the front or back to simulate forward and backward 

movement in the virtual cities, respectively (see Figure 3.6 a, b). Tilting the controller left or 

right resulted in left or right rotation, respectively (see Figure 3.6 c, d). A previous study 

reported that using an external foot controller in a virtual navigation experiment could reduce 

participants’ simulation sickness during the task (Credé et al., 2019). The moving speed was 

set at 3.8 m/s to minimize simulation sickness in the designed virtual environments, based on 

the individual’s self-report during the pilot phase. 

Figure 3.6 Top panel: the participant is titling the foot-operated controller with their feet to a) move 
forward and b) backward through the virtual city, respectively. Bottom panel: the 
participant is tilting the foot controller with their feet to c) the left and d) to the right to 
turn their heading direction in the urban virtual city towards the left and right, 
respectively. The figure is adapted from Cheng et al. (2023). 

3.5. Measurements 

This section deals with the behavioral tests and EEG techniques adopted to measure 

the dependent variables—spatial learning performance and brain activity (cognitive load and 



 

48 

visuospatial encoding), respectively. Additionally, the measurement of individuals’ spatial 

abilities is presented as a control variable in the experiment.  

3.5.1 Spatial learning tests 

A landmark recognition test, a route direction test, and a judgment of relative 

directions (JRD) test were utilized to assess participants’ landmark, route, and survey 

knowledge, respectively. These three types of spatial knowledge are discussed in Section 2.1.2. 

Participants responded to the three tests using an electronic responding and pointing device, 

showed in Figure 3.7, also known as the wand (WorldViz Inc, USA). 

Landmark recognition test 

The landmark recognition test involved seven landmarks that were seen along the 

route (i.e., starting building, destination building, and the five buildings at the traversed 

intersections) and seven buildings that were selected from the same environment but not seen 

along the route, following prior related research (Huang et al., 2012; Kim & Bock, 2021; Stites 

et al., 2020; Wunderlich & Gramann, 2021). The seven landmarks from the route and seven 

buildings off the route in the landmark recognition test were identical in the three landmark 

conditions for each city. Participants were asked whether they had seen the landmarks along 

the route and pressed a button on the wand to respond “yes” or “no” (see Figure 3.7 a). 

Route direction test 

To assess participants’ route direction memory, participants were additionally asked 

about the subsequent direction they took, in reference to the landmark for which they 

answered “yes” in the landmark recognition test. Participants used the wand to choose 

between “left”, “right”, “straight”, and “destination” (see Figure 3.7 b), indicating that they 

had turned left, right, gone straight, and stopped at the goal, respectively. The paradigm of the 
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landmark recognition and route direction tests was adjusted from the spatial knowledge tests 

used in prior navigation research (Huang et al., 2012; Wunderlich & Gramann, 2020, 2021).  

JRDs 

To access participants' acquired (metric) survey knowledge, we employed JRDs—a 

well-established test to measure navigators’ knowledge of relative spatial directions between 

landmarks (Huffman & Ekstrom, 2018). One JRD trial involved three landmark locations of 

the seven landmarks along the route. Participants were asked to imagine standing at a first 

landmark while facing a second landmark and to point to a third landmark. For each JRD, 

participants used the wand to point to the estimated direction of the third landmark and 

confirmed their decision by pressing a button (see Figure 3.7 c). For each navigation trial, 

participants completed in total 14 JRDs, which were pseudo-randomly chosen out of all 35 

possible JRD trials. The seven landmarks along the route appeared six times among the 14 

JRD trials.  

Figure 3.7 The three panels show how participants responded to the spatial learning tests using a 3D 
responding and pointing device after each navigation trial. The three panels depict (a) the 
landmark recognition test, (b) the route direction test, and (c) the JR JRD test, 
respectively. Figure 3.6 is adapted from Cheng et al. (2022). 

3.5.2 EEG data collection 

Participants’ brain activity was continuously recorded using a 64-channel EEG device 

with active electrodes (LiveAmp, Brain Products GmbH, Gilching, DE). Electrodes were 

placed according to the international, extended 10% system (Oostenveld & Oostendorp, 

2002). The nomenclature and position of the electrodes are discussed in Section 2.5. 
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All electrodes were referenced to FCz with a ground electrode at Fpz. The impedance 

of the electrodes was brought down below 10 kOhm to ensure the EEG data quality. The EEG 

data were collected at a 500 Hz sampling rate. The raw EEG signal was streamed wirelessly 

between the LiveAmp amplifier and Unity using a BlueTooth adapter (UBT21). The EEG 

signal and all trigger markers were synchronized through Windows Operating System’s 

interprocess communication (I.P.C.).  

3.5.3 Spatial abilities—control variables 

A large body of literature has found that spatial abilities influence spatial learning 

performance (e.g., Burte & Montello, 2017; Weisberg & Newcombe, 2018). Therefore, I 

assessed individuals’ spatial abilities and used them as a control variable for spatial learning. 

Participants’ spatial abilities were assessed by the previously validated Santa Barbara 

Sense of Direction Scale (SBSOD; Hegarty et al., 2002) and Perspective-Taking/Spatial-

Orientation Test (PT/SOT; Hegarty & Waller, 2004). The SBSOD measures self-reported 

spatial and navigational abilities, preferences, and experiences (Hegarty et al., 2002). The 

questionnaire was presented to participants either in English (Hegarty et al., 2002) or in 

German (Münzer & Hölscher, 2011), based on their preferences. The PT/SOT uses a two-

dimensional array of three objects where participants imagined themselves standing at one 

object in the array while facing another object with a particular direction within the array. The 

participants’ task was to indicate the direction of the third object (Hegarty & Waller, 2004). 

To assess visuospatial working memory (VSWM) capacity, I administrated a computer-based 

Corsi block-tapping task (CBTT; Corsi1972, Brunetti2014). Nine squares were shown on the 

computer screen. A series of 3–9 squares were highlighted in a predefined sequence. 

Subsequently, participants had to click on the squares that were highlighted in the same 

sequence (Orsini et al., 1987). Each sequence length was repeated five times in a randomized 

order.  
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3.6 Power analysis and participants 

To determine the number of test participants, a power analysis was conducted for a 

linear mixed-effect model (for more details of linear mixed-effect models, see Section 4.4), 

prior to conducting the experiment. I assumed a small-to-medium effect size (d = 0.3-0.5) for 

the within-participant conditions with 14 JRD trials each. The outcome of the power analysis 

suggested recruiting 50 participants to achieve a statistical power of 73% for a small effect and 

89% for a medium effect, respectively.  

49 participants (29 females) with ages ranging from 18 to 35 years (M = 25.6 years, SD 

= 4.09) were recruited and completed the experiment. The participants were recruited from 

the mailing lists of the Department of Geography and the Department of Psychology, 

University of Zürich. One participant’s data were excluded due to self-reported illness during 

the experiment. All participants were financially compensated for their participation with 30 

CHF. The study design and procedure were approved by the University of Zurich Ethics 

Board. All the procedures conducted in this study were also in accordance with the ethical 

standards of the Swiss Psychological Society and the American Psychological Association. 

3.7 Procedure 

The experiment was conducted in German or English based on participants’ language 

preferences. On the day of the experiment, participants were first asked to read and sign the 

information sheet and the consent form. After that, they were introduced to the procedure of 

the experiment, as illustrated in Figure 3.8. Subsequently, participants completed the 

PT/SOT and SBSOD on a desktop computer in CAVE. Then participants were fitted with 

an EEG cap. Next, participants adjourned to the chair in front of the center of the CAVE 

screen and were given the instructions for the navigation task in VR. Following the 

experimenter’s instructions, participants practiced walking with the foot-operated controller, 

using the mobile map in a training virtual city, and answering the spatial learning tests with 
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the wand in CAVE. After the training session, participants proceeded to the main experiment 

if they had no further questions.  

The main experiment consisted of three blocks and a two-minute break between the 

blocks. The participants completed all three experimental blocks. Each block included a map-

assisted navigation task and three spatial knowledge tests. During the navigation portion, 

participants were instructed to follow the given route highlighted on the map as quickly as 

possible to a specific destination and to learn the landmarks along the route that were 

displayed on the map. Participants were also told that some landmarks at the intersections that 

were not visualized on the map would be tested after navigation. When participants deviated 

from the route, a message in the virtual environment appeared asking them to return to the 

route. Participants finished the navigation task when they arrived at the destination. After 

that, the experiment proceeded automatically to the spatial learning tests that assessed 

participants’ landmark knowledge, route knowledge, and survey knowledge in a sequence. 

After the main experiment, participants completed the CBTT on a desktop computer in the 

same room. After the CBTT, the EEG cap was removed from the participant’s head, and the 

participants received a debriefing about the study from the experimenter.  

Figure 3.8 A flow chart illustrates the procedure of the experiment: the tasks (i.e., spatial 
abilities tests and questionnaire, navigation training, navigation task, and spatial 
knowledge test,), the sequence of the tasks, and the employed apparatus (i.e., a desk 
computer, EEG, and VR) during the experiment. 
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Chapter 4: Analyses 

This chapter presents the methods adopted to analyze the acquired data of 

participants’ spatial learning performance measured by three spatial learning tests and their 

brain activity measured by EEG, followed by the analyses of individuals’ spatial abilities and 

VSWM capacity.  

4.1 Spatial learning performance 

To gain an understanding of how participants’ spatial learning performance was 

influenced by the number of depicted landmarks (RQ1, H1), I analyzed their landmark 

recognition performance, route direction memory, and JRD errors after navigation, as 

discussed in the following sections.  

4.1.1 Landmark recognition  

Participants’ landmark recognition data was acquired using the landmark recognition 

test, described in Section 3.5.1: Landmark recognition test. Signal detection theory (SDT; 

Parks, 1966) was employed to analyze participants’ landmark recognition performance. The 

landmarks from the route were considered “signals” while buildings not seen along the route 

were conceptualized as “noise only” (Parks, 1966). If participants answered “yes” to an on-

route landmark or off-route building, these decisions are marked as hits or false alarms, 

respectively (Table 4.1). D-prime (d’) reflects the distance between the distributions of signal 

and of signal + noise and corresponds to the Z value of the hit rate minus that of the false-



 

54 

alarm rate (i.e., d’ = ZH − ZFA) via z-transformation3. A d’ of 3 is close to perfect performance; 

a d’ of 0 corresponds to chance (“guessing”) performance. Adjustments for false-alarm rates 

of zero or hit rates of one (i.e., P = 0, or P = 1) were made following the recommendations by 

Hautus (1995). After the adjustment, the effective limit of d’ is 4.65. D’ indicates participants’ 

recognition discriminability; thus, higher d’ scores indicate better discriminability in 

landmark recognition.  

Table 4.1 Four outcomes of signal detection calculation. If a person detected the present signal (i.e., 
on-route landmarks) or absent noise (i.e., off-route buildings), these outcomes are called 
hits or false alarms, respectively. If the person rejected the present signal and absent noise, 
these decisions are marked as misses or correct rejections, respectively.  

4.1.2 Route direction memory 

Participants’ route direction choices were collected by the route direction test, 

described in Section 3.5.1: Route direction test. Responses for the landmarks that were on the 

route in the landmark recognition test were used for the route direction memory analysis (Kim 

& Bock, 2021). Responses for the buildings that were off the route in the landmark 

recognition test were discarded. To calculate the participant’s route direction memory score, 

landmarks from the route that were not recognized were given a score of 0 on the route 

direction test. Responses for landmarks from the route that were recognized were scored as 1 

for a correct direction response and 0 for an incorrect direction choice, respectively. Overall 

 
3 “A range of values is cast as a normal distribution, with standard deviations around the mean. The 

mean value is set to 0, and the range of most values is about 3 standard deviations above and below the mean. So, 
each value is some number of SD units above or below the mean. This transform is valuable in allowing comparison 
of measures with different ranges of absolute values, and in taking into account the inherent variability of different 
measures.” (Pat Keating (2004)) 

http://phonetics.linguistics.ucla.edu/facilities/statistics/dprime.htm#:~:text=The%20highest%20possible%20d'%20(greatest,corresponds%20to%20a%20d'%20of%201.0.
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performance on the route direction test was calculated as the percentage of correctly answered 

trials over the total number of assessed landmarks (seven).  

4.1.3 JRD errors 

Participants’ JRD responses were collected using the JRD test, discussed in Section 

3.5.1: JRDs. As depicted in the following Figure 4.1, the JRD error was defined as the absolute 

angular difference between the estimated direction (β) and the actual direction (α) of a target 

landmark relative to a reference landmark. These angular errors could vary between 0° (very 

accurate) and 180° (very inaccurate). 

 

Figure 4.1 An illustration of the JRD error calculation. Participants are asked to point to Landmark 
3 while imagining themselves standing at Landmark 1 and facing Landmark 2. The actual 
direction and responded direction are represented by α and β respectively. The JRD error 
equals the absolute difference between α and β: JRD error = |β - α|. 

 

The following sections deal with EEG data preprocessing and EEG data analyses to 

examine the hypotheses on the effects of the number of depicted landmarks on brain activity 
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during map consultation (RQ2, H2) and during active locomotion (RQ3, H3). The EEG 

data were obtained following the EEG data collection described in Section 3.5.2. The obtained 

raw EEG recording is a mixture of genuine brain signals and noise, including eye movements, 

body movements, and channel noise. Thus, preprocessing EEG data is a crucial step to 

separate brain signals and noises before running the analysis on brain activity.  

4.2 EEG data preprocessing 

The raw EEG data was preprocessed and cleaned using the BeMoBIL pipeline (Klug 

et al., 2022) in the MATLAB version R2021a (Mathworks Inc., Natick, Massachusetts, USA) 

and in the toolbox EEGLAB 2021 (Delorme & Makeig, 2004). The BeMoBIL pipeline is 

designed to automatically preprocess EEG data and to ensure full replicability of all 

preprocessing steps. It also improves signal-to-noise ratios in mobile EEG datasets, which is 

crucial for optimizing independent component analysis (ICA, Makeig et al., 1995) to separate 

brain signals from noise in the EEG data. Below, I describe each preprocessing step, the 

employed toolboxes and functions in the toolboxes for each step, and the corresponding 

outcomes of each step in the BeMoBIL pipeline. 

Before submitting the raw EEG data into the BeMoBIL pipeline, the non-

experimental segments (e.g., breaks between the experimental blocks) were removed from the 

EEG datasets. Then, the raw EEG data was then downsampled to 250 Hz to reduce the EEG 

data size and speed up the preprocessing procedure. Next, the ZapLine Plus function was 

applied to remove spectral peaks at 50 Hz, in correspondence to the power line frequency 

(Klug & Kloosterman, 2022). The noisy channels were identified using the automated 

rejection function clean_artifacts with ten iterations. The noisy or dead channels that were 

detected more than four times out of the ten iterations were removed, based on their 

correlations with other channels (threshold = 0.85), maximal flat line periods (threshold = 3 

seconds), and detected fraction (threshold = 0.4). The missing channels (M =3.7, SD = 2.5) 

https://www.zotero.org/google-docs/?broken=spLwrE
https://www.zotero.org/google-docs/?broken=HQRSo6
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were interpolated using a spherical spline function from EEGLAB. The data was then re-

referenced to the average reference across the whole set of channels. 

Subsequently, ICA was performed using an adaptive mixture independent 

component analysis (AMICA) algorithm (Palmer et al., 2011), setting the parameter values 

according to the default recommendations from Klug and Gramann (2021). The AMICA 

decomposition employs a log-likelihood algorithm to remove the data samples that are not in 

accordance with the estimates of the model fit. Three standard deviations were used as removal 

criterion and five iterations were applied in AMICA cleaning. Apart from the AMICA-

inherent time-domain cleaning, automatic time-domain rejections and high-pass filtering with 

a 2-Hz low-cutoff filter were conducted before AMICA, to optimize the ICA decomposition 

that condenses the data into a series of statistically, maximally independent components (ICs).  

For each resultant IC, an equivalent current dipole (ECD) model was computed using 

the DIPFIT plugin from EEGLAB (Oostenveld & Oostendorp, 2002). The computed 

information including spatial filters and dipole models resulting from AMICA was copied 

back to the preprocessed but unfiltered EEG data (i.e., no cleaning in the time domain), 

considering that EEG measures (e.g., ERPs) in the later analyses may require filtering with a 

lower cutoff on the EEG datasets (Klug et al., 2022; Klug & Gramann, 2021).  

After the aforementioned preprocessing steps in the BEMOBIL pipeline, a 0.5–30 Hz 

pass filter was applied to suppress slow drifts and high-frequency activity in the EEG signal. 

One participant was excluded from further EEG analyses because of severe artifacts in their 

EEG data. Lastly, 47 participants’ EEG data were submitted for further EEG analyses to 

examine event-based brain activity during map viewing and blink-based brain activity during 

locomotion respectively, which is discussed in the following sections. 

4.3 Brain activity during map consultation  

To analyze the brain signals that reflect cognitive load and visuospatial encoding 

during map consultation, I first extracted the EEG data in relation to the map-viewing phase 

https://www.zotero.org/google-docs/?broken=jd44y9
https://www.zotero.org/google-docs/?broken=BdBwvc
https://www.zotero.org/google-docs/?broken=MkJHym
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from the continuous EEG recordings. The step of map-event extraction resulted in 17 map-

onset EEG epochs. Second, I selected the relevant EEG electrodes that represent the brain 

regions of interest (ROIs) for cognitive load and visuospatial encoding. Next, I submitted the 

17 map-onset epochs with the selected electrode clusters of interest into ERP analysis and 

PSA. These two EEG analysis techniques returned ERP components and frequency band 

power respectively, which are used as neural indicators of cognitive load and visuospatial 

encoding, as reviewed in Section 2.5. Detailed EEG analysis steps are presented in the 

following sections. 

4.3.1 Map-event extraction  

The map-event latencies marked on the continuous EEG recordings were corrected 

based on the latencies of the CAVE projector (33 ms) and EEG trigger (100 ms) due to the 

delays in wireless transmission. Then, 17 map-onset epochs were extracted from the 

continuous EEG data with a time window of 0–5 s with respect to map onset and with a pre-

event baseline of -1 to 0 s. The spatial distribution of the 17 map-onset events along the route 

is discussed in Section 3.3.2: Mobile map assistance.  

To clean the extracted epochs, an automatic epoch artifact detection and rejection was 

then performed using the function pop_autorej in EEGLAB. Epochs that fluctuated more 

than ±80 μV were excluded, following the recommendations from Duncan et al. (2009). In 

addition, a probability threshold of three in standard deviation was used for the detection of 

improbable data. A maximum of 10% of total trials were rejected per iteration (five iterations 

in total). On average, 4.19% of all trials (0.7 out of 17 epochs) were excluded based on these 

criteria. 

Notably, the remaining map-onset events along each navigation route were averaged 

for further analyses in the ERPs and PSA in the frequency domain, to analyze the general 

effects of the number of landmarks on cognitive load and visuospatial encoding during map 

consultation. 

https://www.zotero.org/google-docs/?broken=S349d5
https://www.zotero.org/google-docs/?broken=S349d5
https://www.zotero.org/google-docs/?broken=S349d5
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4.3.2 Regions of interest 

Prior neuroscientific research reports that maximal effects of cognitive load for theta 

band power are found at fronto-central leads and for alpha band power and P3 component 

are found at parietal-occipital leads (Dong et al., 2015; Scharinger et al., 2017; Wei & Zhou, 

2020) as well as of visuospatial encoding for theta and alpha band power at occipital and 

parieto-occipital leads (Handy et al., 2001; Wei & Zhou, 2020). Thus, the following ROIs and 

channel clusters were chosen: fronto-central (electrodes: FC1, FCz, FC2), parieto-occipital 

(electrodes: PO3, POz, PO4), and occipital (electrodes: O1, Oz, O2) regions. The positions of 

the selected channel clusters are highlighted in Figure 4.2. 

Figure 4.2 The electrodes highlighted in the color boxes represent the selected channel clusters of 17 
map-onset epochs to examine cognitive load and visuospatial encoding. The top, middle, 
and bottom channel clusters represent fronto-central, parioto-occipital, and occipital 
leads, respectively. The figure is adapted from Tang et al. (2019), 
https://doi.org/10.31083/j.jin.2019.01.103. 

Next, the 17 map-onset EEG epochs with the selected electrode clusters were 

submitted for the ERP analysis and power spectral analyses to examine cognitive load and 

visuospatial encoding during map consultation.  
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4.3.3 ERP analysis 

The ERP analysis in this thesis followed the standard approach of obtaining ERPs 

introduced in Section 2.5.1. First, a pre-stimulus baseline from -200 to 0 ms was used to 

correct obtained single-trial EEG data epochs. Next, map-based EEG data epochs of each ROI 

were averaged across all trials and all participants for each landmark condition (i.e., three, five, 

and seven landmarks). This step resulted in the grand averaged ERP plots that serve to 

determine the time windows for the components of interest. The grand averaged ERP plots 

are depicted in Section 5.2.1. Subsequently, the time windows were selected for the 

components of P1 (80–150 ms) at occipital sites and P3 (450–700 ms) at the parietal-occipital 

region and were used for individual peak detection. Compared to the approach of averaging 

the amplitude across the selected time windows, individual peak detection is sensitive to the 

differences between conditions and participants (Wunderlich & Gramann, 2020). Peak 

amplitude was computed by taking the mean of the maximum peak value in the respective 

time windows and the neighboring +1 and -1 sample points (in total three data samples; equals 

12 ms), following the method by Wunderlich and Gramann (2020).  

4.3.4 Power spectral analysis 

To compute power spectra in different frequency bands, an EEG function spectopo 

was employed. This function uses Matlab’s pwelch function and results in power spectral 

density (PSD). For PSD estimation, a 2-s Hanning window that led to a frequency resolution 

of 0.5 Hz was used to capture spectral changes in the EEG data. Four frequency bands were 

set with the following frequency ranges: delta (1–3.9 Hz), theta (4–7.9 Hz), alpha (8–12.9 

Hz), and beta (13–29.9 Hz). The absolute spectrum of each frequency band was calculated 

within the 0 to 5s epoch with stimulus onset. Then, the relative power indices for each 

frequency band were calculated as power in a given band relative to the entire bandwidth (i.e., 

1–30 Hz). Using relative power indices reduces inter-individual deviation in power spectra 

https://www.zotero.org/google-docs/?broken=iFjcoD
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(Nishiyori et al., 2021; Y. Wang et al., 2015). The following formula (4.1) describes the 

procedure of the relative band power calculation: 

relative theta power = [absolute theta power / absolute power of (theta + alpha + beta + 

delta)]* 100                                                                                  (4.1) 

Baseline power in different frequency bands was calculated as relative power indices 

during the time before the navigation portion of the experiment started, that is, while 

participants were sitting on the chair and viewing a dark blue screen of the front CAVE wall. 

The baseline period started when participants put on the 3D stereo goggles and ended when 

the first virtual environment was fully loaded and presented on all walls of the CAVE. The 

baseline phase varied from 6 s to 20 s, depending on when participants felt ready to start the 

navigation task. Baseline epochs were extracted with a length of 1 s from this pre-navigation 

experiment phase. Each baseline epoch had a 200-ms overlap with the subsequent epoch, 

given that the overall pre-navigation baseline phase was short. This approach ensured that a 

sufficient number of baseline epochs were obtained to calculate relative power indices.  

Subsequently, alpha ERD (negative values) and theta ERS (positive values) were 

calculated with respect to the pre-navigation baseline using the following formula (4.2), 

following the prior studies  (Dong et al., 2015; Krause et al., 2000; Pfurtscheller & Lopes da 

Silva, 1999): 

ERD or ERS = (relative power during map-event-relative power during baseline) / 

relative power during baseline                                                      (4.2) 

The resultant P3 amplitude from the ERP analysis, the alpha ERD, and the theta ERS 

obtained from the PSA were submitted to the linear mixed-effect models for hypothesis 

testing (H2). The linear mixed-effect models are described in the subsequent Section 4.6. 

https://www.zotero.org/google-docs/?broken=hSMsGa
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4.4 Blink-related brain activity during locomotion 

To examine cognitive load and early visual encoding during active locomotion, I 

adopted spontaneous eye blinks as EEG event markers and analyzed brain activity related to 

the detected eye blinks. First, I detected blinks on the preprocessed EEG data obtained from 

Section 4.2 and labeled these detected blinks as event markers on the EEG data. Second, I 

cleaned the EEG data based on classified brain components (source-based cleaning). Next, I 

submitted the cleaned EEG data to extract the bERP components. The bERP analysis in this 

thesis followed the protocol established by Wunderlich and Gramann (2020) and Wascher et 

al. (2014). The following sections present each analysis step in detail.  

4.4.1 Eye blink detection 

First, the map presentation events (5-s time windows) were removed from the 

preprocessed continuous EEG data. On the resultant EEG data, the independent component 

representing vertical eye movements was identified and filtered using a moving median 

approach with a window size of 20 sample points (i.e., 80 ms). The moving median approach 

preserves the steepness of eye movements and does not introduce any artificial signal changes 

into the data (Bulling et al., 2011). Next, blink peaks were detected in the vertical eye 

movement component using the findpeaks function in MATLAB with the following blink 

parameters: minimal peak width of five time points (20 ms) and maximal peak width of 65 

time points (260 ms) to prevent potential high-amplitude artifacts or slow oscillations from 

being detected as a blink; minimal peak distance of 25 time points (100 ms) to avoid directly 

following blinks being included; minimal peak height was defined as peak heights ≥ 96 

percentile; minimal peak prominence was defined as peak prominence ≥ 97 percentile. 

Event markers, labeled as blinks, were created and placed in the EEG data at time points of 

maximum blink deflections.  

https://www.zotero.org/google-docs/?broken=HHCqkv
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4.4.2 Source-based EEG data cleaning 

The ICLabel algorithm (Pion-Tonachini et al., 2019) was used to classify the obtained 

ICs into seven classes (i.e., brain, muscle, eye, heart, line noise, channel noise, and other). Based 

on this classification, ICs that were classified as unlikely to represent brain activity were 

removed from the data; the removal criterion was set at a classification probability lower than 

30% in the category brain, following the approach suggested by Wunderlich and Gramann 

(2020) for Mobile Brain/Body Imaging (MoBI) EEG data.  

The conservative threshold of 30% was chosen to avoid excluding any potentially 

useful brain sources, based on the following considerations: first, as the ICLabel algorithm 

was mainly trained on stationary datasets and only very few MoBI datasets to classify ICs, the 

classification of movement-related activity stemming from the neck musculature and other 

such sources is usually not accurate. Furthermore, increasing the number of movement-

related brain and non-brain sources can increase the likelihood of brain sources being mixed 

with other sources, while having only a limited number of channels and thus only limited 

degrees of freedom for the decomposition. This in turn can result in non-standard IC 

topographies and spectra. After the IC cleaning, the number of ICs per participant was 

reduced to on average 30.0 (SD = 4.1 ICs, Min = 20 ICs, Max = 40 ICs). The cleaned EEG 

data were then backprojected to the sensor level for further analyses in the bERPs and the 

exploratory PSA.  

4.4.3 Blink-related ERP extraction and analysis 

To extract bERPs, the Unfold toolbox (Ehinger & Dimigen, 2019) was used on blink 

events during the locomotion phase. The unfolding technique allows the separation of 

overlaying event-based brain activity (e.g., two blinks happening very close to each other) 

using a regression-based approach. This is useful for the current EEG data, considering that 

the blink rate is high during naturalistic navigation in an open-world virtual environment 

(Enders et al., 2021). 
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A design matrix was created with the blink events and 65 EEG channels. Information 

on each landmark condition (i.e., three, five, and seven landmarks) was entered into the 

regression formula y = 1 + cat(landmark). Continuous artifact detection and rejection were 

applied with an amplitude threshold set at ± 80 microVolts (μVs) during unfolding, to remove 

the noisy segments from the continuous EEG datasets. Next, the design matrix was time-

expanded based on the time limits of -500 to 2000 ms with reference to blink events. Then, a 

general linear model was fitted to solve the intercept and beta values with a baseline correction 

at -500 to -200 ms prior to the blink event. 

Subsequently, bERPs were recovered and modeled from the unfolded intercept and 

beta values using matrix multiplication (Ehinger & Dimigen, 2019) for the selected electrodes 

of interest (Fz, FCz, Pz, POz, and Oz), based on studies by Wascher et al. (2014, 2016). The 

time window of each component of interest was selected based on visual inspection of the 

grand averaged bERP plots (see Section 5.3.1). The N1 amplitude was extracted 110–150 ms 

after blink maximum and averaged across the occipital (Oz). The N2 amplitude was extracted 

250–390 ms after blink maximum and averaged across fronto-central leads (Fz and FCz). The 

P3 was extracted 250–340 ms after blink maximum and averaged across parieto-occipital leads 

(Pz, POz, and Oz). 

Individual peak detection was used to capture the peak amplitude of each component 

in the selected time window by taking the average of the maximum peak value with the 

neighboring +3 and -3 sample points around the detected peaks (i.e., seven data samples in 

total; 24 ms in total; F. Sugimoto et al., 2022; Takeda et al., 2014). 

4.4.4 Blink-related power spectral analysis–exploratory analysis 

The PSA in reference to blinks was performed as an exploratory analysis to provide 

converging evidence for cognitive load during locomotion. First, the segments of -500 to 

+2000 ms were extracted with respect to blink events as the epochs for power calculation in 

the frequency domain. Then, blink-related power calculation replicated the approach of map-

based power analysis, described in Section 4.3.4. The fronto-central theta ERS and parieto-
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occipital alpha ERD during active locomotion through the environment were computed 

relative to the pre-navigation baseline phase using the following formula (4.3): 

ERS or ERD = (relative power during active locomotion- relative power during baseline) 

/ relative power during baseline                                                                                          (4.3) 

Subsequently, the resultant bERP components (N1, N2, P3), the alpha ERD and the 

theta ERS were entered into the linear mixed-effect models for hypothesis testing (H3). 

4.5 Spatial ability analysis 

The data on individuals’ spatial abilities were acquired by self-reported SBSOD 

questionnaire, PT/SOT, and CBTT, as presented in Section 3.5.3. The SBSOD scores were 

calculated as the average scores across the 15 items. The scores range from 1 to 7, where higher 

scores indicate a better sense of orientation. The PT/SOT scores were calculated as the average 

absolute angular error in degrees over all 12 trials. Any trial that was not answered during the 

time period was scored as a 90-degree error (i.e., chance performance). The VSWM span was 

calculated as the highest number of items where participants answered three out of the total 

five trials correctly in the CBTT (Orsini et al., 1987; Trojano et al., 1994).  

The obtained SBSOD scores, the PT/SOT scores, and VSWM spans were entered 

into the linear mixed-effect models in relation to spatial learning performance, as a control 

variable.  

4.6 Statistical analysis: linear mixed-effect models 

I utilized linear-mixed effect models to statistically examine the effects of the landmark 

conditions (3 versus 5 versus 7 landmarks) on spatial learning, cognitive load, and visuospatial 

encoding during navigation. The linear mixed-effect modeling approach, also known as 

multilevel linear regression modeling, is a generalized form of regression analysis that enables 

hypothesis testing for nested study designs, such as within-participants designs and multiple 
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trials within participants (Gelman, 2006). This means that the model estimates the effects of 

a by-participant or by-item individual predictor and its group-level mean separately (Gelman, 

2006) and produces more statistical power for the statistical outcomes of the data collected 

using a nested study design. Moreover, the linear mixed-effect modeling approach ignores 

missing values in predictors without requiring imputations or discarding the participant 

(Gabrio et al., 2022). This allowed me to perform within-participant analyses for the 

behavioral and EEG outcomes and to include two participants with incomplete EEG data in 

the analyses. 

I entered the spatial learning outcomes (i.e., d’, route direction choices, JRD errors) 

and EEG measure outcomes (i.e., P3 amplitude, P1 amplitude, theta ERS, alpha ERD) in R 

version 4.0. I built a linear mixed-effect model for each learning or EEG outcome using the 

lmer4 package (Bates et al., 2011). Next, I ran the built linear mixed-effect models using lmer4, 

with the α level set at .05 for all analyses. 

In this thesis, I adopted the mixed-effects regression as a hypothesis-driven 

confirmatory approach. Based on the recommendations by (Barr et al., 2013) on multilevel 

models for confirmatory hypothesis testing, I first established the maximal random-effects 

structure by including by-participant intercepts and slopes, based on the within-participant 

study design. I then simplified the maximal random-effects structure by first removing 

random slopes and then random intercepts until the resultant model converged. The first 

model that converged included by-participant intercepts in the random-effects structure for 

the spatial learning outcomes and EEG measures.  

For the spatial learning outcomes, I added spatial ability scores (i.e., the VSWM spans, 

SBSOD scores, and PT/SOT scores) in the mixed-effect models to control for the individual’s 

spatial abilities.  

The following equation (4.4) described the linear mixed-effect model that controls 

individuals’ SBSOD scores: 

          Dprimepi = β0  + β1 * Conditioni  + β2 * SBSODp + P0p  + epi                                 (4.4) 
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The following equation (4.5) described the resultant linear mixed-effect model for 

EEG measures: 

Theta ERSpi = β0  + β1 * Conditioni  + P0p  + epi                                 (4.5) 

where Theta ERSpi, for participant p and item i, is associated with a reference level via fixed-

effect β0 (the intercept), a landmark condition effect via fixed-effect β1 (the slope), the 

deviation from β0 for participant p, and the observation-level error epi. In this model, 

parameters β0 and β1 represent fixed effects, and the parameter P0p represents random effects.  
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 Chapter 5: Results 

This chapter concerns the statistical results returned by the linear mixed-effect 

models, examining the effects of the number of landmarks on spatial learning performance 

(i.e., landmark recognition, route direction memory, and JRDs) and brain activity (i.e., 

cognitive load and visuospatial encoding). I first report participants’ overall time spent 

navigating the virtual urban environment.   

The navigation time in each city was calculated as the time taken to navigate from the 

starting location to the destination in the virtual environment. Participants spent on average 

8.11 minutes (SD = 1.63 min) navigating in each virtual city. The linear mixed-effect models 

revealed no significant difference in navigation time between the three landmark conditions 

(ps4 > .507). This suggests that modifying the number of landmarks on a mobile map did not 

influence participants’ navigation time in virtual cities.  

5.1 Effects of the number of landmarks on spatial learning 

 The 48 participants produced 144 d’s, 144 route direction choices, and 1981 JRD 

responses, of which 35 JRD responses were lost due to random technical reasons in Unity. 

The mean of d’ was 1.85 (SD= 0.76), the mean percentage of correct route direction choice 

was 62% (SD = 0.26), and the mean of the absolute JRD error was 72.64° (SD = 48.06°).  

5.2.1 Landmark recognition  

The linear mixed-effect models reported a significant effect of the number of 

landmarks on landmark recognition. Participants’ recognition discriminability d’ increased by 

0.51 points when the number of landmarks displayed on a mobile map increased from three 

 
4 ps denotes multiple p values. 
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to five (β = 0.51, 95% CI = [0.30, 0.72], p < .001). No further improvement in landmark 

recognition discriminability was observed from five landmarks to seven landmarks (β = -0.11, 

95% CI = [-0.32, 0.10], p = .31).  

5.2.2 Route direction memory 

The linear mixed-effect models also reported a significant effect of the number of 

landmarks on route direction memory, which demonstrated a similar pattern to the effect on 

landmark recognition. Route direction memory significantly improved by 12% on average 

when the number of landmarks increased from three to five (β = 0.12, 95% CI = [0.57, 0.67], 

p < .001), and did not further improve from five to seven (β = -0.02, 95% CI = [-0.09, 0.06], p 

= .71).  

5.2.3 JRD response errors 

For the JRD response errors, the linear mixed-effect models showed no significance 

between the three landmark conditions (5 vs 3: β = -1.09, 95% CIs = [-6.22, 4.04], p = .68; 7 vs 

5:  β = 0.49, 95% CIs = [-4.61, 5.58], p = .68).   

5.2.4 Summary of spatial learning performance 

In summary, landmark recognition and route direction memory increased when the 

number of landmarks increased from three to five, and there was no further improvement 

when the seven landmarks were shown. No difference in JRD performance was found 

between the three landmark conditions. The discussion of these findings is presented in 

Section 6.1. 

Figure 5.1 below depicts the relationship between the number of landmarks displayed 

on a mobile map and spatial learning (i.e., landmark recognition, route direction memory, and 
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JRDs). Table 5.1 below provides a complete overview of the obtained coefficients of the linear 

mixed-effect models on spatial learning. 

 

Figure 5.1 Landmark recognition and route direction memory improved when more than three 
landmarks were shown. No improvement was observed in JRD performance when more 
landmarks were shown. The means of d’, choice accuracy, and absolute response error in 
each landmark condition are presented in the three plots with the error bars representing 
the 95% CI of the mean. 
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Table 5.1 Linear regression coefficients of spatial learning performance (i.e., landmark 
recognition, route direction memory, and JRDs) in the three landmark 
conditions. 

 

After having presented the spatial learning outcomes, the subsequent sections deal 

with the results of brain activity during map consultation and locomotion, respectively.  

5.3 Effects of the number of landmarks on brain activity during 

map consultation 

In this section, I first present the findings of cognitive load—a higher cognitive load 

would be indicated by a larger parieto-occipital P3 amplitude, fronto-central theta 

synchronization, and parieto-occipital alpha desynchronization. I then describe the results of 

visual and spatial encoding—a higher degree of visual and spatial encoding would be indicated 

by a greater occipital P1 amplitude along with posterior theta synchronization and alpha 

desynchronization. The P1 and P3 components resulted from ERP analysis; theta and alpha 

power resulted from PSA.   

5.3.1 Cognitive load–P3 

The linear mixed-effect models on ERPs revealed that P3 amplitude in the parieto-

occipital region did not change when the number of landmarks increased from three to five (5 

vs. 3: β = 0.04, 95% CI = [-0.92, 1.00], p = .936). The P3 amplitude increased by 139% on 
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average from the five-landmark to seven-landmark condition (7 vs. 5: β = 1.39, 95% CI = [0.44, 

2.35], p = .004). Figure 5.2 plots the group-mean amplitude of the parieto-occipital ERP signal 

and the means of the detected P3 peak amplitude for each landmark condition in the left and 

right panels, respectively.  

5.3.2 Cognitive load–theta and alpha 

The linear mixed-effect models on the relative theta ERS at fronto-central leads 

demonstrated a similar pattern as the previously reported P3 component. No significant 

difference was found in the relative theta ERS between the three-landmark and five-landmark 

conditions (5 vs. 3: β = -0.03, 95% CI = [-0.09, 0.04], p = .391). However, the relative theta 

ERS significantly increased when the number of landmarks increased from five to seven (7 vs. 

5: β = 0.10, 95% CI = [0.04, 0.16], p = .002).  

Figure 5.2 The left panel depicts the grand averaged amplitudes of ERPs for each landmark 
condition at parieto-occipital leads (PO3, POz, PO4). The ERP plots served as the 
basis for selecting the time windows for individual peak detection—vertical bars 
shaded in gray represent the time window in which maxima of the P3 (450–700 ms) 
was extracted for each single-trial epoch. The right panel shows the violin plots that 
display the distribution (i.e., the violin shape) of the detected peak amplitudes together 
with a mean (i.e., the dot in the middle of the violin shape) and ± 1.96 standard error—
95% CI (i.e., the error bar) in each landmark condition for parieto-occipital P3 
component. Significant differences at p < .05 between the landmark conditions were 
highlighted in purple in the line plot in the left panel and means in the right panel. 
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No statistically significant difference was observed in relative alpha ERD in the 

parieto-occipital region between the landmark conditions (5 vs. 3: β = -0.03, 95% CI = [-0.09, 

0.02], p = .220; 7 vs. 5: β = -0.01, 95% CI = [-0.06, 0.05], p = .738). Figure 5.3 below depicts 

the averaged relative theta ERS in the fronto-central region and relative alpha ERD in the 

parieto-occipital region across the three landmark conditions. 

5.3.3 Early visual encoding–P1 

No significant difference was observed in P1 amplitude in the occipital region and in 

the parietal-occipital region between the three conditions (5 vs. 3: β = 0.25, 95% CI = [-0.38, 

0.88], p = .439; 7 vs. 5: β = -0.47, 95% CI = [-1.10, 0.16], p = .139). Figure 5.4 plots the group-

Figure 5.3 Violin plots of frontal-central relative theta ERS (the left panel) and parieto-occipital 
relative alpha ERD (the right panel) values of the map-event window (i.e., 0–5 s) 
indicate cognitive load changes. Dots in the middle of the violin shapes indicate the 
means of each distribution of ERS/ERD values (i.e., the violin shapes). ERS and 
ERD were corrected to a pre-experiment baseline. Error bars indicate ± 1.96 
standard error (i.e., 95% CI) of the mean. The mean in the violin plot highlighted in 
purple indicated a significant difference at p < .05 between the landmark condition. 
Means depicted in the same color within the same violin plot represent no 
significant difference between the means at p ≥ .05. 
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mean amplitude of the occipital ERP signal and the means of the detected P1 peak amplitude 

for each landmark condition in the left and right panels, respectively.  

5.3.4 Visuospatial encoding–theta and alpha 

Relative theta ERS in the parieto-occipital region significantly increased with 

increasing numbers of landmarks (5 vs. 3: β = 0.06, 95% CI = [0.01, 0.11], p = .027; 7 vs. 5: β 

= 0.09, 95% CI = [0.04, 0.14], p = .001). This pattern of relative theta ERS was also found in 

the occipital region (5 vs. 3: β = 0.06, 95% CI = [0.01, 0.11], p = .027; 7 vs. 5: β = 0.08, 95% CI 

= [0.02, 0.14], p = .008).  

Relative alpha ERD in the occipital region increased when five landmarks were 

shown, compared to three landmarks (5 vs. 3: β = -0.09, 95% CI = [-0.16, -0.03], p = .006). No 

significant difference was found between the five-landmark and seven-landmark conditions 

Figure 5.4 The left panel depicts the grand averaged amplitudes of the ERP waves for each landmark 
condition at occipital leads (O1, Oz, O2). The ERP plots served as the basis for selecting 
the time windows for individual peak detection—vertical bars shaded in gray represent 
the time window in which the maxima of the P1 (80–150 ms) was extracted for each 
single-trial epoch. The right panel shows the violin plots that display the distribution (i.e., 
the violin shape) of the detected peak amplitudes together with a mean (i.e., the dot in 
the middle of the violin shape) and ± 1.96 standard error—95% CI (i.e., the error bar) in 
each landmark condition for the occipital P1. No significance was observed between the 
three landmark conditions. 
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(7 vs. 5: β = 0.02, 95% CI = [-0.05, 0.09], p = .541). Figure 5.5 below depicts the averaged 

relative theta ERS and relative alpha ERD across the three landmark conditions.  

5.3.5 Summary of brain activity during map consultation 

In summary, cognitive load increased only when the seven landmarks were shown on 

the mobile map, compared to the other two landmark conditions, evidenced by the greater 

Figure 5.5 The three panels show the violin plots of parieto-occipital theta ERS (top-left), occipital 
theta ERS (top-right), and occipital alpha ERD (bottom) indicating visual and spatial 
encoding. Dots in the middle of the violin shapes indicate the means of each distribution 
of ERS/ERD values (i.e., the violin shapes). ERS and ERD were corrected to a pre-
experiment baseline. Error bars indicate ± 1.96 standard error (i.e., 95% CI) of the mean. 
Colors of the means and error bars are coded as follows: means in the three-landmark 
condition are shown in black, serving as a baseline in each violin plot. Significant 
differences between means are presented with different colors within the same violin plot 
at p < .05. Means depicted in the same color within the same violin plot represent no 
significant difference between the means at p ≥ .05. 
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parieto-occipital P3 amplitude and fronto-central theta ERS. Visuospatial encoding increased 

continuously, when the number of landmarks increased from three, to five, and to seven, 

indicated by the corresponding increase in the posterior theta ERS. The findings presented in 

the section are discussed in Section 6.2. 

Tables 5.2 and 5.3 below provide overviews of the regression coefficients and their 

statistical significance resulting from the aforementioned linear mixed-effect models on ERP 

components and power spectra.  

 

Table 5.2 Regression coefficients of peak amplitudes of P3 at parietal-occipital leads and of P1 at 
occipital leads between the landmark conditions, resulting from the linear mixed-effect 
models. P-values highlighted in bold indicate significant differences at p < .05. 

  

Table 5.3 Linear regression coefficients resulting from the linear mixed-effect models of theta ERS 
and alpha ERD across the three landmark conditions. ERS and ERD were corrected to a 
pre-experiment baseline. P-values highlighted in bold indicate significant differences at p 
< .05. 
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5.4 Effects of the number of landmarks on brain activity during 

locomotion 

This section begins with a description of the number of blinks during locomotion—

how many blinks participants generated while locomoting through the environments—to 

give readers a grasp of the blink events during active locomotion. The section then proceeds 

with the presentation of the brain activity in relation to the generated blink event markers. I 

first describe the characteristics of the obtained bERPs in the ROIs in relation to cognitive 

load and early visual encoding. I then present the findings of cognitive load during active 

locomotion, indicated by the blink-related N2 and P3 amplitude, as well as blink-related theta 

ERS and alpha ERD as converging evidence of bERPs. Finally, I present the results of bottom-

up early-stage visual encoding in virtual environments, indicated by the blink-related N1 

amplitude.  

5.4.1 Number of blinks during locomotion 

Participants generated on average 106.0 (SD = 13.0), 97.8 (SD = 10.8), and 111.0 (SD 

= 10.0) blinks in the three-, five-, and seven-landmark condition, respectively. The numbers 

of the detected blinks were compared between the three landmark conditions in the linear 

mixed-effect models and no significant difference was found (ps > .124).  

5.4.2 Blink-related ERP characteristics 

The blink-related potential at fronto-central leads demonstrated a positive 

component (P1), followed by a negative peak (N2). The blink-related potential at parieto-

occipital leads showed a negative component (N1), followed by a positive component (P2) 

and a negative component (N2), and finally a P3-like peak. Finally, the blink-related potential 

at the occipital lead showed a clear negative component (N1), and the P2 component was not 
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clearly presented. Subsequently, a clear P3-like component was shown at the occipital lead. 

The general characteristics of the blink-related N1, N2, and P3 are congruent with those in 

previous bERPs research (Wascher et al., 2014, 2022; Wunderlich & Gramann, 2020). The 

left panels of Figure 5.6 below illustrate the blink-related potential waves in the selected ROIs, 

i.e., fronto-central, parieto-occipital, and occipital regions, respectively. 

5.4.3 Cognitive load–blink-related N2 and P3 

The linear mixed-effect models showed that no significant difference was found in the 

blink-related N2 amplitude in the fronto-central region between the landmark conditions (5 

vs. 3: β = 0.01, 95% CI = [-0.35, 0.37], p = .969; 7 vs. 5: β = 0.15, 95% CI = [-0.21, 0.51], p 

= .415).  

The linear mixed-effect models showed that blink-related P3 amplitude in the parieto-

occipital region did not change when the number of landmarks increased from three to five (5 

vs. 3: β = -0.01, 95% CI = [-0.40, 0.38], p = .959). The P3 amplitude increased significantly 

when seven landmarks were shown (7 vs. 5: β = 0.41, 95% CI = [0.02, 0.80], p = .040).  

Linear mixed-effect models revealed that no significant difference in the exploratory 

analysis (i.e., frontal theta ERS and parietal alpha ERD) was found between the landmark 

conditions (ps > .473). 

5.4.4 Early visual encoding–blink-related N1 

The linear mixed-effect models revealed that no significant difference was observed in 

blink-related N1 amplitude in the occipital region between the three landmark conditions (5 

vs. 3: β = -0.16, 95% CI = [-0.82, 0.51], p = .649; 7 vs. 5: β = -0.23, 95% CI = [-0.90, 0.43], p 

= .494).  

Figure 5.6 depicts the grand averaged amplitudes of bERPs at the selected ROIs (left 

panel) and the detected peak amplitude (right panel) of the bERP components for each 

landmark condition. Table 5.4 provides a comprehensive overview of the regression 
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coefficients and their statistical significance resulting from the linear mixed-effect models of 

the bERP components (i.e., frontal-central N2, parieto-occipital P3, occipital N1).  

5.4.5 Summary of blink-related brain activity  

To summarize, cognitive load during locomotion possibly increased only when seven 

landmarks were shown on a mobile map compared to three and five landmarks, indicated by 

the greater amplitude of the blink-related P3 at parieto-occipital leads. However, another 

cognitive load indicator—fronto-central N2 amplitude at fronto-central leads did not differ 

between the three landmark conditions. Different numbers of landmarks depicted on a 

mobile map did not change bottom-up early-stage visual encoding during locomotion, 

evidenced by no difference in the blink-related N1 amplitude at the occipital lead. These 

findings are discussed in Section 6.3. 

 

Table 5.4 Regression coefficients of peak amplitudes of the occipital N1, fronto-central N2, and 
parieto-occipital P3 across the landmark conditions. P-values in bold indicate significant 
differences at p < .05. 
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 Figure 5.6 Left panel: Grand averaged amplitudes of bERPs for three landmark conditions at 
the a) fronto-central leads (Fz and FCz), b) parieto-occipital leads (Pz, POz, and Oz), 
and c) occipital lead (Oz). The bERP signals served as the basis for individual peak 
detection—areas shaded in gray indicate the time windows where the respective 
minima of fronto-central N2 (250–390 ms) and occipital N1 (110–150 ms) or 
maxima of the parieto-occipital P3 (250–340 ms) were identified. Right panel: 
violin plots showing the distribution of detected peak amplitudes together with 
mean and ±1.96 standard error (i.e., 95% CI) in each landmark condition for fronto-
central N2, parieto-occipital P3, and occipital N1. Line in the left panel and mean 
in the right panel plotted in purple in the bottom panel indicate statistical 
significance at p < .05.    
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Chapter 6: Discussion 

This chapter concerns in-depth discussions and interpretations of the results obtained 

from the map-assisted navigation experiment, which was set out to investigate the research 

questions of whether and how varying the number of landmarks depicted along a route on a 

mobile map during map-assisted navigation would influence navigators’ spatial learning, 

cognitive load, and visuospatial encoding. In this chapter, I first critically review the findings 

in relation to the research questions and the related hypotheses and point out the related 

limitations in the current experiment (Sections 6.1, 6.2, and 6.3). Subsequently, I discuss the 

contributions of this thesis to the scientific research field in navigation and cognitive 

neuroscience as well as implications for mobile map design (Section 6.4). Finally, I suggest 

future research directions towards the development of user-supportive mobile navigation 

systems (Section 6.5).  

6.1 Effects of the number of landmarks on spatial learning 

In relation to the research question on the effects of the number of landmarks 

depicted on a mobile map on spatial learning, this thesis demonstrates that navigators’ 

landmark and route learning performance improves when the number of landmarks shown 

on a mobile map increases from three (lowest evaluated number) to five (medium number), 

and their landmark and route learning performance does not further improve when seven 

(highest evaluated number) landmarks are shown. In line with the hypothesis of spatial 

learning (H1 in Section 3.2), these findings first suggest that depicting five landmarks on a 

mobile map during navigation can help navigators to recognize the landmarks along the route 

and better learn route directions in reference to these landmarks, compared to three 

landmarks. When presented with more landmarks on a mobile map, navigators may pay more 

attention to and encode these landmarks, the intersections, and the directions in reference to 
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these landmarks on the map and in the environment, which in turn benefits spatial learning 

of the traversed route, as suggested in the landmark literature (e.g., Richter & Winter, 2014). 

In addition, the results further suggest that the benefit in spatial learning only holds to a 

certain number of landmarks (i.e., five landmarks in the current experiment). After exceeding 

this number, a further increase in the number of landmarks does not bring further benefits in 

landmark and route learning. This might be because presenting seven landmarks exceeds 

navigators’ cognitive capacity and counterbalances the benefit of landmarks in spatial 

learning. This interpretation is discussed further in Section 6.2, in the context of EEG-

measured cognitive load.  

The observed effects of the number of landmarks shown on a mobile map during 

navigation on spatial learning are consistent with the literature on cognitive capacity showing 

that learning performance reaches a plateau after the number of learned items exceeds the 

learners’ working memory capacity (Baddeley, 2003; Brady et al., 2019). The current findings 

further extend prior knowledge on cognitive capacity obtained with classic psychological 

experiments using simplified stimuli (e.g., colored squares, digits, etc.) to landmark and route 

learning capacity during naturalistic navigation in ecologically valid, yet well-controlled, 

virtual environments. The observed effects of the number of landmarks on spatial learning 

indicate that the cognitive capacity of most participants is saturated at five landmarks in my 

map-assisted navigation task. While learning landmarks in a visually complex and naturalistic 

setting, navigators receive and process rich visual and spatial cues from the environment and 

the map, which might help them to encode more landmarks and the directions with reference 

to these landmarks, compared to simplified and meaningless items. This is in line with the 

findings from Brady et al. (2019) that learners encode a real-world and meaningful object as a 

“feature ensemble” instead of encoding these features separately, which facilitates working 

memory processing and helps learners encode more task-relevant objects. Future studies 

should further examine which visual and spatial cues on the map or/and in the environments 

(e.g., landmark saliency, intersection structure) help navigators to encode landmarks and route 

directions. 
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The reported effects of the number of depicted landmarks can be applied to landmark 

and route knowledge and cannot be generalized to survey knowledge. In the current 

experiment, participants demonstrated high JRDs errors. This could be attributed to the 

current study design, in which the body-based cues, such as kinesthetic (the senses of position 

and movement of the body) and vestibular (sense of translational and rotational movement 

and body balance) senses (Gramann, 2013), were not integrated into participants’ locomotion 

through the virtual environments. Such body-based cues have been known to facilitate survey 

knowledge acquisition (Chrastil & Warren, 2012). Another possibility could be that most 

navigators are not able to build reliable survey knowledge after navigating in a novel virtual 

environment only once (Frankenstein et al., 2012; Huffman & Ekstrom, 2018). Previous 

studies have shown that JRD performance improves with increasing navigation trials in the 

same environment (Huffman & Ekstrom, 2018; Zhang et al., 2014). As survey knowledge is 

useful for finding new routes and shortcuts, future studies should investigate the relationship 

between the number of displayed landmarks and survey knowledge acquisition by integrating 

more body-based cues (e.g., walking on a treadmill in VR, real-world study) and increasing 

navigators’ exposure to an environment.  

To further understand navigators’ cognitive processing of different numbers of 

depicted landmarks, the following sections deal with how the landmark depiction influences 

cognitive load and visuospatial encoding indicated by established EEG parameters, while 

navigators are consulting a map and actively locomoting through the environment, 

respectively.  
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6.2 Effects of the number of landmarks on brain activity during 

map consultation 

6.2.1 Cognitive load—P3 amplitude and theta ERS 

Relating to the research question on how the number of landmarks depicted on a 

mobile map influences navigators’ cognitive load while consulting the map, this research 

reports that both fronto-central theta ERS and parieto-occipital P3 amplitude increase along 

with the number of landmarks from five to seven depicted on a mobile map during map-

assisted navigation, which is in line with the hypothesis of cognitive load (H2.1). Notably, 

theta ERS and P3 amplitude demonstrate the same pattern between the three landmark 

conditions in the current experiment. These results are consistent with previous literature 

showing a relationship between increasing task demands, greater frontal midline theta ERS 

(e.g., Krause et al., 2000; Maurer et al., 2015; Scharinger et al., 2017), and more pronounced 

posterior P3 amplitude (e.g., Kok, 2001; Polich, 2007; Scharinger et al., 2017; Wei & Zhou, 

2020). By reporting the same effect on frontal midline theta power and posterior P3 amplitude 

in a naturalistic scenario of map-assisted navigation, this thesis extends the existing knowledge 

of a task’s cognitive demands measured by EEG usually using simplified cognitive tasks (e.g., 

remembering digits or squares) to a naturalistic navigation context. 

Importantly, theta ERS and P3 amplitude are determined not only by the amount of 

presented information that needs processing (i.e., intrinsic task demands), but also by the 

internal expenditure of cognitive resources on a cognitive task at hand (Kok, 2001; Näätänen, 

1992; Onton et al., 2005). The EEG results in the context of map-assisted navigation suggest 

that navigators’ cognitive load does not increase while processing the five landmarks shown 

on a mobile map compared to three landmarks and indicate that showing the medium amount 

of landmarks (i.e., five) does not require additional cognitive effort, compared to the lowest 

evaluated amount of landmarks (i.e., three). This might be because of the benefit of landmarks 

in spatial learning—presenting more landmarks on the mobile map facilitates learning of the 
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traversed environment. And yet, showing the highest number of landmarks (i.e., seven) 

increases cognitive load, suggesting that navigators exert more cognitive resources when 

processing seven landmarks, compared to the other two landmark conditions. These findings 

together suggest presenting the medium number of landmarks (i.e., five landmarks in the 

current experiment) is the option that might best improve navigators’ spatial learning 

outcome without additionally taxing cognitive resources.  

However, this thesis does not find any differences in posterior alpha ERD—an EEG 

parameter indicating cognitive load—between the experimental conditions, which does not 

support the hypothesis on cognitive load (H2.1). One possible reason for this is the conflicting 

relationships between posterior alpha ERD and cognitive load reported in recent years (Jensen 

& Mazaheri, 2010; Palva & Palva, 2007). Recent research has proposed that alpha ERS and 

alpha ERD might be associated with two different cognitive mechanisms—attention 

orientation and attention maintenance, respectively (Capilla et al., 2014; Puma et al., 2018). 

These two mechanisms both occur during the map-assisted navigation task and are not 

distinguished by the current study design. Therefore, alpha ERS and alpha ERD might have 

both occurred and canceled each other out in the extracted alpha power spectra during map 

consulting. 

6.2.2 Visuospatial encoding—theta ERS and alpha ERD 

As maps are spatial arrays containing visual information and landmarks contain both 

visual and spatial information, it is also important to examine navigators’ visuospatial 

encoding while they are viewing the maps. In line with the hypothesis of visuospatial encoding 

(H2.2), along with increasing amounts of landmarks displayed on a mobile map, theta ERS at 

both parieto-occipital and occipital leads increases, which is congruent with the findings of 

previous studies on posterior theta power changes during human spatial navigation (Do et al., 

2021; Fischer et al., 2020) and visual stimuli encoding (Delaux et al., 2021; Y. K. Wang et al., 

2018), respectively. These findings suggest that when more landmarks are available for 

visuospatial encoding on a mobile map, brain activity related to visuospatial encoding 
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increases accordingly. Occipital alpha ERD also shows a significant global increasing tendency 

with increasing the number of landmarks, but it does not differ significantly from five to seven 

landmarks. This is consistent with the previous study (Scharinger et al., 2017) showing that 

alpha ERD discriminates between the low-load and medium-load conditions but not between 

medium-load and high-load conditions. 

Together with the results on cognitive load discussed in the foregoing section, these 

findings suggest that an increase in available visuospatial information on mobile maps (i.e., 

when the number of landmarks increases from three to five) does not necessarily lead to an 

increase in cognitive load. 

6.3 Effect of the number of landmarks on brain activity during 

locomotion 

6.3.1 Cognitive load—blink-related P3 and N2 

In reference to the research question on the relationship between the number of 

landmarks displayed on a mobile map and navigators’ cognitive load during active 

locomotion, this thesis observes that the blink-related parietal-occipital P3 component of 

navigators increases during active locomotion after participants have viewed more landmarks 

on a mobile map, which supports the hypothesis of increasing cognitive load during active 

locomotion when more landmarks are depicted on mobile maps (H3.1). A recent bERP study 

by Wascher et al. (2022) suggested that blink-related posterior P3 component is associated 

with attentional resource distribution, whereby an increased blink-related P3 amplitude 

reflects more attentional resources being exerted on one task in a dual-task paradigm. The 

finding of blink-related P3 in the current thesis indicates that more attentional resources are 

taxed when navigating through the environment in the seven-landmark condition, compared 

to the three- and five-landmark conditions. The result of the blink-related posterior P3 

component is also in line with those in the ERP research on stimulus-based posterior P3, 
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discussed in Section 6.2.1. To further validate the results and interpretations of EEG/ERP 

modulations reflecting cognitive load in navigation contexts, future research should combine 

other instruments to assess cognitive load, such as self-reports using the NASA-TLX 

questionnaire (Hart & Staveland, 1988) and pupil diameter measurements using mobile eye 

trackers (Krejtz et al., 2018). 

No difference in the blink-related fronto-central N2 amplitude is observed between 

the three landmark conditions, which does not support the hypothesis of cognitive load 

during locomotion (H3.1). Blink-related fronto-central N2 has been proposed to reflect top-

down information processing by examining the N2 component between the cognitive load 

and no-load conditions (Wascher et al., 2014, 2022). One interpretation for the obtained 

result on the blink-related N2 component could be that the blink-based N2 component is not 

sensitive enough to distinguish different levels of cognitive load designed in the current 

experiment. Another attribution might be because the stimulus-evoked frontal midline N2 

component is usually a neural indicator for cognitive control and mismatch (Folstein & Van 

Petten, 2008), which is not relevant to the study design in this thesis. Future work is needed 

to further analyze the relationship between blink-related frontal midline N2 component and 

cognitive load.  

6.3.2 Early visual encoding—blink-related N1 

No significant difference is observed in the blink-related N1 amplitude at the occipital 

lead between the three landmark conditions, in line with our hypothesis of early visual 

encoding during locomotion (H3.2). This result indicates that showing different numbers of 

landmarks on a mobile map does not affect participants’ early bottom-up visual perception 

when they move through the environments without looking at the map. This is because 

participants are locomoting in the same environment and receive the same bottom-up visual 

stimuli from the environment. However, large variances of the detected peak amplitudes of 

the occipital N1 component are observed in this thesis, and it is consistent with the large 

variance of the occipital N1 component in prior bERP studies by Wascher et al. (2014, 2022). 

https://www.zotero.org/google-docs/?broken=yRzZTb
https://www.zotero.org/google-docs/?broken=fhdGaM
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Therefore, the use of blink-related N1 to indicate visual encoding requires further 

investigation in future research. 

6.4 Contributions 

First, this thesis contributes to scientific knowledge in the field of human navigation 

and landmark research by providing further insights into the role of landmarks depicted on 

mobile maps in navigators’ spatial learning and cognitive load during navigation. Taking the 

results of spatial learning and cognitive load together, it seems that depicting a medium 

number of landmarks on a mobile map improves spatial learning without taxing additional 

cognitive efforts, compared to presenting the lowest number of landmarks. Previous literature 

has addressed the important role of landmarks in spatial navigation and spatial knowledge 

acquisition (e.g., Raubal & Winter, 2002). This thesis further extends the understanding of 

the benefit of landmarks for navigation and spatial learning and suggests a potential boundary 

of this benefit—that is, presenting more landmarks on a mobile map improves navigators’ 

spatial learning only when the number of presented landmarks does not exceed navigators’ 

cognitive capacity during navigation. This also provides an important message for 

cartographers and navigation assistance developers that they should consider and evaluate 

individuals’ cognitive capacity to process landmark information when providing landmarks 

during assisted navigation.  

Furthermore, this thesis extends the existing knowledge in the academic discipline of 

cartography by sharing insights on how visuospatial information presented on a mobile map 

is processed by navigating map users, and how this visuospatial information can assist 

navigation and spatial learning. The findings on the visuospatial encoding of the map 

information, the induced cognitive load, and spatial learning together suggest that an increase 

of available visuospatial information (from three to five landmarks) on a mobile map during 

navigation leads to a corresponding increase in the brain activity associated with visuospatial 

encoding, but not necessarily an increase in cognitive load or spatial learning performance. 
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The current research, thus, extends the existing literature on cognitive cartographic research 

by identifying that two different cognitive processes are involved during map-assisted 

navigation (Allen, 2003; Lobben, 2004; Montello, 2002). Mobile map designers and 

cartographers should consider and evaluate how visual information presentation on a map 

influences visual and spatial processing demand (Garlandini & Fabrikant, 2009) and cognitive 

load (Bunch & Lloyd, 2006).  

Third, this thesis makes methodological contributions to the field of human-

computer interaction (HCI), part of which investigates users’ interactions with navigation 

assistance devices (Savino et al., 2020, 2021), by addressing the interplay between interface 

design, neuroscientific methods, and behavioral assessments during map-assisted navigation. 

In the research field of navigation assistance development, behavioral measurements and eye-

tracking systems are commonly employed to examine users’ interaction with the device and 

how the interaction influences users’ behavior (Göbel et al., 2019). Recently, there has been 

increasing attention on using neuroscientific methods to investigate map-assisted navigation 

(e.g.,  J. Liu et al., 2022), though these research studies remain sparse. Neurocognitive methods 

are a useful tool to capture users’ ongoing cognitive processing and their changing cognitive 

states while they are interacting with mobile devices, which is critical for designing cognitively 

supportive navigation devices. Furthermore, this thesis employs a relatively novel method 

using blinks as event markers to parse individuals’ brain activity while they are not consulting 

the device. The findings of this thesis imply a possible cognitive load spillover effect—

cognitive states during map use and those outside of map use during locomotion might affect 

each other. This has an important implication for user-centered navigation system developers 

that navigators’ cognitive processing and cognitive states outside of the mobile navigation 

device use should be also considered and evaluated when developing a user-supportive 

navigation system. 

https://www.zotero.org/google-docs/?broken=RZOIeR
https://www.zotero.org/google-docs/?broken=Z1vH4F
https://www.zotero.org/google-docs/?broken=XgZDkQ
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6.5 Limitations and future research 

To validate and generalize the findings of the current dissertation, future research 

should increase the ecological validity of navigation scenarios and examine different 

navigation scenarios in different environments. More detailed discussions on limitations and 

concrete suggestions for future research are the subjects of what follows. 

First, this thesis provides the first evidence of a relationship between the number of 

depicted landmarks on a mobile map, cognitive load, and spatial learning during map-assisted 

navigation. The selection of three versus five versus seven landmarks following classic 

literature on cognitive capacity (e.g., Baddeley, 2003; Brady et al., 2016) turns out to be a 

useful springboard for future research on landmark visualization on mobile maps during 

navigation. Future research should further investigate whether this relationship is monotonic 

or discrete. In particular, it would be worthwhile to examine how spatial learning and 

cognitive load change with four, six, and beyond seven landmarks—whether spatial learning 

already reaches a plateau with four (instead of five) or learning performance continues to 

increase from five to six landmarks and then drops beyond seven landmarks. This will provide 

a more comprehensive understanding of the relationship between the number of landmarks, 

spatial learning, and cognitive load and contribute to the development of a neuroadaptive 

mobile map that gradually adapts the number of landmarks based on users’ cognitive load to 

optimize their spatial learning.  

Second, the reported relationships between the number of landmarks, spatial learning, 

and cognitive load may be restricted to the specific settings in the current experiment, such as 

the length of routes, the type of cities, and the employed map stimuli. The current study 

controlled the length of the routes from 880m to 950m with five intersections and adopted 

grid-like street layouts. Previous literature suggested that environmental features, such as 

complexities of street networks and openness of environments, influenced navigators’ 

wayfinding and spatial learning (Coutrot et al., 2022; Miola et al., 2021; Wiener & Pazzaglia, 
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2021). A series of future studies could follow the current experiment paradigm and examine 

whether this reported relationship still holds in different types of environments, for example, 

with different lengths of routes and different complexities of the environment (e.g., street 

layouts, environmental styles). Besides, in the current experiment, the landmarks were 

presented one by one at each intersection on track-up maps which align with navigators’ 

heading direction. Future studies should investigate other commonly used navigation map 

styles, such as north-up maps. 

Furthermore, to control the effects of age and education on spatial learning, the 

current experiment tested young (18 - 36 years old) and relatively well-educated (tertiary 

education) adults. Previous literature suggested that both spatial abilities and cognitive 

capacity changed across the lifespan. Therefore, elderly people might remember less than five 

landmarks in the current experiment, as their spatial abilities and memory capacity decline 

compared to the young adults (Hartshorne & Germine, 2015; Spiers et al., 2023; van der Ham 

et al., 2020). Other factors that future studies should evaluate are individuals’ education and 

training backgrounds, as studies have shown that the level of education and STEM (Science, 

Technology, Engineering, Mathematics) education are positively correlated with spatial 

abilities (Coutrot et al., 2022; Uttal & Cohen, 2012). Future studies should fully consider and 

investigate the roles of ages and educational backgrounds using the current experiment 

paradigm to generalize the obtained results on the number of landmarks to a broader 

population. 

Moreover, the reported effects of the number of landmarks on cognitive load and 

spatial learning are obtained based on a single navigation trial in an unfamiliar environment. 

One important follow-up research question is whether and how these reported effects change 

with multiple exposures to the same environment (i.e., increased familiarity with the 

environment) and how this experience increases spatial learning or decreases cognitive load 

over time (e.g., weeks, months), as navigators traverse the same environment multiple times in 

the real world. Indeed, navigators are able to acquire more landmark, route, and survey 

knowledge of the traversed environment after multiple exposures to the same environment 
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(Kim & Bock, 2021). Moreover, existing research on agent-based modeling has shown that 

adapting abstraction levels of landmark and route information in navigation instructions 

based on a navigator’s existing knowledge about the environment facilitated navigation 

efficiency (Teimouri & Richter, 2022). Thus, future work should also focus on landmark 

depictions on a mobile map based on navigators’ prior knowledge of the environment.  

Finally, future studies on mobile map-aided navigation in the real world are needed in 

order to apply the current findings to real-world use cases. Although we used ecologically valid 

stimuli and simulate the movement with a foot pedal to enable partial body-based cues, motor, 

vestibular, and proprioceptive cues are limited when navigating in a virtual environment, 

which has been known to facilitate navigation and spatial learning (Chrastil & Warren, 2012; 

Gramann et al., 2021; Klatzky, 1998). A real-world study may be able to reveal more 

ecologically valid discoveries about how these physical movements modulate the reported 

effects of the number of landmarks displayed on mobile maps on spatial learning (especially 

survey knowledge) and cognitive load. Notably, for real-world neuroscience research, there is 

a lack of control over participants’ behavior (e.g., when and how frequently they use the 

mobile map) and environmental factors (e.g., wind influences blinks). To tackle the 

methodological challenges, future studies should consider coupling EEG with eye-tracking to 

obtain more information on users’ eye behavior, such as their gaze fixation in the environment 

and on the mobile map. Such information on the focal stimuli can help researchers to 

categorize their blinks and attention and to interpret the results of brain activity and 

behavioral performance.  
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Chapter 7: Conclusions 

In the digital age, mobile GPS-enabled navigation devices are increasingly used to 

support navigation. Although such devices facilitate some aspects of navigation (e.g., self-

localization), there is ample evidence of their negative effects on the spatial knowledge 

acquisition about the environments traversed. To counteract the induced negative 

consequences of mobile navigation devices on spatial learning, this thesis provides a solution 

of including landmarks on mobile maps during assisted navigation. Landmarks, as widely 

proposed in navigation research, play a key role in assisting navigation and environmental 

learning. Meanwhile, the literature on cognitive capacity suggests that individuals have limited 

cognitive resources to process presented information and that their learning performance may 

reach a plateau or even decline after the number of learned items exceeds their capacity. Hence, 

it is important to provide a cognitively usable set of landmarks that optimizes navigators’ 

cognitive resource exertion and spatial learning. This thesis set out a VR navigation 

experiment, in which participants followed a given route visualized on a mobile map and were 

instructed to learn landmarks along the route. The experiment first examined how the display 

of three different numbers (3 versus 5 versus 7) of landmarks on a mobile map affected 

navigators’ spatial learning, as evaluated by three spatial learning tests. In addition, EEG was 

employed to assess how the landmark depiction on a mobile map influenced navigators’ 

cognitive load and visuospatial encoding during map consultation as well as during active 

locomotion. Statistical results reveal that 1) landmark and route learning, but not survey 

learning, improved when five landmarks were depicted on a mobile map compared to three 

landmarks, and there was no further improvement when seven landmarks were provided; 2) 

cognitive load increased when participants were processing seven landmarks depicted on 

mobile maps compared to the other two landmark conditions, as evidenced by greater frontal-

central theta synchronization and greater parieto-occipital P3 amplitude; by contrast, 

visuospatial encoding increases with the increased number of presented landmarks 
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accordingly, as indicated by more pronounced posterior theta synchronization; 3) cognitive 

load increased in the seven-landmark condition, when participants were locomoting through 

the environment and not viewing the map, compared to the other two landmark conditions, 

as evidenced by greater blink-related P3 amplitude at parieto-occipital leads. Taken together, 

these results provide a better understanding of the effects of landmark depiction on spatial 

learning and cognitive load during map-assisted navigation. Finally, this thesis also provides 

an example of how to investigate and solve a cartographic design problem by leveraging 

neuropsychological approaches. The experiment and the findings reveal that 

neuropsychological tools are useful for understanding users’ behavior and related neural 

mechanisms and for designing user-centered and cognitively supportive devices. Below, I 

discuss two main takeaways for the readers, based on the findings of this thesis.  

7.1 Main takeaways 

First, providing a medium number of landmarks (i.e., five landmarks) on a 

mobile map during navigation is the best option, as it improves navigators’ spatial 

learning performance and does not tax additional cognitive resources. This thesis 

supports the proposed benefit of landmarks in navigation and spatial learning and additionally 

suggests a boundary of this benefit of landmarks: visualizing landmarks on a mobile map 

benefits users’ spatial learning only to a certain extent—when the number of visualized 

landmarks does not increase cognitive load.  

Second, cognitive load during map use and those during locomotion influence 

each other. During map-assisted navigation, locomoting through an environment to reach a 

specific intersection or place (e.g., titling the foot controller to steer the movement in the 

current experiment) is related to intrinsic cognitive load. Depicting more landmarks on a 

mobile map leads to better spatial memory, which is possibly associated with germane 

cognitive load, as landmarks at the traversed intersections are relevant to the navigation task at 

hand. Therefore, the increased cognitive load might be spilled over between the germane load 
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during map viewing and the intrinsic load during locomotion in the environment. The 

increased cognitive load during both navigational phases might explain the boundary of the 

benefit of landmarks on mobile maps in spatial learning. 

7.2 Outlook on human spatial navigation in the digital era 

This thesis provides an exemplary paradigm of leveraging neuropsychological 

approaches to answer a cartographic design and societal problem—how to counteract the 

negative effects of GPS-enabled navigation devices on users’ navigational skills and spatial 

memory? This thesis provides a possible solution by visualizing different numbers of 

landmarks based on navigators’ cognitive load to improve their spatial learning of the traversed 

environment. To further validate and generalize the work and the results, researchers and 

practitioners should focus on the following aspects in the future.  

First, a continuous relationship between the number of landmarks and spatial learning 

and cognitive load should be investigated, which is crucial for the development of a 

neuroadaptive mobile map that adapts the landmarks on mobile maps gradually, based on 

navigators’ ongoing cognitive load, and optimizes their spatial learning. In addition, to obtain 

a more comprehensive understanding of the relationship between the number of landmarks, 

cognitive load, and spatial learning, future research and design practice should examine 

different environments and environmental features (e.g., different route lengths, different 

street layouts) and also include navigators’ prior knowledge of the environment. Moreover, 

an ecological study in the real world is needed to apply these findings to a real-world design 

and use cases. 

Finally, this thesis points to a broader direction for future research agendas and design 

practices that tackle the same societal problem of the negative effects of GPS-enabled 

navigation devices on users’ navigational skills and spatial memory. It is important to keep in 

mind that assisted navigation is a dynamic interaction between the navigator, the device, and 

the environment (Ishikawa, 2020; p. 157). Navigation aids should, on the one hand, be 
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designed to support the navigation task itself, such as providing directions to reach a 

destination. More importantly, on the other hand, other factors in this dynamic loop, such as 

users’ abilities and states (e.g., cognitive load and spatial skills), and their interaction with and 

knowledge of an environment, should be well considered, evaluated, and included in the 

design process. GPS technologies should promote physical and social engagement with 

environments, people, and experiences, as Aporta & Higgs (2005) noted in their research on 

Inuit wayfinding and GPS technology.  
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Supplementary Materials 

The following supplementary materials for the experiment and the analyses can be 

found on the open access Github page: https://github.com/BingjieCheng/PhDThesis.git 

1. Experiment 

1.1 Information sheet & Consent form 

1.2 Santa Barbara Sense of Direction (SBSOD) questionnaire 

1.3 Perspective Taking/Spatial Orientation Test (PT/SOT) 

1.4 Corsi Block-Tapping Test (CBTT) 

2. Analysis Scripts 

2.1 R script of linear mixed-effect models 

2.2 Matlab script of BeMobile preprocessing 

2.3 Matlab script of event-related potential (ERP) analysis  

2.4 Matlab script of power spectral analysis (PSA) 

2.5 Matlab script of blink-related ERP analysis 

 

The 3D virtual cities can be found in the following SwitchDrive folder: 

https://drive.switch.ch/index.php/s/tlz0ljRn4KBGFzD 

A Video clip that records the navigation experiment can be found in the following 

SwitchDrive folder: https://drive.switch.ch/index.php/s/VETOfWzKg2GBGqA 

 

https://github.com/BingjieCheng/PhDThesis.git
https://drive.switch.ch/index.php/s/tlz0ljRn4KBGFzD
https://drive.switch.ch/index.php/s/VETOfWzKg2GBGqA
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