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http://isp.uv.es

Abstract

Remote sensing image classification exploiting multiple sensors is a very chal-
lenging problem: data from different modalities are affected by spectral dis-
tortions and mis-alignments of all kinds, and this hampers re-using models
built for one image to be used successfully in other scenes. In order to adapt
and transfer models across image acquisitions, one must be able to cope with
datasets that are not co-registered, acquired under different illumination and
atmospheric conditions, by different sensors, and with scarce ground refer-
ences. Traditionally, methods based on histogram matching have been used.
However, they fail when densities have very different shapes or when there
is no corresponding band to be matched between the images. An alternative
builds upon manifold alignment. Manifold alignment performs a multidimen-
sional relative normalization of the data prior to product generation that can
cope with data of different dimensionality (e.g. different number of bands)
and possibly unpaired examples. Aligning data distributions is an appeal-
ing strategy, since it allows to provide data spaces that are more similar to
each other, regardless of the subsequent use of the transformed data. In this
paper, we study a methodology that aligns data from different domains in
a nonlinear way through kernelization. We introduce the Kernel Manifold
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Alignment (KEMA) method, which provides a flexible and discriminative
projection map, exploits only a few labeled samples (or semantic ties) in
each domain, and reduces to solving a generalized eigenvalue problem. We
successfully test KEMA in multi-temporal and multi-source very high reso-
lution classification tasks, as well as on the task of making a model invariant
to shadowing for hyperspectral imaging.

Keywords: Feature extraction, Manifold learning, Domain adaptation,
Graph-based methods, Hyperspectral imaging, Very high resolution,
Classification, Kernel methods.

1. Introduction

Many real-life problems currently exploit heterogeneous sources of remote
sensing data: forest ecosystems studies (Asner et al., 2005, 2006; Roth et al.,
2015), post-catastrophe assessment (Brunner et al., 2010; Taubenböck et al.,
2011) or land-use updating (Bruzzone and Fernandez-Prieto, 2001; Nielsen,
2002; Amorós-López et al., in press) take advantage of the wide coverage and
short revisit time of remote sensing sensors. They typically design specific
image processing pipelines to produce maps of a product of interest. Despite
the promises of remote sensing to tackle such ambitious problems, two main
obstacles prevent this technology from reaching a broader range of applica-
tions: on the one hand, there is generally a lack of labeled data present at
each acquisition and, on the other hand, the models need to be capable of
dealing with images obtained under different conditions and thus potentially
with different sensors.

Working under label scarcity has been extensively considered in recent
remote sensing image processing literature by means of optimizing the use
of the few available labels (Camps-Valls et al., 2014). In our view, the prob-
lem of adapting remote sensing classifiers boils down to compensating for a
variety of distortions and mis-alignments: for example, data resolution may
differ or seasonal conditions might offer remarkable differences in the spectral
signatures observed. When the images cover the same area, registration can
be approximate. Moreover, each scene depends on its particular illumina-
tion and viewing geometry, which causes spectral signatures to shift among
acquisitions (Matasci et al., 2015). As a consequence, it becomes difficult,
often impossible, to re-use field data acquired on a given campaign to process
newly acquired images. Transferring models from one remote sensing image
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acquisition to the other can be a very challenging task.
Adapting classifiers to (even slightly) shifted data distributions is an old

problem in remote sensing, which started in the 1970s with the signature
extension field (Fleming et al., 1975; Olthof et al., 2005), and then evolved,
due to the technological advances in both sensor and processing routines, into
what is generally referred to as the transfer learning problem (Pan and Qiang,
2010; Patel et al., 2015). By transfer learning, we mean all kind of method-
ologies aiming at making models transferable across image/data acquisitions.
In recent remote sensing literature, works have mainly considered three re-
search directions (Tuia et al., in press): 1) unifying the data representation,
for example via atmospheric correction (Guanter et al., 2009), feature selec-
tion (Bruzzone and Persello, 2009), or feature extraction (Volpi et al., 2015;
Sun et al., 2016, in press); 2) incorporating invariances in the classifier, for
example via synthetic (‘virtual’) examples (Izquierdo-Verdiguier et al., 2013)
or physically-inspired features (Pacifici et al., 2014; Verrelst et al., 2010); and
3) adapting the classifier to cope with the shift among acquisitions, for ex-
ample via semi-supervised-inspired strategies (Rajan et al., 2006; Bruzzone
and Marconcini, 2010) or active learning (Matasci et al., 2012).

Most of the methodologies above rely on the fact that all images are
acquired by the same sensor (i.e. they share the same d-dimensional data
space, as well as the nature -and physical meaning- of the features), or that
all information and know-how necessary to convert to surface reflectance is
available to the user performing the analysis, which is unfortunately often not
the case. Moreover, at the application level there is generally no requirement
of sticking to a specific sensor (taking the example of post-catastrophe inter-
vention, the fact of waiting for the next cloud-free image of a specific sensor
can mean the loss of human lives): since more and more images are currently
available to the general public and organizations, new transfer learning ap-
proaches must be capable to unify data from different sensors, at different
resolutions, without co-registration, and without being specific to a given
end classifier (Gómez-Chova et al., 2015). The recently proposed manifold
alignment methods gather all these properties.

Manifold alignment (Wang et al., 2011) is a machine learning framework
aiming at matching, or aligning, a set of domains (the images) of potentially
different dimensionality using feature extraction under pairwise proximity
constraints (Ham et al., 2005). In some sense, manifold alignment performs
registration in the feature space and matches corresponding samples, where
the correspondence is defined by a series of proximity graphs encoding some
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prior knowledge of interest (e.g. co-location, class consistency). An intuition
of how manifold alignment functions is provided in Fig. 1. Its application
to remote sensing data is relatively recent: in Tuia et al. (2014), authors
presented the semi-supervised manifold alignment method (SSMA), which
gathers all properties above, but at the price of requiring labeled pixels in all
domains to perform the alignment. Yang and Crawford (2016b) study issued
of spatial consistency and in Yang and Crawford (2016a) they propose a
multi-scale alignment procedure not relying on labels in all domains. Finally,
true colour visualization for hyperspectral data was tackled in Liao et al. (in
press).

In this paper, we study the effectiveness of the nonlinear counterpart
of SSMA, the Kernel Manifold Alignment (KEMA, Tuia and Camps-Valls
(2016)), as well as its relevance for remote sensing problems. KEMA is
a flexible, scalable, and intuitive method for aligning manifolds. KEMA
provides a flexible and discriminative projection function, only exploits a
few labeled samples (or semantic ties (Montoya-Zegarra et al., 2013), when
images are roughly registered – see Section 3.3) in each domain, and reduces
to solving a simple generalized eigenvalue problem.

KEMA is introduced in Section 2. In Section 3, we test it in several real-
life scenarios, including multi-temporal and multi-source very high resolution
image classification problems, as well as in the challenging task of making
a model shadow-invariant in hyperspectral image classification. Section 4
concludes the paper.

[Figure 1 about here.]

2. Kernel Manifold Alignment (KEMA)

In this section, we detail the KEMA method. We first recall the linear
counterpart, the SSMA method (Wang and Mahadevan, 2011). Noting the
main problems of this method, we introduce KEMA as a solution to address
them. The reader interested in more theoretical details of KEMA can find
them in Tuia and Camps-Valls (2016). Code can be found at the URL:
https://github.com/dtuia/KEMA.

2.1. Notation

To fix notation, we consider a series of M domains. For each one of
them, we have a data set: M := {xmi ∈ Rdm|i = 1, . . . , nm}, where nm
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is the number of samples issued from domain m with data dimensionality
dm, and m = 1, . . . ,M . Some of the pixels in xi are labeled (l1, ..., lM), and
most are unlabeled. From one domain to another, the data are not necessarily
semantically paired, i.e. n1 6= nm 6= nM , nor it is mandatory that all domains
have the same dimension, i.e. d1 6= dm 6= dM .

2.2. Semi-supervised manifold alignment (SSMA)

The linear SSMA method was originally proposed in Wang and Mahade-
van (2011) and successfully adapted to remote sensing problems in Tuia
et al. (2014). The SSMA method aligns data from all M domains by pro-
jecting them into a common latent space using a set of domain-specific
projection functions, fm, collectively grouped into the projection matrix
F := [f1, . . . , fM ]>. The latent space has two properties: it is discriminant
for classification and respects the original geometry of each manifold. To
do so, SSMA tries to find a data projection matrix F that maximizes the
following cost function

L =
µGEO + SIM

DIS
,

where we aim to maximize a topology/geometry (GEO) and a class similar-
ity (SIM) terms while minimizing a class dissimilarity term (DIS) between
all samples, and µ > 0 is a parameter controlling the contribution of the
similarity and the topology terms. The three terms correspond to:

1. a geometry-preservation term, GEO, forcing the local geometry of each
manifold to remain unchanged, i.e. penalizing projections mapping
neighbors in the input space far from each other,

GEO =
M∑
m=1

nm∑
i,j=1

Wm
g (i, j)‖fm>xmi − fm>xmj ‖2

= tr(F>XLgX
>F), (1)

where Wm
g is a similarity matrix returning the value 1 if two pixels of

domain m are neighbours in the original feature space and 0 otherwise.
Wm
g is typically a k-NN graph. Lg is the (

∑
m nm ×

∑
m nm) graph

Laplacian issued from the similarity matrices Wm
g , stacked in a block-

diagonal matrix. All the out-of-diagonal blocks of Wg are empty, since
we do not want to preserve neighbourhood relationships between the
images.
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2. a class similarity term, SIM, penalizing projections mapping samples of
the same class far from each other,

SIM =
M∑

m,m′=1

lm,lm′∑
i,j=1

Wm,m′

s (i, j)‖fm>xmi − fm
′>xm

′

j ‖2

= tr(F>XLsX
>F), (2)

where Wm,m′
s is a similarity matrix returning the value 1 if two pixels

from domains m and m′ belong to the same class. These are the tie
points performing registration in the spectral space, and are used to
match the images to each other.

3. a class dissimilarity term, DIS, penalizing projections mapping pixels
of different classes close to each other.

DIS =
M∑

m,m′=1

lm,lm′∑
i,j=1

Wm,m′

d (i, j)‖fm>xmi − fm
′>xm

′

j ‖2

= tr(F>XLdX
>F), (3)

where Wm,m′

d is a dissimilarity matrix returning the value 1 if two pixels
from domains m and m′ belong to different classes. These tie points
prevent the solution to collapse in a single point and, together with the
SIM term, foster the latent space to be discriminative.

Now, by combining Eqs. (1)-(3), it is straightforward to show that the so-
lution boils down to finding the last eigenvalues of the following generalized
eigenproblem (Wang and Mahadevan, 2011), which is directly derived:

X(µLg + Ls)X
>ϕ = λXLdX

>ϕ, (4)

where X is a (d ×
∑

m nm) block-diagonal matrix containing the data from
the different domains to be aligned. ϕ is the researched common projection
matrix of size d × d, with d =

∑M
m=1 dm. The rows of ϕ contain a block of

projectors for each domain, scaled by λ1/2, in a particular block structure:

F = λ
1
2ϕ =

 f1

...
fM

 =



f1,1 . . . f1,d
...

. . .
...

fd1,1 . . . fd1,d
fd1+1,1 . . . fd1+1,d

...
. . .

...
fd,1 . . . fd,d


, (5)
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where the eigenvectors for the first domain are highlighted in green.
Once the projection matrix ϕ is obtained, any sample xmi ∈ Rdm×1 from

domain m (one of the domains considered) can be projected in the latent
space by using the corresponding (dm × d) block of eigenvectors fm:

P(xmi ) = fm>xmi . (6)

As for (k)PCA and other methods based on eigen-decomposition, the data
can be projected onto a subspace of dimension p lower than d by simply using
only the first p� d columns of fm. In this sense, SSMA leaves some control
on the dimensionality of the latent space for class separation.

2.3. Kernel Manifold Alignment (KEMA)

The idea behind kernelization is to map the data into a high dimensional
Hilbert space H with the mapping function φ(·) : x 7→ φ(x) ∈ H such that
the mapped data is better suited for solving our problem. This technique has
found wide adoption in many remote sensing data analysis problems (Camps-
Valls and Bruzzone, 2009). In practice, computing this mapping explicitly
can be prohibitive due to its high dimensionality. This can be avoided by
expressing the problem in terms of dot products within H. We can then de-
fine an easy-to-compute kernel function k(xi,xj) = 〈φ(xi),φ(xj)〉H return-
ing similarities between mapped samples without having to compute φ(·)
explicitly.

In the multi-modal setting considered here, we would have to map the M
datasets to M Hilbert spaces Hm of dimension Hm, φm(·) : x 7→ φm(x) ∈
Hm, m = 1, . . . ,M . Then, we replace all the samples with their mapped
feature vectors. The GEO, SIM and DIS terms become:
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GEO =
M∑
m=1

nm∑
i,j=1

Wm
g (i, j)‖um>φ(xi)

m − um>φ(xj)
m‖2

= tr(U>ΦLgΦ
>U) (7)

SIM =
M∑

m,m′=1

lm,lm′∑
i,j=1

Wm,m′
s (i, j)‖um>φ(xi)

m − um
′>φ(xj)

m′‖2

= tr(U>ΦLsΦ
>U), (8)

DIS =

M∑
m,m′=1

lm,lm′∑
i,j=1

Wm,m′

d (i, j)‖um>φ(xi)
m − um

′>φ(xj)
m′‖2

= tr(U>ΦLdΦ
>U), (9)

As for the SSMA case, combining Eqs. (7)-(9) leads to a generalized
eigendecomposition problem:

Φ(Lg + µLs)Φ
>U = λΦLdΦ

>U,

where Φ is a block diagonal matrix containing the data matrices Φm =
[φm(x1), . . . ,φm(xnm)]> and U contains the eigenvectors organized in rows
for the particular domain defined in Hilbert space Hm, U = [u1,u2, . . . ,uH ]>

where H =
∑M

m=1Hm. As stressed above, Φ and U live in a high dimensional
space that might be very costly or even impossible to compute. Therefore,
we express the eigenvectors as a linear combination of mapped samples using
the Representer’s theorem (Yan et al., 2007) , um = Φmαm (or U = ΦΛ in
matrix notation):

K(Lg + µLs)KΛ = λKLdKΛ, (10)

where K is a block diagonal matrix containing the kernel matrices Km. Now
the eigenproblem becomes of size n× n instead of d× d, and we can extract
a maximum of n components.

Λ =

α
1

...
αM

 =



α1,1 . . . α1,n
...

. . .
...

αn1,1 . . . αn1,n

αn1+1,1 . . . fα1+1,n
...

. . .
...

αn,1 . . . αn,n


. (11)
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This dual formulation is advantageous when dealing with very high di-
mensional datasets, d� n for which the SSMA problem is not well-conditioned.
Operating in Q-mode endorses the method with numerical stability and com-
putational efficiency in current high-dimensional problems, e.g. when using
Fisher vectors or deep features for data representation. As shown in Tuia and
Camps-Valls (2016), KEMA performs very well when aligning input spaces
of such high dimension. This type of problems with much more dimensions
than points are becoming more and more prominent in remote sensing (La-
grange et al., 2015; Marmanis et al., in press). In this sense, even KEMA
with a linear kernel (which corresponds to the SSMA solution) becomes a
valid solution for these problems, as it has all the advantages of methods
related to (kernel) Canonical Correlation Analysis ((k)CCA (Lai and Fyfe,
2000)), but can also deal with unpaired data.

Projection of a new test vector xmi to the latent space requires first map-
ping it to its corresponding kernel form Km

i and then applying the corre-
sponding projection vector αm defined therein:

P(xmi ) = um>Φm
i = αm>Φm>Φm

i = αm>Km
i , (12)

where Km
i is a vector of kernel evaluations between sample xi and all samples

from domain m used to define the projections αm. Therefore, projection to
the kernel latent space is possible through the use of dedicated reproducing
kernel functions.

2.4. Computational complexity of KEMA

A shortcoming of KEMA may be its computational cost. As for the
SSMA method (and CCA-based approaches), KEMA is based on an eigen-
decomposition, for which many efficient solvers are available. Their cost is
comparable to kernel and linear canonical correlation analysis techniques,
respectively. Compared to SSMA, the KEMA problem to be solved might be
of larger side, since SSMA involves a d× d decomposition (with d =

∑
m dm

being the sum of the dimensionality of all domains), while KEMA involves
a n× n decomposition (with n =

∑
m nm being the total number of samples

involved in the kernel matrices). Hence, for small d (for instance, when align-
ing VHR images in R4) SSMA is computationally more interesting, while for
large d (for instance, when considering DeCAF deep features in R4096 for
each domain), KEMA will involve a smaller cost and higher stability (see
also Tuia and Camps-Valls (2016) for a more detailed discussion). Another
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issue is related with storage costs, since KEMA stores a set of nm×nm kernel
matrices and requires the evaluation of nm kernel functions for each sample
at test time: to alleviate such costs, we proposed two approaches based on
reduced rank approximation and random features. The interested reader can
find all the details in Tuia and Camps-Valls (2016).

3. Experimental Results

In this section, we present experimental results in three challenging re-
mote sensing problems: multi-temporal / multi-source VHR classification,
shadow removal in hyperspectral images, and multi-source image alignment
without labels.

3.1. Multi-temporal and multi-sensor VHR classification

The first experiment is a direct comparison to the multi-source experiment
reported in Tuia et al. (2014). We consider three VHR images (Fig. 2)
depicting peri-urban settlements:

- Prilly : the first image is acquired by the WorldView-2 VHR satellite (8
visible and near-infrared bands) over Prilly, a residential neighborhood
of Lausanne, Switzerland. The image is acquired on August 2, 2011
and has been pansharpened using the Gram-Schmid transform to a
resolution of approximatively 0.7m.

- Malley : the second image is also acquired by WorldView-2 over an-
other residential neighborhood of Lausanne, Montelly. The image is
acquired on September 29, 2010 and has also been pansharpened using
the Gram-Schmid transform to 0.7m.

- Zurich: the third image is acquired by the QuickBird satellite (4 bands,
RGB- NIR) over a residential neighborhood of Zurich, Switzerland.
The image has been acquired on October 6, 2006 and pansharpened.

[Figure 2 about here.]

[Figure 3 about here.]
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For each image, a ground truth consisting of 9 classes is available (see
bottom row of Fig. 2). We follow the experimental protocol of Tuia et al.
(2014): we use the original DN values of each image as input features. From
all the available labeled pixels in each image, 50% are kept apart as the testing
set. The remaining 50% are used to extract the labeled and unlabeled pixels
composing the xm sets. We then extract l1 = 100 labeled pixels per class from
what we call the leading domain image, which is the image carrying most
labeled samples (we take each image in turn as the leading domain image).
Experiments run on smaller labeled sets led to the same conclusions, only
with lower performance for all models. In our setting, we also need labeled
pixels from the two other acquisitions: we tested an increasing additional
of labeled samples, l2 = l3 = [10, 30, 50, 90] pixels per class. As in Tuia
et al. (2014), the unlabeled examples are selected using an iterative clustering
algorithm, the bisecting k-means (Kashef and Kamel, 2009), which runs k-
means with 2 clusters iteratively, by splitting the current largest cluster in the
dataset. This way, we sample 500 unlabeled examples per each image source.
We use the labeled and unlabeled examples to extract both the SSMA and
KEMA projections and then project all images in the latent space. Finally,
we use all the projected labeled examples to train a single classifier (a linear
SVM) in the latent space. This classifier is used to predict all the test pixels
of all three images at once (i.e. no specific training is performed for the
specific images separately).

In KEMA, we use RBF kernels with the bandwidth σm fixed as half
the median distance between the samples of the specific image (labeled or
unlabeled). By doing so, we allow different kernels in each domain, thus
tailoring the similarity function to the data structure observed (Tuia and
Camps-Valls, 2016). To build the graph Laplacians, we used a series of graphs
built using k-NN graphs with k = 9 as in Tuia et al. (2014). We validated
the optimal number of dimensions, as well as the optimal C parameter in
the SVM classifier using the labeled samples in a cross-validation setting.
Finally, as in Tuia et al. (2014) we add a baseline, which is the classifier
learned with the original features. Since the Zurich image has a different
input space than the two others, only the common bands between QuickBird
and WorldView-2 are considered.

The results are reported in Fig. 3. Two distinct behaviours are observed:

- Diagonal blocks of Fig. 3 (when predicting the leading domain image,
which carried most labels): in this cases, the predictions of KEMA are
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better than those of SSMA by ≈ 2 − 5% and remain consistent when
adding samples from the other domains. This means that the images
are aligned correctly and the inclusion of labels from other images does
not disturb the classifier (as in the ‘no adaptation’ case). On the con-
trary, adding labeled samples from the other images is beneficial, as one
can observe by comparing the KEMA results with the optimal case ob-
tained when using only the 100 labeled pixels per class from the leading
image (green bars): the final prediction is 5-10% more accurate than
in the case, where the leading image is used alone (i.e. without extra
labeled samples coming from the other acquisitions). This means that
the extra labeled are aligned correctly, since the classifier trained with
100 + l2 + l3 aligned examples per class outperforms the one obtained
with 100 pixels per class.

- Off-diagonal blocks of Fig. 3 (when predicting the two other, scarcely la-
beled images): in the off-diagonal blocks we can observe a constant im-
provement of the results obtained by SSMA, which corresponds already
to a strong improvement over the ‘no adaptation’ case. The improve-
ment of KEMA with respect to the latter is more striking (≈ 5− 15%)
when using little labels from the test images. In comparison to SSMA
we observe a constant 3− 5% improvement.

3.2. Shadow compensation in hyperspectral image classification

In this experiment, we aim at compensating the reduction in reflectance
due to a shadow casted by a large cloud. We consider a hyperspectral image
acquired by the CASI sensor over Houston (see Fig. 4a) ). The data were
originally provided to the community for the data fusion contest 2013 (Debes
et al., 2014)1. The contest was framed as a land use classification contest,
where 15 land use classes were to be detected using two data sources: the
hyperspectral image mentioned and a LiDAR DSM. The specificity of the
contest is that the test pixels are partly located under a shadow cast by clouds
(see Fig. 5d), thus raising the need for compensation algorithms. In our
analysis, we compare three strategies for handling the hyperspectral image:
using it without further processing (‘Raw’), applying a histogram matching
(HM) on the shadowed area (the strategy also used before extracting features

1The data can be found at http://www.grss-ieee.org/community/

technical-committees/data-fusion/
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in Tuia et al. (2015)), SSMA and the proposed KEMA aligning the pixels
under the shadow and those illuminated. For HM, SSMA and KEMA, we
define the shadowed pixels by defining a cloud mask by thresholding band
130 and then applying morphological operators to remove salt and pepper
noise within the bigger connected component representing the shadow (cf.
the mask in Fig. 4d).

In this experiment, we align the dataset using 20 labeled pixels per class.
We use only classes occurring in both domains (shadowed and illuminated).
Additionally, we sample randomly 200 unlabeled pixels per class. We align
the 144 reflectance band of the two domains to each other. As for the first
example, the kernel used in KEMA is an RBF with σm bandwidth estimated
as half of the median distance between the points of the domain. This is
very important in this experiment, since it allows to have a much narrower
bandwidth for the kernel acting on the shadowed domain than the one used
in the illuminated domain. We classify using a support vector machine with
RBF kernel, whose parameters are found by cross validation (σ ∈ [0.01, 0.1],
C ∈ [1, 100]). We train the classifier on 95% of the training set available and
predict on two validation datasets: the entire test set and the test samples
under the shadowed area. We consider three feature sets, as detailed in
Table 1, and use them in three experiments: the first using only the HSI,
the second adding LiDAR-derived features, and the third adding contextual
features extracted from the optical bands (this type of filters is known to
improve accuracy of classifiers considerably, as they break the assumption
of spatial independence of pixel features (Khatami et al., 2016)). A last
setting, called MV, uses all features, and also applies a majority voting on
the solution. Note that the LiDAR features do not change in the different
experiments, as only the HSI (and the contextual filters applied to those) are
affected by the normalization with SSMA, KEMA or HM. The experiments
are repeated 10 times by varying the labeled pixels in KEMA and those picked
for classification: therefore we report the average and standard deviation.

[Figure 4 about here.]

[Table 1 about here.]

The projections extracted by KEMA are visualized in Fig. 4 (geograph-
ical space, for projections [1 − 3] and [4 − 6]) and Fig. 6 (feature space for
dimensions [1 − 3]). At a first glance, the aligned features seem to be less
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dependent on the presence of the shadow than the original image (some ar-
tifacts remain at the border, due to the binary nature of the cloud mask).
This is confirmed in the feature space, where the two domain seem correctly
aligned both in terms of classes and domains.

[Figure 5 about here.]

[Figure 6 about here.]

The classification results reported in Table 2 confirm these intuitions:
KEMA is able to provide higher classification performance by working in
the aligned latent space. The use of the raw images (‘Raw’ column), even
though satisfactory on the global test set (OA of 85.5% in the best case),
completely fails under the shadowed area (best OA: 23.8%). This can be also
appreciated in the classification maps (first row in Fig. 5): from the maps
it is clear that the shadow drains most of the shadowed pixels in the class
‘water’ (in cyan). Even including LiDAR features (right column of Fig. 5)
does not solve entirely the problem and basically shifts most of the shadowed
pixels in the class ‘highway’ (in beige). Using HM improves drastically the
solution under the shadow, since the accuracy goes from 23.8% to 75.1%
on average. Histogram matching solves the problem globally and provides
the scaling and centering of the histogram necessary to make the images
more similar, but still fails at accounting for subtle local variations, thus
still leading to heavy misclassifications in the final map, in particular the
highway being classified as buildings (see second row of Fig. 5). Finally,
KEMA solves the problem locally by the flexibility of the kernel mapping:
the accuracies are the highest (also matching those of the winners of the
contest, who created an entirely ad-hoc system for this specific image) and
reach an average of 94.3%, but also show an almost identical performance
in the shadowed area (91.5%). The alignment has made the two domains
more similar and the mismatch between domains becomes almost invisible
in the classification maps (third row of Fig. 5). Compared with the linear
SSMA, KEMA provides indeed similar results overall, but provides a more
desirable solution in the shadowed area of the test set (with improvements
in accuracy between 12% when only the spectral bands are used to 1% when
all the additional features are injected), thus showing again the advances of
using a flexible mapping via the use of kernels.

[Table 2 about here.]
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3.3. Multi-source image classification without labels

In the last experiment, we break the requirement for labeled data in all
domains. To do so, we need to reduce the flexibility of KEMA by adding
a requirement on partial spatial overlap between the scenes. This can be
understood as follows: KEMA is a spectral registration method that uses
the labels as anchor points (or ties) to register the domains spectrally. If one
of the domains is unlabeled, it is not possible to register them, since the Ls

and Ld matrices in Eq. (10) cannot be computed. As a consequence, we can
only preserve the inner domain geometry using Lg, but there is no way to
find the matching between domains.

[Figure 7 about here.]

[Figure 8 about here.]

When using geographical data (as remote sensing data), a special case
can break this requirement: whenever the domains are (at least partially)
co-located in space. In this case, represented in Fig. 7, the two images share
a spatial region, where we can co-locate objects, for instance by feature key-
point matching or by manual registration. Once these matches are found,
they can be used to build the matrix Ls, since, even if we ignore their class,
we know that the pixels of the objects matched belong to the same class
(they are known as semantic ties (Montoya-Zegarra et al., 2013)). This type
of weakly supervised alignment has been recently proposed in Marcos et al.
(2016) and we use it here prior to aligning the data spaces with KEMA. The
experiment is set as follows:

- We use an RGB image (0.6m resolution) over the area of Prilly, a
neighbourhood of Lausanne, Switzerland as source domain. The area
is labeled into five classes (roads, buildings, trees, grass and shadows)
by manual photo-interpretation, see Fig. 8a.

- An FCIR (false colour infrared with NIR-G-B bands) ortho-photo of
the area of Renens (another neighbourhood of Lausanne), at 0.25 cm
resolution, is used as target domain and the labels are this time kept
hidden (they are only used for validation), see Fig. 8c.

- To find the projections with KEMA, we use an overlapping area be-
tween the two images. The overlapping areas are not registered nor
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they are at the same spatial resolution: to match them, we provide 40
tie object by manual drawing in both images (the operation takes less
than 5 minutes), see Fig. 8b.

We use the labels in the source and the semantic ties to construct the
Ls matrix. For the Ld matrix, we extracted the graph Laplacian from a
dissimilarity matrix with values 1 for pixels from different classes in the
source and 0.5 when issued from different objects in the semantic ties. We
give a smaller penalization in the latter case, since two pixels coming from
different objects can still belong to the same class. Once the domains are
aligned, we train a linear SVM with 100 labeled pixels per class from the
source domain (the RGB image) and test 400 pixels per class in the target
domain (the FCIR image).

The projections retrieved are illustrated in Fig. 9: as for the previous ex-
amples, KEMA shows aligned data spaces, but also discriminative in terms
of objects aligned: the bottom line in Fig. 9 illustrates six objects among the
40 semantic ties used to find the alignment. Figure 10 reports the classifica-
tion performance in the FCIR domain: starting with six dimensions, KEMA
outperforms the case where the RGB image is used to predict the FCIR one
without any adaptation2: when using 13 dimensions, KEMA performs com-
parably to a model trained on labeled pixels form the target domain itself
(green line in the figure). We compare these results to those obtained by
applying kCCA (Lai and Fyfe, 2000). We can use kCCA as a fair competitor
in this case, since the images share a common geographical extent: therefore,
in the common area each location is roughly seen by both views, which is a
condition for kCCA to function correctly, i.e. each sample aligned is viewed
by every domain3. In order to compute the kCCA projection, we considered
each object (each semantic tie in Fig. 8b) as a sample. We used the spectrum
of the most representative pixel (i.e. the pixel closest to the object average)
to describe it. We then extract the kCCA projections between the 40 pairs
of corresponding objects across image acquisitions. Numerically (Fig. 10),
the performance of KEMA is consistently better than that of kCCA. This
is probably due to two reasons: 1) the fact that KEMA does not need a

2To maximize the performance of the ‘no alignment’ case, we use the bands that share
comparable wavelengths across domains: Xs = [R,G], Xt = [R,G].

3Also note that this is the reason why we could not use kCCA as a competitor in the
previous examples, as there is no spatial overlap between the domains.
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one-to-one correspondence and thus all the pixels in an object are taken into
account for the projection and 2) that class separability is explicitly taken
into account by using the labels in the source domain.

[Figure 9 about here.]

[Figure 10 about here.]

4. Conclusions

In this paper, we presented a manifold alignment method based on ker-
nels. The presented KEMA method is a feature extractor that finds projec-
tions from all the available source domains into a joint latent space, where
data is semantically aligned and class separability enhanced. Compared to
recent manifold alignment methods, KEMA offers a more flexible frame-
work, going beyond simple linear transformations (scalings and rotations) of
the input data. KEMA exploits a few labeled samples (or semantic ties) in
each domain along with the wealth of unlabeled samples. KEMA reduces
to solving a simple generalized eigenvalue problem, and has very few (and
interpretable) hyperparameters to tune. We successfully tested KEMA in
multi-temporal and multi-source very high resolution classification tasks, as
well as on the task of making a model invariant to shadows for hyperspectral
imaging.

KEMA can be seen as a multivariate method for data pre-processing
in general applications where multi-sensor, multi-modal, sensory data is ac-
quired. The generality of the approach opens a wide field in remote sensing
data processing applications. Even though the applications showcased in
this paper are urban areas, the method is generic and can be applied to any
classification problem that comes with (scarcely) labeled, multi source im-
age data. Our next steps with KEMA involve 1) performing semi-automatic
atmospheric compensation in multi-temporal settings, 2) reduce the impact
of the few labeled examples needed to perform the alignment, and 3) extend
KEMA for challenging regression problems.
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Figure 1: Illustration of KEMA aligning data distributions in a multi-sensor setting.
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Prilly (WV2) Montelly (WV2) Zurich (QB)

Figure 2: The WorldView-2 (WV2) and QuickBird (QB) images used in the remote sensing
semantic classification experiments. Color legend: residential, meadows, trees, roads,
shadows, commercial building, railway, bare soil, highway.

24



Image predicted
Prilly Montelly Zurich (4 bands)

L
ea

d
in

g
tr

ai
n
in

g
im

ag
e P
ri

ll
y

Number of labeled pixels per class in the target domain
0 10 30 50 70 90

K
a
p
p
a

0.6

0.65

0.7

0.75

0.8
No adaptation
SSMA
KEMA
Training on test image

Number of labeled pixels per class in the target domain
0 10 30 50 70 90

K
a
p
p
a

0.45

0.5

0.55

0.6

0.65

0.7

Number of labeled pixels per class in the target domain
0 10 30 50 70 90

K
a
p
p
a

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

M
on

te
ll
y

Number of labeled pixels per class in the target domain
0 10 30 50 70 90

K
a
p
p
a

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Number of labeled pixels per class in the target domain
0 10 30 50 70 90

K
a
p
p
a

0.58

0.6

0.62

0.64

0.66

0.68

0.7

Number of labeled pixels per class in the target domain
0 10 30 50 70 90

K
a
p
p
a

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Z
u
ri

ch
(4

b
an

d
s)

Number of labeled pixels per class in the target domain
0 10 30 50 70 90

K
a
p
p
a

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Number of labeled pixels per class in the target domain
0 10 30 50 70 90

K
a
p
p
a

0.5

0.55

0.6

0.65

0.7

Number of labeled pixels per class in the target domain
0 10 30 50 70 90

K
a
p
p
a

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

Figure 3: Numerical results for the multi-source experiment. Rows indicate the image
from which 100 labeled pixels per class are used (l1 = 100 per class). κ performances
for increasing number of labeled pixels in the two other images (l2 = l3 = [10, ..., 90] per
class) are reported. Columns correspond to the image that has been used for testing. The
baseline is the model obtained using 100 pixels per class from the test image only.
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(a)

(b)

(c)

(d)

Figure 4: Domains reprojected by KEMA. (a): original CASI image. (b): first three
dimensions of the latent space (R: 1, G: 2, B: 3). (c): dimensions 4-6. (d): cloud mask
defining the two domains.
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HSI HSI+LiDAR+AVG+MV

Raw

HM

KEMA

Test

Figure 5: Classification maps for the three settings (Raw, HM and KEMA). (left) using
the spectral bands; (right) performing a majority voting on the map obtained by staking
HSI, LiDAR and AVG features (for averaged numerical results, see Tab. 2). Bottom line
shows the test samples and the cloud mask.
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RGB

Figure 7: Setting of the multi-source experiment. The cyan square represents the source
domain image (RGB) and the red square the target domain image (NIR-R-G). They share
a spatial subset, where the semantic ties are used to align the domains. The dark blue,
green and yellow square are the image detailed in Fig. 8, used for both the semantic ties
definition and the numerical assessment.

29



Prilly: source domain Spatially overlapping area
(RGB) with semantic ties

(a) (b)

Renens: target domain (unlabeled)
(NIR-R-G)

(c)

Figure 8: Images involved in the multi-source experiment (corresponding to the dark blue,
green and yellow squares in Fig. 7).
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Figure 9: Projections found by KEMA, colored by domain (top) and by object in the
semantic ties set (bottom, six objects shown). The left panel shows the unprojected data
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Table 1: Three feature types used in the experiment. Number in brackets is the number
of features involved in each group.

Raw / HM KEMA

HSI Hyperspectral bands (144) KEMA aligned features (50)
LiDAR LiDAR band + opening and closing by reconstruction features with

convolution of size [7, 19, 31] pixels (7)
AVG Average filters, window size 3, applied on the:

10 first principal component pro-
jections (10)

10 first KEMA projections (10)
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Table 2: Classification results (Overall accuracy, in %) for the Houston data.

Entire test set
HSI processing: Raw HM SSMA KEMA (us)

HSI 71.0 ± 0.1 79.5 ± 0.4 81.4 ± 1.7 83.8 ± 1.9
↪→ + LiDAR 83.4 ± 0.2 86.4 ± 0.7 89.3 ± 0.6 89.4 ± 1.4
↪→ + AVG 85.1 ± 0.2 84.5 ± 0.4 92.3 ± 0.8 93.0 ± 0.8
↪→ + MV 85.5 ± 0.2 86.0 ± 0.3 93.8 ± 0.8 94.3 ± 0.8

Shadowed areas in the test set
HSI 04.2 ± 0.1 67.4 ± 0.7 58.0 ± 9.4 70.0 ± 1.0
↪→ + LiDAR 22.5 ± 0.3 77.1 ± 1.3 78.8 ± 2.9 82.6 ± 5.4
↪→ + AVG 23.2 ± 1.2 73.6 ± 0.8 89.0 ± 4.1 90.4 ± 4.9
↪→ + MV 23.8 ± 1.2 75.1 ± 0.9 90.6 ± 3.7 91.5 ± 4.5
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